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Abstract 

The problem of discovering association rules in large data- 
bases has received considerable research attention. Much 
research has examined the exhaustive discovery of all asso- 
ciation rules involving positive binary literals (e.g. Agrawal 
et al. 1996). Other research has concerned finding complex 
association rules for high-a&y attributes such as CN2 
(Clark and Niblett 1989). Complex association rules are ca- 
pable of representing concepts such as “Purchased- 
Chips=Tme and PnrchasedSoda=False and Area=NorthEast 
and CustomerType=Occasional * AgeRange=Young”, but 
their generality comes with severe computational penalties 
(intractable numbers of preconditions can have large sup- 
port). Here, we introduce new algorithms by which a sparse 
data structure called the ADtree, introduced in (Moore and 
Lee 1997), can accelerate the finding of complex associa- 
tion rules from large datasets. The ADtree uses the algebra 
of probability tables to cache a dataset’s sufficient statistics 
within a tractable amount of memory. We first introduce a 
new ADtree algorithm for quickly counting the number of 
records that match a precondition. We then show how this 
can be used in accelerating exhaustive search for rules, and 
for accelerating CNZtype algorithms. Results are presented 
on a variety of datasets involving many records and attrib- 
utes. Even taking the costs of initially building the ADtree 
into account, the computational speedups can be dramatic. 

Problem Definition 
If-then rules are expressive and human readable repre- 
sentations of learned hypotheses, so finding association 
rules in databases is a useful undertaking. The rules one 
might search for could be of the form “if work- 
class=private and education= 12+ and maritalsta- 
tus=married and capitalloss=l600+, then income a SOK+ 
with 96% confidence.” Association rules can be quite 
useful in industry. For instance, the above example could 
help target income brackets. 

Consider a database of R records with symbolic attrib- 
utes. A database could be, for example, a list of loan ap- 
plicants where each entry has a list of attributes such as 
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type of loan, marital status, education level, and income 
range, and each attribute has a value. A record thus has M 
attributes, and is represented as a single vector of size M, 
each element of which is symbolic. The attributes are 
called al, a2, . . . aM. The value of attribute ai in a record is 
represented as a small integer lying in the range 
{ 1,2,... ni} where ni is called the arity of attribute i. 

In our definition of association we followed (Agrawal, 
et al. 1996). Their definition of an association rule is a 
conjunction of attributes implies a conjunction of other 
attributes. Here, the terminology is slightly different; we 
define a literal as an attribute-value pair such as “educa- 
tion = masters”. Let L be the set of all possible literals for 
a database. An association rule is an implication of the 
form Sl * S2, where Sl, S2 c L, and Sl n S2 = 0. Sl 
is called the antecedent of the rule, and S2 is called the 
consequent of the rule. We thus denote association rules 
as an implication of sets of literals. An example of an 
association rule is “gender=male and education=doctorate 
* maritalstatus=married and occupation=prof-specialty”. 

Each rule has a measure of statistical significance 
called support. For a set of literals S c L, the support of 
S is the number of records in the database that match all 
the attribute-value pairs in S. Denote by supp(S) the sup- 
port of S. The support of the rule Sl * S2 is defined as 
supp(S1 u S2). Support is a measure of the statistical 
significance of a rule. A measure of its strength is called 
confidence, and is defined as the percentage of records 
that match Sl and S2 out of all records that match Sl. In 
other words, the support of a rule is the number of records 
that both the antecedent and consequent literals match. 
The confidence is the percentage that the supporting rec- 
ords represent out of all records in which the antecedent is 
true. 

This paper considers the problem of mining associa- 
tion rules to predict a user-supplied target set of literals 
S2. The objective is to find rules of the form Sl+S2 that 
maximize confidence while keeping support above some 
user-specified minimum (minsupp). One version of this 
procedure is to return the best n rules encountered, or per- 
haps all rules above a certain confidence. 

Generation of such rules requires calculating large 
numbers of rule confidences and supports. Rule evalua- 
tion thus requires two calculations, supp(S 1) and supp(S 1 
u S2). These two numbers give both the support and the 
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Figure 1: A sparse ADtree built from the dataset in the bottom right. The most common value for al is 3, and so the al = 3 subtree of the 
Vary al child of the root node is NULL. At each of the Vary a2 nodes the most common child is also set to NULL (which child is most 
common depends on the context.) 

confidence of the rule SlaS2. One method for calculat- 
ing a supp(S) is to run through every relevant record and 
count the number of matches. Another method is to use 
some way of caching statistics that allows calculating 
these numbers directly, such as an ADtree (described be- 
low). A third possibility is to build all queries having ade- 
quate support with sequential passes through the dataset 
(Agrawal et al. 1996). This is very effective if only posi- 
tive binary literals are being found, but if negative literals 
are also required the number of rule sets found will be 
intractably large: O(2”). 

ADtree Data Structure 
If we are prepared to pay a one-time cost for building a 
caching data structure, then it is easy to suggest a mecha- 
nism for doing counting in constant time. For each possi- 
ble query, we precompute the count. For a real dataset 
with more than ten attributes of medium arity, or fifteen 
binary attributes, this is far too large to fit in main mem- 
ory. 

We would like to retain the speed of precomputed 
counts without incurring an intractable memory demand. 
That is the purpose of ADtrees. An “ADNODE” (shown 
as a rectangle in Figure 1) has child nodes called “Vary 
nodes” (shown as ovals). 

Each ADNODE represents a query and stores the 
number of records that match the query. The “Vary aj” 
child of an ADNODE has one child for each of the arityj 
values of attribute aj. The kth child represents the same 
query as “Vary aj”‘s parent, with the additional constraint 
that aj = k. 

Although drawn on the diagram, the description of the 
query (e.g., aI = *, a2 = I) is not explicitly recorded in the 
ADNODE. The contents of an ADNODE are simply a 
count and a set of pointers to the “Vary ai’ children. The 
contents of a “Vary ai’ node are a set of pointers to AD- 
NODES. Notice that if a node ADN has “Vary a;’ as its 
parent, then ADN’s children are “Vary ai+l”, “Vary ai+2”, 
. . . “Vary aM”. It is not necessary to store Vary nodes 
with indices below i+l because that information can be 
obtained from another path in the tree. 

As described so far, the tree is not sparse and contains 
every possible count. Sparseness is easily achieved by 
storing a NULL instead of a node for queries that match 
no records. All of the specializations of such a query also 
have a count of zero and they will not appear anywhere in 
the tree. This helps, but not significantly enough to be 
able to cope with large numbers of attributes. 

To greatly reduce the tree size, we will take advantage 
of the observation that very many of the counts stored in 
the above tree are redundant. For each vary node, we will 
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Figure 2: Memory usage in megabytes of ADtree for ASTRO 
database. 

find the most common of the values of aj (call it MCV) 
among records that match the node and we will store a 
NULL in place of the MCVth subtree. The remaining 
(a@~,-1) subtrees will be represented as before. An ex- 
ample for a simple dataset is given in Figure 1. Each 
“Vary a;’ node now stores which of its values is most 
common in a MCV field. (Moore and Lee 1997) describes 
the straightforward algorithm for building such an AD- 
tree. On datasets with 0( 105) records and dozens of at- 
tributes, ADtrees typically consume l-10 Megs of mem- 
ory and require l- 10 seconds to build. The memory-cost 
of ADtrees increases sublinearly with the number of rec- 
ords. For example, Figure 2 shows memory use versus 
database size for the ASTRO database (described later). 

Removing most-common-values has a dramatic ef- 
fect on the amount of memory needed. For datasets with 
M binary attributes, the worst case number of counts that 
need to be stored drops from 3M to 2”, and the best case 
goes from 2M to M. Furthermore, (Moore and Lee 1997) 
show that if the number of records is less than 2”, or if 
there are correlations, or non-uniformities among the at- 
tributes then the number is provably much less than 2”. 
As we shall see, this is borne out empirically. 

Notice in Figure 1 that the MCV value is context de- 
pendent. Depending on constraints on parent nodes, ais 
MCV is sometimes 1 and sometimes 2. This context de- 
pendency can provide dramatic savings if (as is frequently 
the case) there are correlations among the attributes. This 
point is critical for reducing memory, and is the primary 
difference between the use of ADtree versus the use of 
Frequent Sets (Agrawal et al. 1996) for representing 
counts as suggested in (Mannila and Toivonen 1996). 

ADtree-Assisted Counting 
In (Moore & Lee 1997) an algorithm was presented and 
discussed that takes an ADtree and a set of attributes as 
input, and outputs a contingency table in constant time. 
Contingency tables are very closely related to probability 

Preconditions: 
Query_Zist t list of attribute-value pairs sorted by attribute 
Index t 0 
Current-ADnode t root ADNODE of ADtree 

ADCOUNT(ADnode, Query-list, index) { 
If index equals the size of Query-list then 

Return ADnode’s count 

Vmynode t Vary node child of ADnode that corresponds to 
indexth attribute in Query-list 

Next-ADnode t ADNODE child of Varynode that corre- 
sponds to indexth value in Query-list 

If Next-ADnode’s count is 0 then 
Return 0 

If Next_ADnode is a MCV then 
Count t AD-COUNT(ADdnode, Query-list, index+l) 
For each s in siblings of Next-ADnode do 

Count + Count - ADCOUNT(s,Query_Zist, index+l) 
Return Count 

Return AD-COUNT(Next-ADnode, Query-list, index+l) 
1 

Figure 3: Pseudocode for AD-COUNT, an algorithm that 
returns the number of records matching a given list of literals. 

tables in the Bayes net community or DataCubes (Hari- 
narayan et al. 1996) in the database community. 

Here we show how the ADtree can also be used to 
produce counts for specific queries in the form of a set of 
literals. For example, one can calculate the number of 
records having { al=12, a4=0, a7=3, a8=22} directly from 
the ADtree. The algorithm in Figure 3 returns these types 
of counts. 

Evaluation of a rule S 1 a S2 only requires calculating 
supp(S1) and supp(S1 u S2). A simple use of the ADtree 
is to return numbers of records matching simple queries 
which are conjunctions of literals, such as “in the 
ADULT1 dataset, how many records match {in- 
come=5OK+, sex=male, education=HS}?” The answer 
can be returned by a simple examination of the tree, usu- 
ally several orders of magnitude faster than going through 
the entire dataset. What that means in this particular ap- 
plication is that rules can be evaluated more quickly, and 
thus can be learned faster. 

Since counting is so important to rule learning, we 
compare here the performance of ADtree counting against 
straightforward searching through the database. The 
comparison results are in Table 2. To generate the results, 
we generate many random queries, return counts for each, 
and time the counting process. Each randomly generated 
query consists of a random subset of attribute-value pairs 
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Dataset Num 
Records 

Num Tree Tree Build 
Attrib- Size Size Time 

utes (nodes) NW (se4 

ADULT1 15060 15 58200 7.0 6 
ADULT2 30162 15 94900 10.9 10 
ADULT3 45222 15 162900 15.5 15 
BIRTH 9672 97 87400 7.9 14 

I MUSHRM 8124 22 45218 6.7 8 
CENSUS 142521 13 24007 1.5 17 
ASTRO 1495877 7 22732 2.0 172 , , , , , 

Table 1: Datasets used to produce experimental results. The size 
of the ADtrees from each dataset is included both in the number of 
nodes in the ADtree and in the amount of memory the tree used. 
The preprocessing time cost is given also. Descriptions of the da- 
tasets are in the appendix. 

taken from a randomly selected record in the database. 
Generating queries this way ensures that the count has at 
least one matching record. Why create the random que- 
ries as subsets of literals of existing records? Would it 
not have been simpler to generate entirely random que- 
ries? The reason is that completely random queries usu- 
ally have a count of zero. The ADtree can discover this 
extremely quickly, giving it an even larger advantage over 
direct counting. 

ADtree-Assisted CN2 
We now look at how the fast counting method of the pre- 
vious section can accelerate rule-finding algorithms. We 
look at CN2 (Clarke and Niblett 1989), an algorithm that 
finds rules involving arbitrary arity literals, as opposed to 
just positive binary literals. The rule-finding algorithm 
used here differs from CN2 in that only the most confi- 
dent antecedents for S2 are sought instead of attempting 
to cover the entire dataset. 

The learning algorithm is given S2 and begins search 
at Sl = { }. It then evaluates adding each possible literal 
one at a time, retaining the best k  rules so produced. 
These best k rules are taken from each generation as 

Dataset 
Attributes in Query/Speedup Ratio 
2 14 1 6 1 10 1 20 

ADULT1 1019 208 
ADULT2 1980 361 
ADULT3 2782 508 
BIRTH 1494 272 
MUSHRM 881 319 
CENSUS 10320 1139 
ASTRO 20350 10506 

Table 2: Speedup ratio of average time spent count .ing a ran- 
dom query of a given size without ADtree vs. using ADtree. 

76 25 
130 36 
166 46 
86 19 
179 82 

starting points for the next generation. This process con- 
tinues until the minsupp condition can no longer be satis- 
fied or the length of the rule exceeds a preset maximum. 
Upon termination, the best rules ever encountered are 
returned. The search thus considers increasingly specific 
rules using a breadth-first beam search of beam size k. 

Table 3 is a comparison of ADtree-assisted CN2 beam 
search rule learning and regular CN2 search. The pa- 
rameters for the CN2 search were a beam size of 4 and a 
minsupp of 200. Rules learned were of the form S 1=$2. 
The average time to learn a best rule for a randomly gen- 
erated target literal, S2, was regarded as the “rule-learning 
time”. The target literal S2 was restricted to being a sin- 
gle literal, where that literal’s attribute was first selected 
randomly from all possible attributes for the dataset, then 
a value was randomly assigned from the set of values that 
the attribute could take on. Rule-learning times for nor- 
mal CN2 and for ADtree-assisted CN2 were both re- 
corded. Table 3 reports the ratio of these two averages for 
different rule size limits. Rule size is defined as the num- 
ber of literals in Sl plus the number of literals in S2. 

As can be seen, there is a general and large speedup 
achieved from using ADtree evaluation on these datasets. 
ADtrees provide a big win, provided the cost of building 

Rule Size 4 8 16 
Limit 

Regular ADtree Regular ADtree Regular ADtree 
Time Time Time Time Time Time 
(se4 bed Speedup (set) (se4 Speedup (set) (se4 Speedup 

ADULT1 2.8 0.041 68.1 2.9 0.09 31.8 2.9 0.12 23.8 
ADULT2 5.4 0.041 132.7 5.5 0.16 34.0 5.7 0.22 26.3 
ADULT3 8.7 0.049 178.2 8.5 0.10 84.9 8.4 0.12 69.3 
BIRTH 4.3 0.16 26.9 5.1 1.4 3.6 6.3 13.1 0.5 
MUSHRM 1.8 0.039 46.6 1.8 0.064 28.5 1.9 0.094 19.9 
CENSUS 16.6 0.058 286.8 15.8 0.22 71.1 16.1 0.26 61.3 
ASTRO 198.6 0.034 5855.2 203.3 0.033 6191.5 - 

Table 3: Comparison of CN2 with ADtree-assisted CN2 under different rule size limits. 
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the ADtree is not taken into account. If CN2 were to be 
run only once, the cost of building the datastructure would 
make the ADtree approach inferior. ADtrees become 
useful once again, though, if multiple rule learning tasks 
are performed with the same dataset, and thus the same 
ADtree. The cost can thus be amortized and can also al- 
low interactive speeds once the initial cost is paid. Fur- 
thermore, without requiring rebuilding the tree, CN2 can 
be run on subsets of the database, defined by conjunctive 
restrictions on records (e.g., “find the rules predictive of 
high income restricted to people in the Northwest who 
rent their home”) or on subsets of the attributes (“don’t 
include any rules using age or sex”) without rebuilding. 

Our implementation of the unassisted counting version 
of CN2 exploited a major advantage of the original CN2 
algorithm: the fact that, as candidate rules are made more 
specific, they are relevant to only a subset of the records 
relevant to their parent rule. Since it is the case that no 
more specific descendent of a rule can ever match records 
that the parent rule did not, a running list of relevant ex- 
amples is kept for each rule. This list is pruned each time 
that the rule is made more specific, and drastically re- 
duces the number of records that the algorithm needs to 
look at in order to evaluate a rule as it grows. Thus CN2 
search speeds up dramatically near the end of the search. 
The ADtree, on the other hand, cannot use this informa- 
tion; it will always return a count for the entire dataset. 
Thus ADtree-assisted CN2 search slows down as larger 
rules are considered (see Table 3 .) 

However, ADtree’s lack of reliance on general-to- 
specific search as an aid to rule evaluation allows for 
much greater flexibility in search. ADtree-assisted rule 
evaluation makes practical strategies such as exhaustive 
search, simulated annealing, and genetic algorithms for 
rule learning. 

Discussion 
The current implementation of ADtrees is restricted to 
only symbolic attributes. Furthermore, The current im- 
plementation assumes that the dataset can be stored in 
main memory. This is frequently not true. Work in prog- 
ress (Davies & Moore 1998) introduces algorithms for 
building ADtrees from sequential passes through the data 
instead of by random access and does not require main 
memory data storage. 

A disadvantage of ADtrees in rule learning is that they 
cannot be easily used to do “tiling” of datasets. Use of 
ADtree rule evaluation, one the other hand, does not re- 
strict one to general-to-specific search. Moreover, the 
speed of ADtrees could make rule learning a process that 
takes place at interactive speeds. Relevant rules can be 
located quickly, perhaps enhanced by the operator’s 
knowledge, then resubmitted to the program for further 

polishing of the hypothesis. The ADtree is a useful tool 
for creating fast and interactive rule learning programs. 

Appendix 
ADULTl: The small “Adult Income” dataset placed in the UC1 
repository by Ron Kohavi. Contains census data related to job, 
wealth, and nationality. Attribute arities range from 2 to 41. In 
the UC1 repository this is called the Test Set. Rows with miss- 
ing values were removed. 
ADULT2: The same kinds of records as above but with differ- 
ent data. The Training Set. 
ADULT3: ADULT1 and ADULT2 concatenated. 
BIRTH: Records concerning a very wide number of readings 
and factors recorded at various stages during pregnancy. Most 
attributes are binary, and 70 of the attributes are very sparse, 
with over 95% of the values being FALSE. 
MUSHRM: A database of wild mushroom attributes compiled 
from the Audubon Field Guide to Mushrooms by Jeff Schlim- 
mer and taken from the UCI repository. Attribute arities range 
from 2 to 12. 
CENSUS: A larger dataset than ADULT3, based on a different 
census. Also provided by Ron Kohavi. Arity ranges from 2 to 
15. 
ASTRO: Discretized features of 1.5 million sky objects de- 
tected in the Edinburgh-Durham Sky Survey. 
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