
ADtrees for Fast Counting and for Fast Learning of Association Rules

Brigham Anderson
Carnegie Mellon University

5000 Forbes Ave, Pittsburgh, PA 15213
brigham@ri.cmu.edu

Abstract

The problem of discovering association rules in large data-
bases has received considerable research attention. Much
research has examined the exhaustive discovery of all asso-
ciation rules involving positive binary literals (e.g. Agrawal
et al. 1996). Other research has concerned finding complex
association rules for high-a&y attributes such as CN2
(Clark and Niblett 1989). Complex association rules are ca-
pable of representing concepts such as “Purchased-
Chips=Tme and PnrchasedSoda=False and Area=NorthEast
and CustomerType=Occasional * AgeRange=Young”, but
their generality comes with severe computational penalties
(intractable numbers of preconditions can have large sup-
port). Here, we introduce new algorithms by which a sparse
data structure called the ADtree, introduced in (Moore and
Lee 1997), can accelerate the finding of complex associa-
tion rules from large datasets. The ADtree uses the algebra
of probability tables to cache a dataset’s sufficient statistics
within a tractable amount of memory. We first introduce a
new ADtree algorithm for quickly counting the number of
records that match a precondition. We then show how this
can be used in accelerating exhaustive search for rules, and
for accelerating CNZtype algorithms. Results are presented
on a variety of datasets involving many records and attrib-
utes. Even taking the costs of initially building the ADtree
into account, the computational speedups can be dramatic.

Problem Definition
If-then rules are expressive and human readable repre-
sentations of learned hypotheses, so finding association
rules in databases is a useful undertaking. The rules one
might search for could be of the form “if work-
class=private and education= 12+ and maritalsta-
tus=married and capitalloss=l600+, then income a SOK+
with 96% confidence.” Association rules can be quite
useful in industry. For instance, the above example could
help target income brackets.

Consider a database of R records with symbolic attrib-
utes. A database could be, for example, a list of loan ap-
plicants where each entry has a list of attributes such as

Copyright 0 1998, American Association for Artificial Intelligence
(www.aaai.org). All rights reserved.

Andrew Moore
Carnegie Mellon University

5000 Forbes Ave, Pittsburgh, PA 15213
awm@cs.cmu.edu

type of loan, marital status, education level, and income
range, and each attribute has a value. A record thus has M
attributes, and is represented as a single vector of size M,
each element of which is symbolic. The attributes are
called al, a2, . . . aM. The value of attribute ai in a record is
represented as a small integer lying in the range
{ 1,2,... ni} where ni is called the arity of attribute i.

In our definition of association we followed (Agrawal,
et al. 1996). Their definition of an association rule is a
conjunction of attributes implies a conjunction of other
attributes. Here, the terminology is slightly different; we
define a literal as an attribute-value pair such as “educa-
tion = masters”. Let L be the set of all possible literals for
a database. An association rule is an implication of the
form Sl * S2, where Sl, S2 c L, and Sl n S2 = 0. Sl
is called the antecedent of the rule, and S2 is called the
consequent of the rule. We thus denote association rules
as an implication of sets of literals. An example of an
association rule is “gender=male and education=doctorate
* maritalstatus=married and occupation=prof-specialty”.

Each rule has a measure of statistical significance
called support. For a set of literals S c L, the support of
S is the number of records in the database that match all
the attribute-value pairs in S. Denote by supp(S) the sup-
port of S. The support of the rule Sl * S2 is defined as
supp(S1 u S2). Support is a measure of the statistical
significance of a rule. A measure of its strength is called
confidence, and is defined as the percentage of records
that match Sl and S2 out of all records that match Sl. In
other words, the support of a rule is the number of records
that both the antecedent and consequent literals match.
The confidence is the percentage that the supporting rec-
ords represent out of all records in which the antecedent is
true.

This paper considers the problem of mining associa-
tion rules to predict a user-supplied target set of literals
S2. The objective is to find rules of the form Sl+S2 that
maximize confidence while keeping support above some
user-specified minimum (minsupp). One version of this
procedure is to return the best n rules encountered, or per-
haps all rules above a certain confidence.

Generation of such rules requires calculating large
numbers of rule confidences and supports. Rule evalua-
tion thus requires two calculations, supp(S 1) and supp(S 1
u S2). These two numbers give both the support and the

134 Anderson

From: KDD-98 Proceedings. Copyright © 1998, AAAI (www.aaai.org). All rights reserved.

I a2= *
I

I I”’ I (mcv> I I (mcv)

V ary a z .I mcv=2

NULL

I NULL 1 NULL 1 3

1

cv) I ^ 3 I 2 ^ Count 0 (mcv) Jm

Figure 1: A sparse ADtree built from the dataset in the bottom right. The most common value for al is 3, and so the al = 3 subtree of the
Vary al child of the root node is NULL. At each of the Vary a2 nodes the most common child is also set to NULL (which child is most
common depends on the context.)

confidence of the rule SlaS2. One method for calculat-
ing a supp(S) is to run through every relevant record and
count the number of matches. Another method is to use
some way of caching statistics that allows calculating
these numbers directly, such as an ADtree (described be-
low). A third possibility is to build all queries having ade-
quate support with sequential passes through the dataset
(Agrawal et al. 1996). This is very effective if only posi-
tive binary literals are being found, but if negative literals
are also required the number of rule sets found will be
intractably large: O(2”).

ADtree Data Structure
If we are prepared to pay a one-time cost for building a
caching data structure, then it is easy to suggest a mecha-
nism for doing counting in constant time. For each possi-
ble query, we precompute the count. For a real dataset
with more than ten attributes of medium arity, or fifteen
binary attributes, this is far too large to fit in main mem-
ory.

We would like to retain the speed of precomputed
counts without incurring an intractable memory demand.
That is the purpose of ADtrees. An “ADNODE” (shown
as a rectangle in Figure 1) has child nodes called “Vary
nodes” (shown as ovals).

Each ADNODE represents a query and stores the
number of records that match the query. The “Vary aj”
child of an ADNODE has one child for each of the arityj
values of attribute aj. The kth child represents the same
query as “Vary aj”‘s parent, with the additional constraint
that aj = k.

Although drawn on the diagram, the description of the
query (e.g., aI = *, a2 = I) is not explicitly recorded in the
ADNODE. The contents of an ADNODE are simply a
count and a set of pointers to the “Vary ai’ children. The
contents of a “Vary ai’ node are a set of pointers to AD-
NODES. Notice that if a node ADN has “Vary a;’ as its
parent, then ADN’s children are “Vary ai+l”, “Vary ai+2”,
. . . “Vary aM”. It is not necessary to store Vary nodes
with indices below i+l because that information can be
obtained from another path in the tree.

As described so far, the tree is not sparse and contains
every possible count. Sparseness is easily achieved by
storing a NULL instead of a node for queries that match
no records. All of the specializations of such a query also
have a count of zero and they will not appear anywhere in
the tree. This helps, but not significantly enough to be
able to cope with large numbers of attributes.

To greatly reduce the tree size, we will take advantage
of the observation that very many of the counts stored in
the above tree are redundant. For each vary node, we will

KDD-98 135

2.5

r!;,
0 200 4cn 600 800 loo0 1200 1400 1600

records (thousands)

Figure 2: Memory usage in megabytes of ADtree for ASTRO
database.

find the most common of the values of aj (call it MCV)
among records that match the node and we will store a
NULL in place of the MCVth subtree. The remaining
(a@~,-1) subtrees will be represented as before. An ex-
ample for a simple dataset is given in Figure 1. Each
“Vary a;’ node now stores which of its values is most
common in a MCV field. (Moore and Lee 1997) describes
the straightforward algorithm for building such an AD-
tree. On datasets with 0(105) records and dozens of at-
tributes, ADtrees typically consume l-10 Megs of mem-
ory and require l- 10 seconds to build. The memory-cost
of ADtrees increases sublinearly with the number of rec-
ords. For example, Figure 2 shows memory use versus
database size for the ASTRO database (described later).

Removing most-common-values has a dramatic ef-
fect on the amount of memory needed. For datasets with
M binary attributes, the worst case number of counts that
need to be stored drops from 3M to 2”, and the best case
goes from 2M to M. Furthermore, (Moore and Lee 1997)
show that if the number of records is less than 2”, or if
there are correlations, or non-uniformities among the at-
tributes then the number is provably much less than 2”.
As we shall see, this is borne out empirically.

Notice in Figure 1 that the MCV value is context de-
pendent. Depending on constraints on parent nodes, ais
MCV is sometimes 1 and sometimes 2. This context de-
pendency can provide dramatic savings if (as is frequently
the case) there are correlations among the attributes. This
point is critical for reducing memory, and is the primary
difference between the use of ADtree versus the use of
Frequent Sets (Agrawal et al. 1996) for representing
counts as suggested in (Mannila and Toivonen 1996).

ADtree-Assisted Counting
In (Moore & Lee 1997) an algorithm was presented and
discussed that takes an ADtree and a set of attributes as
input, and outputs a contingency table in constant time.
Contingency tables are very closely related to probability

Preconditions:
Query_Zist t list of attribute-value pairs sorted by attribute
Index t 0
Current-ADnode t root ADNODE of ADtree

ADCOUNT(ADnode, Query-list, index) {
If index equals the size of Query-list then

Return ADnode’s count

Vmynode t Vary node child of ADnode that corresponds to
indexth attribute in Query-list

Next-ADnode t ADNODE child of Varynode that corre-
sponds to indexth value in Query-list

If Next-ADnode’s count is 0 then
Return 0

If Next_ADnode is a MCV then
Count t AD-COUNT(ADdnode, Query-list, index+l)
For each s in siblings of Next-ADnode do

Count + Count - ADCOUNT(s,Query_Zist, index+l)
Return Count

Return AD-COUNT(Next-ADnode, Query-list, index+l)
1

Figure 3: Pseudocode for AD-COUNT, an algorithm that
returns the number of records matching a given list of literals.

tables in the Bayes net community or DataCubes (Hari-
narayan et al. 1996) in the database community.

Here we show how the ADtree can also be used to
produce counts for specific queries in the form of a set of
literals. For example, one can calculate the number of
records having { al=12, a4=0, a7=3, a8=22} directly from
the ADtree. The algorithm in Figure 3 returns these types
of counts.

Evaluation of a rule S 1 a S2 only requires calculating
supp(S1) and supp(S1 u S2). A simple use of the ADtree
is to return numbers of records matching simple queries
which are conjunctions of literals, such as “in the
ADULT1 dataset, how many records match {in-
come=5OK+, sex=male, education=HS}?” The answer
can be returned by a simple examination of the tree, usu-
ally several orders of magnitude faster than going through
the entire dataset. What that means in this particular ap-
plication is that rules can be evaluated more quickly, and
thus can be learned faster.

Since counting is so important to rule learning, we
compare here the performance of ADtree counting against
straightforward searching through the database. The
comparison results are in Table 2. To generate the results,
we generate many random queries, return counts for each,
and time the counting process. Each randomly generated
query consists of a random subset of attribute-value pairs

136 Anderson

Dataset Num
Records

Num Tree Tree Build
Attrib- Size Size Time

utes (nodes) NW (se4

ADULT1 15060 15 58200 7.0 6
ADULT2 30162 15 94900 10.9 10
ADULT3 45222 15 162900 15.5 15
BIRTH 9672 97 87400 7.9 14

I MUSHRM 8124 22 45218 6.7 8
CENSUS 142521 13 24007 1.5 17
ASTRO 1495877 7 22732 2.0 172 , , , , ,

Table 1: Datasets used to produce experimental results. The size
of the ADtrees from each dataset is included both in the number of
nodes in the ADtree and in the amount of memory the tree used.
The preprocessing time cost is given also. Descriptions of the da-
tasets are in the appendix.

taken from a randomly selected record in the database.
Generating queries this way ensures that the count has at
least one matching record. Why create the random que-
ries as subsets of literals of existing records? Would it
not have been simpler to generate entirely random que-
ries? The reason is that completely random queries usu-
ally have a count of zero. The ADtree can discover this
extremely quickly, giving it an even larger advantage over
direct counting.

ADtree-Assisted CN2
We now look at how the fast counting method of the pre-
vious section can accelerate rule-finding algorithms. We
look at CN2 (Clarke and Niblett 1989), an algorithm that
finds rules involving arbitrary arity literals, as opposed to
just positive binary literals. The rule-finding algorithm
used here differs from CN2 in that only the most confi-
dent antecedents for S2 are sought instead of attempting
to cover the entire dataset.

The learning algorithm is given S2 and begins search
at Sl = { }. It then evaluates adding each possible literal
one at a time, retaining the best k rules so produced.
These best k rules are taken from each generation as

Dataset
Attributes in Query/Speedup Ratio
2 14 1 6 1 10 1 20

ADULT1 1019 208
ADULT2 1980 361
ADULT3 2782 508
BIRTH 1494 272
MUSHRM 881 319
CENSUS 10320 1139
ASTRO 20350 10506

Table 2: Speedup ratio of average time spent count .ing a ran-
dom query of a given size without ADtree vs. using ADtree.

76 25
130 36
166 46
86 19
179 82

starting points for the next generation. This process con-
tinues until the minsupp condition can no longer be satis-
fied or the length of the rule exceeds a preset maximum.
Upon termination, the best rules ever encountered are
returned. The search thus considers increasingly specific
rules using a breadth-first beam search of beam size k.

Table 3 is a comparison of ADtree-assisted CN2 beam
search rule learning and regular CN2 search. The pa-
rameters for the CN2 search were a beam size of 4 and a
minsupp of 200. Rules learned were of the form S 1=$2.
The average time to learn a best rule for a randomly gen-
erated target literal, S2, was regarded as the “rule-learning
time”. The target literal S2 was restricted to being a sin-
gle literal, where that literal’s attribute was first selected
randomly from all possible attributes for the dataset, then
a value was randomly assigned from the set of values that
the attribute could take on. Rule-learning times for nor-
mal CN2 and for ADtree-assisted CN2 were both re-
corded. Table 3 reports the ratio of these two averages for
different rule size limits. Rule size is defined as the num-
ber of literals in Sl plus the number of literals in S2.

As can be seen, there is a general and large speedup
achieved from using ADtree evaluation on these datasets.
ADtrees provide a big win, provided the cost of building

Rule Size 4 8 16
Limit

Regular ADtree Regular ADtree Regular ADtree
Time Time Time Time Time Time
(se4 bed Speedup (set) (se4 Speedup (set) (se4 Speedup

ADULT1 2.8 0.041 68.1 2.9 0.09 31.8 2.9 0.12 23.8
ADULT2 5.4 0.041 132.7 5.5 0.16 34.0 5.7 0.22 26.3
ADULT3 8.7 0.049 178.2 8.5 0.10 84.9 8.4 0.12 69.3
BIRTH 4.3 0.16 26.9 5.1 1.4 3.6 6.3 13.1 0.5
MUSHRM 1.8 0.039 46.6 1.8 0.064 28.5 1.9 0.094 19.9
CENSUS 16.6 0.058 286.8 15.8 0.22 71.1 16.1 0.26 61.3
ASTRO 198.6 0.034 5855.2 203.3 0.033 6191.5 -

Table 3: Comparison of CN2 with ADtree-assisted CN2 under different rule size limits.

KDD-98 137

the ADtree is not taken into account. If CN2 were to be
run only once, the cost of building the datastructure would
make the ADtree approach inferior. ADtrees become
useful once again, though, if multiple rule learning tasks
are performed with the same dataset, and thus the same
ADtree. The cost can thus be amortized and can also al-
low interactive speeds once the initial cost is paid. Fur-
thermore, without requiring rebuilding the tree, CN2 can
be run on subsets of the database, defined by conjunctive
restrictions on records (e.g., “find the rules predictive of
high income restricted to people in the Northwest who
rent their home”) or on subsets of the attributes (“don’t
include any rules using age or sex”) without rebuilding.

Our implementation of the unassisted counting version
of CN2 exploited a major advantage of the original CN2
algorithm: the fact that, as candidate rules are made more
specific, they are relevant to only a subset of the records
relevant to their parent rule. Since it is the case that no
more specific descendent of a rule can ever match records
that the parent rule did not, a running list of relevant ex-
amples is kept for each rule. This list is pruned each time
that the rule is made more specific, and drastically re-
duces the number of records that the algorithm needs to
look at in order to evaluate a rule as it grows. Thus CN2
search speeds up dramatically near the end of the search.
The ADtree, on the other hand, cannot use this informa-
tion; it will always return a count for the entire dataset.
Thus ADtree-assisted CN2 search slows down as larger
rules are considered (see Table 3 .)

However, ADtree’s lack of reliance on general-to-
specific search as an aid to rule evaluation allows for
much greater flexibility in search. ADtree-assisted rule
evaluation makes practical strategies such as exhaustive
search, simulated annealing, and genetic algorithms for
rule learning.

Discussion
The current implementation of ADtrees is restricted to
only symbolic attributes. Furthermore, The current im-
plementation assumes that the dataset can be stored in
main memory. This is frequently not true. Work in prog-
ress (Davies & Moore 1998) introduces algorithms for
building ADtrees from sequential passes through the data
instead of by random access and does not require main
memory data storage.

A disadvantage of ADtrees in rule learning is that they
cannot be easily used to do “tiling” of datasets. Use of
ADtree rule evaluation, one the other hand, does not re-
strict one to general-to-specific search. Moreover, the
speed of ADtrees could make rule learning a process that
takes place at interactive speeds. Relevant rules can be
located quickly, perhaps enhanced by the operator’s
knowledge, then resubmitted to the program for further

polishing of the hypothesis. The ADtree is a useful tool
for creating fast and interactive rule learning programs.

Appendix
ADULTl: The small “Adult Income” dataset placed in the UC1
repository by Ron Kohavi. Contains census data related to job,
wealth, and nationality. Attribute arities range from 2 to 41. In
the UC1 repository this is called the Test Set. Rows with miss-
ing values were removed.
ADULT2: The same kinds of records as above but with differ-
ent data. The Training Set.
ADULT3: ADULT1 and ADULT2 concatenated.
BIRTH: Records concerning a very wide number of readings
and factors recorded at various stages during pregnancy. Most
attributes are binary, and 70 of the attributes are very sparse,
with over 95% of the values being FALSE.
MUSHRM: A database of wild mushroom attributes compiled
from the Audubon Field Guide to Mushrooms by Jeff Schlim-
mer and taken from the UCI repository. Attribute arities range
from 2 to 12.
CENSUS: A larger dataset than ADULT3, based on a different
census. Also provided by Ron Kohavi. Arity ranges from 2 to
15.
ASTRO: Discretized features of 1.5 million sky objects de-
tected in the Edinburgh-Durham Sky Survey.

References
Agrawal, R., Mannila, H., Srikant, R., Toivonen, H., & Ver-

kamo, A. I. 1996. Fast Discovery of Association Rules. In
Fayyad, U. M., Piatetsky-Shapiro, G., Smyth, P., & Uthu-
rusamy, R. eds., Advances in Knowledge Discovery and
Data Mining. AAAI Press.

Clark, P., & Niblett, R. 1989. The CN2 induction algorithm.
Machine Learning 3 126 I-284.

Davies, S. and Moore, A. W.. 1998, Lazy and sequential ADtree
construction. In preparation.

Harinarayan, V, Rajaraman, A. and Ullman, J. D., 1996, Imple-
menting Data Cubes Efficiently. In Proceedings of the Fif-
teenth ACM SIGACT-SIGMOD-SIGART Symposium on
Principles of Database Systems : (PODS 1996), Assn for
Computing Machinery. Pages 205216.

John, G. H., and Lent, B., 1997, SIPping from the data firehose.
In Proceedings of the Third International Conference on
Knowledge Discovery and Data Mining, AAAI Press, 1997

Mamma, H., and Toivonen, H., 1996, Multiple uses of frequent
sets and condensed representations. In Proceedings of the
Second International Conference on Knowledge Discovery
and Data Mining, edited by Simoudis, E., and Han, J., and
Fayyad, U. AAAI Press.

Mitchell, T. 1997. Machine Learning. McGraw-Hill.
Moore, A.W., and Lee, M.S.,1997, Cached Sufficient Statistics

for Efficient Machine Learning with Large Datasets. CMU
Robotics Institute Tech Report TR CMU-RI-TR-97-27.
(Journal of Artificial Intelligence Research 8. Forthcoming.)

138 Anderson

