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Abstract

Occam’s razor has been the subject of much con-
troversy. This paper argues that this is partly
because it has been interpreted in two quite dif-
ferent ways, the first of which (simplicity is a goal
in itself) is essentially correct, while the second
(simplicity leads to greater accuracy) is not. The
paper reviews the large variety of theoretical argu-
ments and empirical evidence for and against the
"second razor," and concludes that the balance
is strongly against it. In particular, it builds on
the case of (Schaffer, 1993) and (Webb, 1996) 
considering additional theoretical arguments and
recent empirical evidence that the second razor
fails in most domains. A version of the first razor
more appropriate to KDD is proposed, and we ar-
gue that continuing to apply the second razor risks
causing significant opportunities to be missed.

Occam’s Two Razors

William of Occam’s famous razor states that "Nun-
quam ponenda est pluralitas sin necesitate," which,
approximately translated, means "Entities should not
be multiplied beyond necessity" (Tornay 1938). It was
born in the late Middle Ages as a criticism of scholastic
philosophy, whose theories grew ever more elaborate
without any corresponding improvement in predictive
power. In the intervening centuries it has come to be
seen as one of the fundamental tenets of modern sci-
ence, and today it is often invoked by learning theorists
and KDD practitioners as a justification for preferring
simpler models over more complex ones. However, for-
mulating Occam’s razor in KDD terms it trickier than
might appear at first. Leaving aside for the moment
the question of how to measure simplicity, let gener-
alization error of a model be its error rate on unseen
examples, and training-set error be its error on the ex-
amples it was learned from. Then the formulation that
is perhaps closest to Occam’s original intent is:

First razor: Given two models with the same gen-
eralization error, the simpler one should be pre-
ferred because simplicity is desirable in itself.

Copyright (~)1998, American Association for Artificial
Intelligence (www.aaai.org). All rights reserved.

On the other hand, within KDD Occam’s razor is
often used in a quite different sense, that can be stated
as:

Second razor: Given two models with the same
training-set error, the simpler one should be pre-
ferred because it is likely to have lower generaliza-
tion error.

We believe that it is important to distinguish clearly
between these two versions of Occam’s razor. The first
one is largely uncontroversial, while the second one,
taken literally, is false. Several theoretical arguments
and pieces of empirical evidence have been advanced
to support it, but each of these is reviewed below and
found wanting. The paper also reviews previous theo-
retical arguments against the "second razor," and, more
importantly, mounting empirical evidence that it fails
in practice. Finally, the first razor is revisited and re-
fined, and some consequences are discussed.

Theoretical Arguments for the

Second Razor

The PAC-Learning Argument

Although a large fraction of the computational learn-
ing theory literature is concerned with the relationship
between accuracy and simplicity (at least superficially),
the basic argument is neatly encapsulated in Blumer et
al.’s (1987) paper "Occam’s razor." While the mathe-
matical results in this paper are valid, they have only
a very indirect relationship to the second razor, and do
not "prove" it. In short, this paper shows that, if a
model with low training-set error is found within a suf-
ficiently small set of models, it is likely to also have low
generalization error. This model, however, could be ar-
bitrarily complex. The only connection of this result to
Occam’s razor is provided by the information-theoretic
notion that, if a set of models is small, its members
can be distinguished by short codes. But this in no
way endorses, say, decision trees with fewer nodes over
trees with many. By this result, a decision tree with
one million nodes extracted from a set of ten such trees
is preferable to one with ten nodes extracted from a set
of a million, given the same training-set error.
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Put another way, the results in (Blumer et al. 1987)
only say that if we select a sufficiently small set of rood-
cls prior to looking at the data, and by good fortune one
of those models closely agrees with the data, we can be
confident that it will also do well on future data. The
theoretical results give no guidance as to how to select
that set of models.

The Bayesian Argument
Claims of a general theoretical foundation for prefer-
ring simple models can also be found in the statis-
tical and pattern recognition literature. While the
details vary, they typically take the form of an ap-
proximation to the optimal prediction procedure of
Bayesian model averaging (Bernardo & Smith 1994;
Chickering & Heckerman 1997) that results in evaluat-
ing candidate models according to a sum of two terms:
an error or likelihood term, and a term penalizing the
complexity of the model. Criteria of this type include
AIC (Alcaike 1978), BIC (Schwarz 1978), and many 
ers. Similar criteria with an information-theoretic in-
terpretation, like MML (Wallace & Boulton 1968) and
MDL (Rissanen 1978) are discussed below.

Consider BIC, the first criterion to be explicitly pro-
posed as an approximation to Bayesian model averag-
ing. Leaving aside the fact that BIC involves a sequence
of approximations and assumptions that may or may
not be valid in practice (e.g., an infinite sample), its
use of a complexity penalty does not imply that sim-
pler models are more probable, because BIC computes
probabilities for model structures, as opposed to mod-
els. This distinction is important, ax+b and ax2 +bx+c
are model structures; each can be instantiated by many
different models, for example 5x + 2 and 3x2 + x + 10.
BIC approximates the inarginal likelihood of a model
structure, which is the average of the likelihoods of all
the models that instantiate it (weighted by their prior
probahilities given the model structure). BIC penal-
izes the model structure’s dimension because higher-
order spaces effectively contain many more models than
lower-order ones, and thus contain many more low-
likelihood models along with the "best" one(s). (In pre-
cise terms, higher-order model structures have a higher
VC dimension (Haussler 1988); or, considering finite-
precision numbers, they literally contain more models.)
For example, the model space defined by ~lx2 + bx + c
contains many more models than the one defined by
a:c + b. Thus, if the correct model is 3x2 + x + 10, the
quadratic structure is correspondingly the correct one,
but it may still appear less likely than the lineal" struc-
ture, because the high likelihood of the 3x2 + x + 10
model will be averaged with a large number of vanish-
ingly small likelihoods corresponding to the many poor
quadratic models that are possible. However, this has
no bearing on the likelihood of the 3x2 +x+ 10 model; it
will still be more likely than any linear model, irrespec-
t, ive of its quadratic degree. Thus, choosing a model
structure according to BIC and then instantiating the
parameters can lead to a suboptimal model.

38 Domingos

Similar remarks apply to the more recent work of
MacKay (1992). The "Occam factors" that appear 
his evidence framework penalize model structures with
many parameters, as opposed to models, and can also
lead to suboptimal choices.

The Information-Theoretic Argument

The minimum description length (MDL) principle (Ris-
sanen 1978) is perhaps the form in which the second
razor is most often applied (e.g., (Quinlan & Rivest
1989)). According to this principle, the "best" model 
the one which minimizes the total number of bits needed
to encode the model and the data. The MDL principle
is appealing because it reduces two apparently incom-
mensurable attributes of a model (error rate and com-
plexity) to the same form: bits of information. How-
ever, there is no gum’antee that it will select the most
accurate model. Rissanen simply proposes it as a funda-
mental principle. The closely-related minimum message
length (MML) principle (Wallace & Boulton 1968) 
derived by taking the logarithm of Bayes’ theorenl and
noting that, according to information theory (Cover 
Thomas 1991), logarithms of probabilities can be seen
as (minus) the lengths of the most efficient codes for the
corresponding events. This has led some researchers to
believe that a trade-off between error and complexity is
"a direct consequence of Bayes’ theorem, requiring no
additional assumptions" (Cheeseman 1990). However,
this belief is founded on a confusion between assign-
ing the shortest codes to the most probable hypotheses
and a priori considering that the syntactically simplest
models in the representation being used (e.g., the de-
cision trees with fewest nodes) are the most probable
ones. If they have higher priors, more complex models
can be assigned shorter codes, but this obviously does
not imply any preference for simpler models in the orig-
inal representation (e.g., if the model with highest prior
is a decision tree with a million nodes, it can be assigned
a 1-bit code, without this implying any preference for
small trees.)

Information theory, whose goal is the efficient use of
a transmission channel, has no direct bearing on KDD,
whose goal is to infer predictive and comprehensible
models from data. Having assigned a prior probability
to each model in the space under consideration, we can
always recode all the models such that the most prob-
able ones are represented by the shortest bit strings.
However, this does not make them more predictive, and
is unlikely to make them more comprehensible.

Theoretical Arguments Against the

Second Razor

"Zero-Sum" Arguments

A uumber of well-known theoretical results have been
established which imply that the second razor cannot
be true. These results include Schaffer’s (1994) conser-
vation law of generalization performance and Wolpert’s



(1996) "no free lunch" theorems, and are in turn im-
plicit in Mitchell’s (1980) demonstration that bias-free
learning is impossible. In essence, they imply that, for
every domain where a simpler model is more accurate
than a more complex one, there exists a domain where
the reverse is true, and thus that no argument about
which is preferable in general can be made. Although
these results negate the second razor in a mathematical
sense, they still leave open the possibility that it will
apply in most (or all) real-world domains (Rao, Gor-
don, & Spears 1995). This is a matter for empirical
study, which the next two sections address.

The Vapnik-Chervonenkis Dimension

In his sophisticated theory of learning, Vapnik (1995)
shows that the generalization ability of a class of mod-
els is not a function of its number of parameters, but
of its VC dimension. Although the two are sometimes
related, in general they are not. Model structures with
a very large number of parameters can generalize quite
reliably, if constrained in other ways. The model struc-
ture class = sign(sin ax), with a single parameter, has
an infinite VC dimension, because it can discriminate
an arbitrarily large, arbitrarily labeled set of points on
the x axis (Vapnik 1995, p. 78).

Overfitting Is Due to Multiple Testing

According to conventional wisdom, overfitting is caused
by overly complex models, and Occam’s razor com-
bats it by introducing a preference for simpler ones.
However, Cohen and Jensen (1997) have shown that
overfitting in fact arises not because of complexity per
se, but because attempting a large number of mod-
els leads to a high probability of finding a model that
fits the training data well purely by chance. Attempt-
ing 10 complex models incurs a smaller risk of overfit-
ting than attempting 100 simple ones. Overfitting is
thus best combatted not by the second razor, but by
taking this multiple testing phenomenon into account
when scoring candidate models (Jensen &: Schmill 1997;
Domingos 1998).

Bias-Variance

Schuurmans et al. (1997) have shown that complexity-
penalty methods assume a particular bias-variance pro-
file, and that if the true profile does not correspond to
the postulated one systematic underfitting or overfit-
ting will result. Thus these methods can only be opti-
mal in very specific cases.

Empirical Evidence for the

Second Razor

Arguably, most KDD researchers who routinely apply
the second razor do not believe that it is universally
true, but simply that it generally applies in practice.
For example, Piatetsky-Shapiro (1996) argues that "Oc-
cam’s razor is not ’ALWAYS’ true - but is mostly true

in most real-world situations." This section and the
next attempt to determine if this is indeed the case.

Pruning

A simple empirical argument for the second razor might
be stated as "Pruning works." Indeed, pruning often
leads to models that are both simpler and more accurate
than the corresponding unpruned ones (Mingers 1989).
However, it can also lead to lower accuracy (Schaffer
1993). It is easy to think of simple problems where
pruning can only hurt accuracy (e.g., applying a deci-
sion tree algorithm like C4.5 to learning a noise-free,
diagonal frontier). More importantly, as mentioned
above, Cohen and Jensen (1997) have shown persua-
sively that pruning should not be seen as a correction
of overly complex models, but as an effective reduction
of the number of models attempted. In a related paper,
Jensen and Schmill (1997) have shown empirically that
correcting for multiple testing when pruning leads to
better results than MDL and related methods.

The 1R Algorithm

In an oft-cited paper, Holte (1993) observes that 
decision tree containing a single node can sometimes
come reasonably close to C4.5 in accuracy. However, in
Holte’s experiments his 1R ("l-rule") algorithm was 
average 5.7% less accurate than C4.5, which is hardly
negligible. The closest results to C4.5 were obtained
by the 1R. measure, which finds the accuracy of the
best possible 1-rule by looking at the test set. These
results appear to have led to some confusion. As Holte
points out, 1R* is a measure, not an algorithm; it makes
no sense to consider its accuracy "competitive" with
C4.5’s. A similar measure for decision trees would al-
ways achieve the Bayes rate (lowest error possible). 
most, these experiments suggest that the advantage of
going to more complex models is small; they do not
imply that simpler models are better (Elomaa 1994).
However, as we shall see below, more recent results call
even this conclusion into question.

Other Low-Variance Algorithms

More generally, several pieces of recent work (e.g.,
(Friedman 1996; Domingos & Pazzani 1997)) have sug-
gested that simple learners like the naive Bayesian clas-
~;fier or the perceptron will often do better than more
~omplex ones because, while having a higher systematic
error component (the bias), they are less prone to ran-
dom fluctuations (the variance). Again, these results
do not imply a preference for simpler models, but for
restricting search. Suitably constrained, decision-tree
or rule induction algorithms can be as stable as sim-
pler ones, and more accurate. Theory revision systems
(e.g., (Ourston & Mooney 1994)) are an example 
this: they can produce accurate theories that are quite
complex with comparatively little search, by making in-
cremental changes to an initial theory that is already
complex.
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Physics, Etc.

The second razor is often justified by pointing to its
success in the "hard" sciences. (Although these argu-
ments are fuzzier, they should still be addressed, be-
cause they form a large part of tile razor’s appeal.) 
popular example comes from astronomy, where it favors
Copernicus’ model of the solar system over Ptolemy’s.
Ironically, in terms of predictive error the two models
are indistinguishable, since they predict the same tra-
jectories. Copernicus’s model is preferable oll the in-
trinsic merits of simplicity (first razor). An alternative,
slightly humorous example is provided by flat earth vs.
spherical earth. The second razor clearly favors the fiat
earth theory, being a linear model, while the spherical
one is quadratic and no better at explaining everyday
observations in the Middle Ages.

Another favorite example is relativity vs. Newton’s
laws. The following passage is from (Cover & Thomas
1991):

In the end, we choose the simplest explanation that
is consistent with the observed data. For example,
it is easier to accept the general theory of relativity
than it is to accept a correction factor of c/r a to
the gravitational law to explain the precession of
the perihelion of Mercury, since the general theory
explains more with fewer assumptions than does a
"patched" Newtonian theory.

In fact, the general theory of relativity makes more
assmnptions than Newton’s gravitational law, and is far
more complex, so this cannot be the reason for prefer-
ring it. The preference comes from the fact that the
c/r3 factor is a t)atch, applied to (over)fit the theory 
a particular observation. As Pearl (1978) insightfully
notes:

It would, therefore, be more appropriate to connect
credibility with the nature of the selection proce-
(lure rather than with properties of the final prod-
uct. When the former is not explicitly known ...
simplicity merely serves as a rough indicator for
the type of processing that took place prior to dis-
covery.

Yet another example is Maxwell’s four concise and
elegant equations of electromagnetism. In fact, these
equations are concise and elegant only in the notation
of differential operators that was introduced many years
after his death. In their original form, they were long
and unwieldy, leading Faraday to complain of their in-
comprehensibility, which precluded him from empiri-
cally testing them.

The list goes on. In any case, the fact that compara-
tively simple equations have proved successfnl in mod-
cling many physical phenomena is no indication that
the same will be true in the large variety of areas KDD
is being applied to medicine, finance, earth sensing,
molecular biology, marketing, process control, fault de-
tection, and many others.
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Empirical Evidence Against the
Second Razor

Several authors have carried out ext)eriments that di-
rectly or indirectly investigate the relationship between
simplicity and accuracy, and obtained results that con-
tradict tile second razor. Fisher and Schlimmer (1988)
observed that concept simplification only sometimes
improved accuracy in tile ID3 and COBWEB systems,
and that this was dependent on the training set size
and the degree of dependence of the concept on the at-
tributes. Murphy and Pazzani (1994) induced all con-
sistent decision trees for a number of small, noise-free
domains, and found that in many cases the smallest
trees were not the most accurate ones. Schaffer (1993)
conducted a series of experiments showing that pruning
can increase error, and that this effect can increase with
the noise level. Quinlan and Cameron-Jones (1995) and
Murthy and Salzberg (1995) found that excessive search
often leads to models that are simultaneously simpler
and less accurate. Webb (1996; 1997) showed that, re-
markably, the accuracy of decision trees on common
datasets can be consistently increased by grafting ad-
ditional nodes onto the tree, even after the data has
been perfectly fit. Chickering and Heckerman (1997)
compared sevm’al different methods for approximating
the likelihood of simple Bayesian model structures, and
found that the BIC/MDL approach was ahnost always
the least accurate one. Lawrence et al. (1997) con-
ducted experiments with backpropagation in synthetic
domains, and found that training neural networks larger
than the correct one led to lower errors than training
networks of tile correct size.

Another source of evidence against the second ra-
zor is the growing number of practical machine learn-
ing systems that achieve reductions in error by learn-
ing more complex models. Vapnik’s (1995) sup-
port vector machines learn polynomials of high de-
gree (and resulting feature spaces of dimension up to
1016), and outperformed simpler state-of-the-art mod-
els in the USPS handwritten digit recognition database.
Cestnik and Bratko (1988), Gams (1989) and Datta
and Kibler (1995) show how redundancy can improve
noise resistance and therefore accuracy. Domingos’
(t996) RISE system consistently outperforms CN2 and
C4.5/C4.5RULES on common datasets by inducing
substantially more complex rule sets. Webb’s above-
mentioned decision-tree grafting is another example.
Schuurmans (1997) has proposed a geometric evalua-
tion measure that markedly outperforms complexity-
penalty ones in polynomial regression tasks.

Arguably, practical experience with MDL-based sys-
tems themselves provides evidence against the second
razor. For example, after spending considerable effort
to find a good coding for trees and examples, Qninlan
and Rivest (1989) found that better results were ob-
tained by introducing an ad hoc coefficient to reduce
the penalty paid by complex decision trees.

Finally, the success of multiple-model approaches



in almost all commonly-used datasets (e.g., (Quinlan
1996)) shows that large error reductions can systemat-
ically result from sharply increased complexity. In par-
ticular, Rao and Potts (1997) show how bagging builds
accurate frontiers from CART trees that approximate
them poorly, and Domingos (1997b) shows how a single
model learned by emulating the behavior of a bagged
ensemble is both more complex and more accurate than
a model induced directly from the data by the same
learner (C4.5RULES).

All of this evidence points to the conclusion that not
only is the second razor not true in general; it is also
typically false in the types of domains KDD has been
applied to.

The First Razor Revisited
The true reason for preferring simpler models is that
they are easier for us to understand, remember and use
(as well as cheaper for computers to store and manip-
ulate). Thus the first razor is justified. However, sim-
plicity and comprehensibility are not always equivalent.
For example, a decision table (Langley 1996) may 
larger than a similarly accurate decision tree, but more
easily understood because all lines in the table use the
same attributes. Induced models are also more compre-
hensible if they are consistent with previous knowledge,
even if this makes them more complex (Pazzani, Mani,
& Shankle 1997). A better form of the first razor would
perhaps state that given two models with the same gen-
eralization error, the more comprehensible one should
be preferred. What exactly makes a model comprehen-
sible is largely domain-dependent, but also a matter for
cognitive research.

Discussion
All the evidence reviewed in this paper shows that, con-
trary to the second razor’s claim, greater simplicity does
not necessarily (or even typically) lead to greater accu-
racy. Rather, care must be taken to ensure that the
algorithm does not perform more search than the data
allows, but this search can (and often should) be per-
formed among complex models, not simple ones.

The second razor can be trivially made true by, af-
ter the fact, assigning the simplest representations to
the most accurate models found. However, this is of no
help in finding those models in the first place. Using
"simple model" as just another way of saying "probable
model" or "model from a small space," as is often done
in the literature, constitutes a multiplication of entities
beyond necessity, and thus runs afoul of the first ra-
zor, which is as applicable to KDD research as to other
branches of science. More importantly, it can lead to
the misconception that simpler models in the initial,
commonly-used representation (e.g., a decision tree or
a list of rules) are for some reason more likely to be
true.

The second razor will be appropriate when we really
believe that the phenomenon under study has a sim-

ple model in the representation language used. But
this seems unlikely for the domains and representa-
tions KDD typically deals with, and the empirical ev-
idence bears this out. More often, the second razor
seems to function as a poor man’s substitute for do-
main knowledge---a way of avoiding the complexities
of adjusting the system to the domain before apply-
ing it to the data. When this happens, overfitting may
indeed be avoided by use of the second razor, but at
the cost of detectable patterns being missed, and un-
necessarily low accuracy being obtained. The larger
the database, the likelier this is. Databases with mil-
lions or tens of millions of records potentially contain
enough data to discriminate among a very large num-
ber of models. Applying the second razor when mining
them risks rediscovering the broad regularities that are
already familiar to the domain experts, and missing the
second-order variations that are often where the payoff
of data mining lies.

Systems that allow incorporation of domain con-
straints (e.g, (Clearwater & Provost 1990; Clark 
Matwin 1993; Lee, Buchanan, & Aronis 1998)) are 
alternative to blind reliance on simplicity. Incorporat-
ing such constraints can simultaneously improve accu-
racy (by reducing the search needed to find an accurate
model) and comprehensibility (by making the results 
induction consistent with previous knowledge). Weak
constraints are often sufficient ((Abu-Mostafa 1989;
Donoho & Rendell 1996; Pazzani, Mani, & Shankle
1997); see also (Bishop 1995), Section 8.7). If we 
cept the fact that the most accurate models will not
always be simple or easily understandable, we should
allow an explicit trade-off between the two. Sys-
tems that first induce the most accurate model they
can, and then extract from it a more comprehensi-
ble model of variable complexity (e.g., (Craven 1996;
Domingos 1997a)) seem a promising avenue.

Conclusion

Occam’s razor can be interpreted in two ways: as fa-
voring the simpler of two models with the same gener-
alization error because simplicity is a goal in itself, or
as favoring the simpler of two models with the same
training-set error because this leads to lower general-
ization error. This paper found the second version to
be provably and empirically false, and argued that in
the first version simplicity is only a proxy for compre-
hensibility. A resulting prescription for KDD research
and applications is to prefer simpler models only when
we honestly believe the target phenomenon to be sim-
ple. Given that this is seldom the case in practice, we
should instead seek to constrain induction using domain
knowledge, and decouple discovering the most accurate
(and probably quite complex) model from extracting
comprehensible approximations to it.
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