A Fast Computer Intrusion Detection Algorithm Based on Hypothesis
Testing of Command Transition Probabilities

William DuMouchel
AT&T Labs-Research
180 Park Avenue
Florham Park, NJ 07932
dumouchel@research.att.com

Abstract

This statistical method compares in real time the
sequence of commands given by each user to a
profile of that user’s past behavior. We use the
Fisher score statistic to test the null hypothesis
that the observed command transition probabili-
ties come from a profiled transition matrix. The
alternative hypothesis is formed from a principal
components analysis of historical differences be-
tween the transition probabilities of all other users
and those of the user being tested. The calcula-
tions can be structured so that only a few dozen
arithmetic operations are needed to update an on-
line test statistic after each submitted command.
The theoretical statistical properties of the test,
such as false positive and false negative rates, are
computable under the assumptions of the markov
process model. Based on a population of 45 re-
search users on a single computer, test data from
each user are used to challenge the profile of ev-
ery user. The test had sufficient statistical power
to successfully discriminate between almost every
pair of users based on a sample size equivalent to
a single day’s usage of an average user.

Description of Statistical Methodology

Introduction. In computer intrusion detection one at-
tempts to identify unauthorized accesses to computer
accounts. There are two main approaches to intrusion
detection: pattern recognition and anomaly detection.
Pattern recognition is the attempt to recognize gen-
eral “attach signatures” that stem from known attacks
such as exploiting a software bug. The approach has
the disadvantage that it cannot defend against previ-
ously unknown software bugs, or any unauthorized user
with the knowledge of the account password. Anomaly
detection, on the other hand, attempts to identify an
unauthorized user by identifying unusual usage of the
computer. Usually, for each user a historical profile is
built and large deviations from the profile indicate a
possible intruder. Therefore it is also referred to as the
profile based approach. Intrusion detection systems like

Copyright ©1998, American Association for Artificial
Intelligence (www.aaai.org). All rights reserved.

Matthias Schonlau
AT&T Labs-Research and
National Institute of Statistical Sciences
PO Box 14006
Research Triangle Park, NC 27709-4006
schonlau@research.att.com

IDES (Lunt et al. 1992), NIDES and Emerald (Porras
and Neumann 1997) use both approaches, presumably
because neither one is uniformly superior to the other.
In this paper we only consider the anomaly detection
approach. This approach lends itself to a statistical
treatment. Ryan et. al. (1998) suggested that each
user on a computer system leaves a ”print” that could
be captured by training a neural network with histori-
cal data. When for new data from any user the neural
network predicts that the data is more likely to stem
from another user in the historical data, then an alarm
for a possible intrusion is raised. Forrest et al. (1996)
consider anomalies for unix processes (such as ftp, or
root) rather than for users. In this paper we propose
a test for anomaly detection based on hypothesis test-
ing. Since users (including the root user) and system
processes (such as ftp) both generate command - level
data, we are able to test anomalies for unix processes
and users simultaneously.

Command Transition Probabilities, Our
method is based on comparing the sequence of each
user’s commands to a stored profile describing the prob-
ability distribution of that user’s command sequences.
Each command is one of a fixed number K of possible
commands or command groupings. We represent each
user’s historical data in terms of a transition matrix of
command probabilities:

piku = P(Next Com. = k|Prev. Com. = j, User = u)
1
The commands are arbitrarily numbered as j,k (:)
1,..., K and we assume that historical data are avail-
able for U +1 users, arbitrarily numbered v = 0,1, ..., U.
We focus on User u = 0 as the user whose commands
are being monitored and tested for unusual behavior at
any given time, but the historical data from the other
U users play a role in the test procedure for user 0.

Smoothing Historical Transition
Probabilities

The probabilities (1) must be reliably estimated, with
all pjku > 0. Thus we smooth the observed proportions
from the training period. Denote by Njx, the raw count
of transitions from command j to command k for user

KDD-98 189

u during the training period. This array will have many
elements equal to 0 and many of its nonzero elements
may be so small that they are statistically unreliable.
For some small € > 0 (we use € = 0.001), let

Ny = Z Njry
J

N o= Z N ku
k

qku = (Ngo + N w€)/N.u(1 + Ke)

The gy are the marginal probabilities of command &
for user u, modified using ¢ so that they are all positive.
The transition probabilities pjru are weighted averages
of qxy and the raw proportions Njiy/Nj 4, namely
Piku = [(Njhu+Miuqru)/(Njut+Mjy)+e] /(14 Ke) (2)
where Njy = >, Njxu and Mj, are weights chosen to
be large if the raw transition frequencies are not sig-
nificantly different from the marginal frequencies, but
near (if the raw transition frequencies are very reliably
different than the marginal ones. Specifically, let

Mj, = 1/max{.0001, [Z(Njku — Njutku)®/
k

Njuqsu — K + 1)/N; (K = 1)} (3)

The use of equations (2) and (3) is inspired by an empir-
ical Bayes model in which it is assumed that each vec-
tor (Ps1u, -, PjKu) Was generated from a Dirichlet prior
distribution (O’Hagan 1994, Ch. 10) with mean vec-
tor (¢1u,-.., ¢xu) and probability density proportional

to HL pjkub[ju(hsu"‘l X

Hypothesis Testing Framework

Suppose that User 0 is logged on and has generated a
sequence of 7'+1 commands Cp, Ci, ..., Cp. There is the
possibility that these commands are being generated by
someone other than User 0, and let the unknown true
transition probabilities of this sequence be

ﬂjk:P(Ct:klct—lzj) t:1,2,...,T (4)
The corresponding transition counts for this user’s test
data are njg, where ij njx = T Let nj. = > njk.
By definition, E[njx|n;] = nj mjx. We want to test the
null hypothesis

Hy: Tik = Pjko] = 1,...,[(; k= 1,...,]((5)

Statistical hypothesis testing is a procedure in which a
decision maker prespecifies a computable test statistic
whose distribution is supposed to be completely known
assuming that a null hypothesis Hyp is true. This allows
the false alarm probability to be computable in advance
for a decision rule that rejects Ho whenever the test
statistic exceeds a fixed value.

The standard test statistic for this situation is the log
likelihood ratio statistic, namely

LR=23% % njslog(njk/n;.piro) (6)
ik

190 DuMouchel

The range of j in the above summation is over the J
values of j for which n;. > 0. If T is very large and
the assumptions (4 - b) are true, then LR will have an
approximate chi-squared distribution with J(X —1) de-
grees of freedom, so that LR could be compared to the
percentiles of this distribution to assess Hg. Unfortu-
nately, T will rarely be large enough for this distribu-
tional assumption to be even approximately true. The
usual rule of thumb is that every value of n; pjro > 1,
and that most nj pjko > 5. This would imply that every
nj, > 3K, yet many rarely occurring commands would
have many fewer occurrences than that in the test data.
Another problem with using the test statistic (6) is that
this is an omnibus test with power against all possible
alternatives to (5), which is likely to waste statistical
power testing against unlikely or nonsensical alterna-
tive sets of transition probabilities. Therefore we will
construct an alternative hypothesis with fewer degrees
of freedom, using the historical data from all users as
a guide to which alternative transition probabilities are
plausible.

Alternative Hypothesis. Suppose that the test
data are being generated by the transition probabilities

Hy:mjs = mik(B) = pjro+ Y (Piku — Pik0)Biu (7)
u=1,U

where 8 = (A1, ..., Bku). Instead of considering all al-
ternatives to Hg, (7) focuses on directions in the space
of transition probabilities that the historical data con-
firm are occupied by one or more other users. The
expression (7) becomes identical to Hy if all KU ele-
ments of § = 0, so H; might also be stated as fgy # 0
for some (k, u). However, (7) still has the disadvantage
of too many degrees of freedom because many of the
users may have similar historical probabilities so that
the vectors (pj1u — Pj10, -, PjKu — PjKo) may be highly
collinear for many values of w.

Principal Components Regression. The dimen-
sionality of the alternative hypothesis is reduced by
choosing linear combinations of user deviations from
pjko that have maximum variance and are uncorrelated.
See DuMouchel and Schonlau (1998) for more details of
the statistical theory behind this approach. First define
the matrices Xj:

Xiku = (Piku — Piko)/+/Piko
Then let Z; be a K x U* matrix consisting of the first
U* < min(U, K) principal components of X;. Take
uncentered principal components, so that tr(ZJ’-Zj) ~
tr(X;X;).
Test Procedure

After reducing the dimensionality in this way, the corre-
sponding Fisher score statistics (Stuart and Ord 1991,
Ch. 25) are defined as follows, where v =1,...,U™:

Yojk = Ziku/\/Piko (8)
Sjy = ankyujk
k

Vi = Z:Djkoyujk2
&

The principal component scores Sj, have moments
E[Sj] =0 9)
Var(.S'ju) = nj.Vjv (10)

Cov(Sjv,Sjrwr) = 0 for all combinations j # j' or
v # v'. Note that if the U*K? subscores (8) are
stored, then only U* additions are required to update
the entire matrix Sj, after each observed transition
(Ci-1=j,Cc = k).

Principal components chi-squared. The test

statistic
52 =3 (Sjv*/m;.V5) (11)
KR
has an approximate x? distribution with df = JU* un-
der Hy, or, using the Wilson-Hilferty (1931) transfor-
mation,

S* = ((S2/df)!® — 1+ 2/9d7](9df /2)M/?

In our example, U* = 5 principal components are used
for each previous command j.

Data and Results

To evaluate the method presented in the previous sec-
tion, we compare test data to training data (profiles)
for pairs of users. Ideally, an alarm should always be
raised except when a user is tested against his or her
own profile. To establish user profiles, we use histor-
ical data from usage on our local unix machine. The
data (user names and commands) are extracted from
output of the unix acct auditing mechanism and con-
sist of user names and commands only (without their
arguments). Some commands recorded by the system
are implicitly generated and not explicitly typed by the
user. For example, each execution of the .profile file
or a make file generates commands contained in these
files that are also recorded in the data stream. We use
test data separated in time from training data accord-
ing to the following cross-validation scheme involving
four separate time periods.

Experimental Design. Data were collected from
our local population during four separate time periods
approximately a month apart. During each time pe-
riod, the first 1000 command transitions by each user
are included in the study. There were 45 users with
that amount of data available from all four time peri-
ods. We form four separate replications of our study by
considering in turn each of the four time periods as the
test period and the other three time periods as histori-
cal training periods for collecting user profiles. Within
each replication, we test each user’s test data against
each of the profiles in the historical data and record the
standardized test statistic S*. Within each set of 1000
test commands, we compute the test statistic for each
of 10 sets of 100 commands, so the basic unit of study
is observation of 100 commands from the user being

Standardized Score

validated. When the standardized test statistic S* ex-
ceeds a threshold value, an alarm is raised. Depending
on the chosen value of the threshold, different rates for
false positives (false alarms) and false negatives (miss-
ing alarms) can be obtained. In the following we in-
vestigate the tradeoff between false negatives and false
positives by choosing different thresholds.

Results. Figure 1 focuses just on the false alarm
problem (comparing each test user to the same user’s
profile) and looks at the test statistic as a function of
the number of commands N. Each of the 45 curves
in Figure 1 corresponds to one test data stream. The
two horizontal lines in Figure 1 correspond to thresh-
olds of S* = 10 and of S* = 100 respectively. Out of
45 users, only 2 ever exceed the threshold of 100. The
vast majority of users maintain S* < 10. Under the

160

Figure 1: Time plot of standardized score comparing
each user’s test data with their own training data pro-
file. Training Periods = 1—3. Test Period = 4. Number
of Principal Components U* = 5.

Null hypothesis, S* should have a standard normal dis-
tribution which would suggest a small threshold (e.g.
3). Our data show higher false alarm rates than this
theory predicts, which we attribute to the fact that our
model does not accommodate users’ behavior changing
over time, and some of our users changed significantly.

Figure 2 shows, for each of the 45 x 45 test-data ver-
sus a profile pairs, the median value of $* for blocks
of N = 100 commands within that pair. (Note that
actually 20 4+ S* is plotted to allow for the logarith-
mic scale on the vertical axis. A vertical line is drawn
at S* = 0). Ideally, the median test score against a
user’s own historical profile (denoted by ”+” in Figure
2) should be lower than all of the test scores run against
other people’s profiles (denoted by ”.”). Another way
of saying this is that a user should only be able to break
into his/her own account without causing an alarm to
be raised. As we can see in Figure 2, the block medians

KDD-98 191

500

100)

100

50

+
4

20 + Median of Standardized Score (N
10
+

T T

20

30 40

User Account

Figure 2: Medians of standardized scores for blocks of 100 test data commands, compared to each training data.
“4” denotes comparison to own training data, “.” denotes comparison to other users. Training Periods = 1 — 3.
Test Period = 4. Number of Principal Components U* = 5. A horizontal line is drawn at S* = 0.

discriminate almost perfectly between a user’s own and
other profiles.

As the threshold where an alarm is raised changes,
different rates of false alarms (false positives) and miss-
ing alarms (false negatives) can be obtained. Figure 3
and Figure 4 show the tradeoff between these false pos-
itive and false negative rates for all four time periods
based on blocks of 100 and 900 commands, respectively.
Each time period is used as testing data with the re-
maining three time periods serving as training data.
The lower left corner represents the ideal scenario: no
false alarms and no missing alarms. Note that both
axes are presented on a logarithmic scale. From Figure
3 we can tell, for example, based on 100 transitions, at
a false positive rate of 5% we get a corresponding false
negative rates between about 15% - 60%. Based on 900
transitions (Figure 4), the false negative rates drop to
5% ~— 31%. These numbers are quite high and also in-
dicate that there is a considerable variability from time
period to time period. The variablility in Figure 4 is in
part due to the relatively small sample size: an alarm
for 2 out of 45 blocks of 900 commands amount to about
5% false alarms.

192 DuMouchel

Discussion

Ryan et. al. (1998) use a neural network approach and
test classification errors based on 10 users. They have
11 successive days of data, 8 of which are used for train-
ing. One of the users only had little data. They report
a false alarm rate of 7% and 4% missing alarms. Our
test is more challenging in that we test with more users,
and because there is a gap in time between historical
and test data. Also, their decision criterion seems to as-
sume that the intruder would be one of the other users
in their training data. On the other hand, unlike them,
we excluded users with very low account usage.

In order for an intrusion detection tool to be useful,
the false alarm rate needs to be low — otherwise alarms
tend to be ignored. To that extent a false alarm rate
of 5% still seems high. Perhaps extending the length
of the training period will make the profiles more ro-
bust to changes in user behavior. One possible way
to improve the markov model is by consolidating se-
ries of cascading commands (generated, for example,
by a makefile) into single (meta) commands, or by con-
sidering the next command conditional on more than
one previous command. Note that our theoretical false
alarm probabilities ignore the problem of multiple test-

50.0 100.0

60 100

Falae Nogative (%)

0.5

0.1
n

05 1t0 Sto 10.0 50.0 100.0
False Positive (%)

Figure 3: Tradeoff between false positive and false neg-
ative rates for statistic (11), treating every block of 100
commands as a separate experiment. Each of four peri-
ods is used as test data with the respective other three
periods being used as training data. Number of Princi-
pal Components U* = 5.

ing, in which repeated testing of the same null hypothe-
sis as time goes on increases the chance of a false alarm
rate. This problem, common to most control-chart like
procedures, seems to be a less important cause of ex-
cessive false alarms than our failure to model how users
tend to change their profiles over time.

A major strength of the approach presented is its
speed. Only a few dozen operations are needed for up-
dating the test statistic, and preliminary calculations
indicate that it will be easily possible to implement this
procedure in real time. The amount of storage required
for the procedure is relatively large. Based on 5 prin-
cipal components and 100 command categories, 50500
single precision numbers need to be stored for each user.

Because of space constraints, we report here only on
the behavior of the $* statistic and defer comparisons
for varying numbers of principal components and differ-
ent test statistics. See DuMouchel and Schonlau (1998)
for description of a comparative study of different test
statistics and numbers of principal components to use
with this method.

We need to perform further investigation of the op-
timal number of principal components to take. We will
also investigate the effect of adding known intrusion sig-
natures as profiles in the training data to make the prin-
cipal components methodology more sensitive to such
attacks. We also expect to be able to use this procedure
to increase our understanding of local system usage.

References

DuMouchel, W. and Schonlau, M. (1998). A Compari-
son of Test Statistics for Computer Intrusion Detection

50.0 100.0

50 100

Falso Negative (%)

1.0

0.5

0.1

05 1 tO 5.0 10.0 56.0 100.0
False Positive (%)

Figure 4: Tradeoff between false positive and false neg-
ative rates for statistic (11) based on 900 commands for
each user. Each of four periods is used as test data with
the respective other three periods being used as training
data. Number of Principal Components U* = 5.

Based on Principal Components Regression of Transi-
tion Probabilities. In Proceedings of the 30th Sympo-
stum on the Interface: Computing Science and Statis-
tics, (to appear).

Forrest, S., Hofmeyr, S., Somayaji, A., Longstaff, T.
(1996). In Proceedings of the 1996 IEEE Symposium on
Security and Privacy. IEEE Computer Society Press,
Los Alamitos, CA, pp. 120-128.

Lunt, T. Tamaru, A., Gilham, F., Jagannathan,
R., Neumann , P., Javitz, H., Valdes, A., Garvey, T.
(1992). A Real-Time Intrusion Detection Expert Sys-
tem (IDES) - final technical report. Computer Science
Library, SRI International, Menlo Park, California.

O’Hagan, A. (1994). Kendall’s Advanced Theory of
Statistics, Vol. 2B: Bayesian Inference, New York: John
Wiley.

Porras, P., and Neumann P. (1997). EMERALD:
Event Monitoring Enabling Responses to Anomalous
Live Disurbances. In Proceedings of the National Infor-
mation Systems Security Conference. (to appear).

Ryan, J. , Lin,M., and Miikkulainen, R. (1998). In-
trusion Detection with Neural Networks . In Jordan, M.
I., Kearns, M. J., and Solla, S. A. (editors), Advances
in Neural Information Processing Systems 10 (NIPS’97,
Denver, CO). Cambridge, MA: MIT Press.

Stuart, A. and Ord, J.K. (1991). Kendall’s Advanced
Theory of Stististics, Vol. 2: Classical Inference and
Relationship, New York, John Wiley.

Wilson EB, Hilferty MM (1931). The distribution of
chi-square, In Proc. Nat. Acad. Sci., Wash. DC, 17,
684-688.

KDD-98 193

