
Condensed Representations for Inductive Logic Programming

Luc De Raedt
Institut f̈r Informatik

Albert-Ludwigs-University Freiburg
Georges Koehler Allee 79

D-79110 Freiburg, Germany
deraedt@informatik.uni-freiburg.de

Jan Ramon
Department of Computer Science
Katholieke Universiteit Leuven

Celestijnenlaan 200A
B-3001 Heverlee, Belgium

Jan.Ramon@cs.kuleuven.ac.be

Abstract

When mining frequent Datalog queries, many queries will
cover the same examples; i.e., they will be equivalent and
hence, redundant. The equivalences can be due to the
data set or to the regularities specified in the background
theory. To avoid the generation of redundant clauses, we
introduce various types of condensed representations. More
specifically, we introduceδ-free and closed clauses, that are
defined w.r.t. the data set, and semantically free and closed
clauses, that take into account a logical background theory.
A novel algorithm that employs these representations is
also presented and experimentally evaluated on a number of
benchmark problems in inductive logic programming.

Keywords: inductive logic programming, relational
learning, relational data mining, condensed representations,
frequent query mining, knowledge representation.

Introduction
One of the central tasks in data mining is that of finding all
patterns that are frequent in a given database. The induc-
tive logic programming instantiation of this task considers
patterns that are logical queries or clauses and data in the
form of a Datalog (or Prolog) knowledge base (Dehaspe &
De Raedt, 1997; Dehaspe & Toivonen, 1999). This problem
is known under the name of frequent Datalog query mining
and has received quite some attention in the literature, cf.
(Nijssen & Kok, 2001, 2003; Malerba & Lisi, 2001; Weber,
1997). Despite its popularity, there are several problems that
arise when applying these techniques. First, it is computa-
tionally expensive to compute all frequent queries. This is
due to the use of a very expressive formalism in which test-
ing the generality of clauses (w.r.t.θ-subsumption) as well
as the computation of the frequency of a clause are compu-
tationally hard. Second, a vast number of queries is being
generated, tested and discovered. In contrast to simple pat-
tern languages, such as item-sets, the clausal pattern space is
infinitely large. Third, even though background knowledge
is used when evaluating the frequency of clauses, no back-
ground knowledge is employed when generating the can-
didate clauses. So far, the standard way of guiding induc-
tive logic programming systems computing frequent Data-

Copyright c© 2004, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

log queries is through the specification of syntactic restric-
tions that the clauses should satisfy (the so-called language
bias). Syntactic restrictions (and language bias) are not re-
ally declarative, they are hard to to specify and hence, they
hinder the application of inductive logic programming. Fur-
thermore, when analyzing the discovered clauses, it turns
out that many of the patterns discovered will be equivalent,
and hence, redundant. These redundancies do not only lead
to unnecessary inefficiencies but also impose an unneces-
sary burden on the user. The redundancies can be due to the
data set or to the background knowledge. As an illustration
from the domain of beer consumption, consider the hypothe-
seshoegaarden∧ duvelandduvel. For a particular data set,
these two hypotheses may cover exactly the same examples
because in the available data set everybody that drinksdu-
velalso drinkshoegaarden. On the other hand, it might also
be that our background theory specifies thathoegaardenand
duvelare bothbeer. In the light of this background theory,
the patternshoegaarden∧ beer andhoegaardenwould be
semanticallyequivalent, regardless of the data set.

In this paper, we address these problems by introduc-
ing various types of condensed representations for frequent
Datalog query mining. Condensed representations are well
studied for simple pattern domains such as item sets (Zaki,
2000; Boulicaut, Bykowski, & Rigotti, 2003; Pasquieret al.,
1999) and have recently also been applied in the context of
graph mining (Yan & Han, 2002). The key idea underly-
ing condensed representations (such as closed and free sets)
is that one aims at finding a representative for each equiv-
alence class of frequent patterns (the so-called closed set)
instead of finding all frequent patterns. In this context, we
first introduce the novel concept ofsemanticfreeness and
closedness, where the termsemanticrefers to the use of a
declarative background knowledge about the domain of in-
terest that is specified by the user. Under this notion, two
clausesc1 andc2 are semantically equivalent if and only if
KB |= c1 ↔ c2, e.g. hoegaarden∧ beer and hoegaar-
denare semantically equivalent in the light ofbeer← hoe-
gaarden. Employing such a background knowledge and se-
mantics is an elegant alternative to specifying complex and
often ad hoc language bias constraints (such as those for
dealing with symmetric or transitive predicates). In addi-
tion, it provides the user with a powerful and declarative tool
for guiding the mining process. Secondly, we upgrade the

438 KR 2004

already existing notions of freeness and closedness (Zaki,
2000) for use in an inductive logic programming setting, and
show how these traditional notions are related to the new
notions of semantic condensed representations. If the two
only predicates in the database arehoegaardenandduvel,
and the examples covered byhoegaarden∧ duvelanddu-
vel are the same, thenduvel is free (i.e., a shortest clause
in the equivalence class) andhoegaarden∧ duvel is closed
(i.e., the longest clause in the equivalence class). As a third
contribution, a novel frequent Datalog clause engine, called
c-armr, that works with condensed representations, is pre-
sented and experimentally validated.

Problem Setting
Even though we assume some familiarity with Datalog and
Prolog, the reader can find a brief overview of the most im-
portant concepts from logic programming in the Appendix.

The task of frequent query mining was first formulated in
(Dehaspe & De Raedt, 1997; Dehaspe & Toivonen, 1999):

• Given
– a language of clausesL
– a databaseD
– a predicatekey/1 belonging toD
– a frequency thresholdt

• Find all clausesc ∈ L such thatfreq(c,D) ≥ t.

The databaseD is a Prolog knowledge base; it contains
the data to be mined. In this paper, we will assume that
all queries posed to the knowledge base terminate and also
that all clauses are range-restricted (i.e. all variables in the
conclusion part of the clause also occur in the condition
part). The first requirement can be guaranteed by employ-
ing Datalog (i.e., functor free Prolog). The databaseD is
assumed to contain a special predicatekey/1 which deter-
mines the entities of interest and what is being counted.
The language of clausesL defines the set of well-formed
clauses. All clauses inL are assumed to be of the form
p(K) ← key(K), q1, ..., qn where theqi are different lit-
erals. Within inductive logic programming,L typically im-
poses syntactic restrictions on the clauses to be used as pat-
terns, most notably, type and mode restrictions. The types
indicate which arguments of the predicates belong to the
same types. The modes provide information about the in-
put/output behavior of the predicates. E.g., the predicate
member(X, Y), which succeeds whenX is an element of
the listY , runs safely when the second argument is instanti-
ated upon call time. Therefore the typical mode restrictions
states that the second argument is aninput (’+’) argument.
The first can be an input or an output (’-’) argument.

Thefrequencyof a clausec with headkey(K) in database
D is defined as

freq(c,D) =| {θ | D ∪ c |= p(K)θ} | (1)

So, the frequency of a clause is the number of instances
of p(K) that are logically entailed by the database and the
clause. The frequency can be computed by asserting the
clausec in the database already containingD and then run-
ning the query?−p(K). The frequency then corresponds to
the number of different answer substitutions for this query.

Example 1 Consider the database consisting of the follow-
ing facts:

drinks(jan,duvel). key(jan).
drinks(hendrik,cognac). key(hendrik).
drinks(luc,hoegaarden). key(luc).

beer(duvel). brandy(cognac).
beer(hoegaarden).

Consider also the following clauses:

alcohol(X)← beer(X).
alcohol(X)← brandy(X).
false← brandy(X), beer(X).

The frequency of the clause p(X) ←
key(X), drinks(X, B), beer(B) is 2 as it has two
answer substitutions:X = jan andX = luc.

Observe that the constraintfreq(c,D) ≥ t is anti-
monotonic. A constraintc on patterns isanti-monotonicif
and only if c(p) andq � p implies c(q), where,q � p de-
notes thatq subsumes (i.e. generalizes)p.

An important problem with the traditional setting for fre-
quent pattern mining in inductive logic programming is that
– due to the expressiveness of clausal logic – the number of
patterns that is considered and generated is extremely large
(without syntactic restrictions, it is even infinitely large).
This does not only cause problems when interpreting the
results but also leads to computational problems. The key
contribution of this paper is that we address this problem
by introducing condensed representations for inductive logic
programming.

Knowledge for Condensed Representations
It is often argued that one of the advantages of inductive
logic programming is the ease with which one can employ
background knowledge in the mining process. Background
knowledge typically takes the form of dividing the database
D = KB∪D into two components: the background knowl-
edgeKB and the dataD, whereKB constitutes theinten-
sionalandD theextensionalpart of the database. The idea
is then that both intensional and extensional predicates are
used in the hypotheses and that their nature is transparent to
the user. With only a few exceptions, most inductive logic
programming systems do not employ the background the-
ory during hypothesis generation1 but only while computing
the coverage or frequency of candidate clauses. Indeed, the
typical inductive logic programming system structures the
search space usingθ-subsumption (Plotkin, 1970) orOI-
subsumption (Malerba & Lisi, 2001), and starts searching
at the empty clause and repeatedly applies a refinement op-
erator. Because typical refinement operators do not employ
background knowledge, they generate many clauses that are

1Perhaps, the only exception is Progol (Muggleton, 1995),
which employs the background knowledge to generate a most spe-
cific clause inL that covers a specified example, and older heuristic
systems that employ the background knowledge during refinement
using a resolution based operator, cf. (Bergadano, Giordana, &
Saitta, 1990).

KR 2004 439

semantically equivalent. As the inductive logic program-
ming system is unaware of this, unnecessary work is being
performed and the search space is blown up resulting in se-
vere inefficiencies.

Example 2 Reconsider Example 1. A typical refinement op-
erator will generatep(K) ← key(K), beer(K), alcohol(K);
p(K) ← key(K), beer(K); and p(K) ← key(K), alcohol(K).
However, given the clause stating thatbeeris alcohol, the
first two clauses are equivalent.

To alleviate this problem, we introduce, as the first contri-
bution of this paper, the notions of semantically closed and
semantically free clauses. These novel concepts assume that
a background theoryKB is given in the form of a set of
Horn-clauses. At this point, we wish to stress that the back-
ground theory used should not contain information about
specific examples and also that the theory used here might
well be different than the one implicitly used inD. So,KB
here denotes a set of properties about the domain of inter-
est. Continuing our example,KB consists of the two proper
clauses definingalcohol.

Definition 1 A clauseh← k, q1, ..., qn is semantically free,
or s-free, w.r.t. the background knowledgeKB, if and only
if there is no clausep0 ← k, p1, ..., pm (m < n) where
eachpi corresponds to a singleqj , for whichKB |= p0 ←
p1, ..., pm

2.

Definition 2 A clauseh ← k, q1, ..., qn is semantically
closed, or s-closed, w.r.t. the background knowledgeKB
if and only if {kθ, q1θ, q2θ, ..., qnθ} is the least Herbrand
model ofKB ∪ {kθ, q1θ, ..., qnθ} whereθ is a skolem sub-
stitution forh← k, q1, ..., qn.3

Definition 3 A clauseh ← k, q1, ..., qn is consistentif and
only if KB ∪ {kθ, q1θ, ..., qnθ} 6|= � whereθ is a skolem
substitution.

Intuitively, a clause is s-free if it is not possible to delete
literals without affecting the semantics; it is s-closed if it
is not possible to add literals without affecting the seman-
tics. In Example 2,p(K)← key(K), beer(K), alcohol(K)is s-
closed, the other clauses are s-free, all clauses are consistent
and the clausep(K)← key(K), beer(K), brandy(K).is incon-
sistent because of the clausefalse← beer(X), brandy(X). It
acts as a constraint on the set of legal clauses.

The reader familiar with the theory of inductive logic pro-
gramming might observe that s-closed clauses are closely re-
lated to Progol’s bottom clauses (Muggleton, 1995) as well
as to Buntine’s notion of generalized subsumption (Buntine,
1988). Indeed, the bottom clause of an s-closed clause w.r.t.
the background theory is the s-closed clause itself, and the
two clausesp(K)← key(K), beer(K), alcohol(K)and p(K)
← key(K), beer(K)in Example 2, are equivalent under gen-
eralized subsumption. Observe also that each s-free clause

2A more general but less operational definition requires that
there is no clausep0 ← k, p1, ..., pm such thatp0, ..., pm sub-
sumesq1, ..., qn.

3Here it is assumed that the least Herbrand model is finite,
which can be enforced when using Datalog and range-restriction.

has a unique s-closed clause, thes-closure, that is equiva-
lent. Furthermore, several s-free clauses may have the same
s-closure.

From the above considerations, it follows that it would be
beneficial if the search could be restricted to generate only s-
closed clauses. Then one would generate only one clause for
each equivalence class of clauses and the s-closures would
act as the canonical forms. This would closely correspond
to having a refinement operator working under Buntine’s
generalized subsumption framework. Unfortunately, it is
not easy to enforce the s-closed constraint as it is not anti-
monotonic. Indeed, in our running example,p(K)← key(K),
beer(K), alcohol(K)is s-closed, but its generalizationp(K)
← key(K), beer(K)is not. Fortunately, it turns out that s-
freeness is anti-monotonic. Therefore it can easily be inte-
grated in traditional frequent query mining algorithms. This
integration will be discussed below.

Once the s-free clauses have been found, their s-closures
can be computed and filtered to eliminate doubles. The s-
closure of a clauseh ← k, q1, ..., qm w.r.t. the background
theory can be computed as indicated in Algorithm 1.

Algorithm 1 Computing the s-closure ofh ← k, q1, ..., qm

w.r.t. KB.
Compute a skolemization substitutionθ for

h← k, q1, ..., qm

Compute the least Herbrand model{r1, ..., rn}
of KB ∪ {kθ, q1θ, ..., qmθ}

Deskolemizehθ ← kθ, r1, ..., rn and return the result

Example 3 To compute the s-closure ofp(K) ← key(K),
brandy(K), we first skolemize the clause using substitution
θ = {K← sk} wheresk is the skolem constant. We then
compute the least Herbrand model of the theory containing
the factskey(sk), brandy(sk) and the clauses definingalco-
hol, yieldingkey(sk), brandy(sk), alcohol(sk). Deskolemiz-
ing then yieldsp(K)← key(K), brandy(K), alcohol(K).

Observe that the constraint of s-closedness provides the
user with a powerful means to influence the results of the
mining process. Indeed, adding or removing clauses from
the background theory will strongly influence the number
as well as the nature of the discovered patterns. Basically,
adding a clause of the formh← p, q has the effect of ignor-
ing h in clauses wherep andq are already present. There-
fore, the user may also desire to declare clauses in the back-
ground theory that do not possess a 100 per cent confidence.
This in turn will increase the number of clauses that are se-
mantically equivalent, and hence reduce the number of s-
closed clauses. So, less clauses will be generated.

When working with a refinement operator that simply
adds literals to hypotheses, one can also easily enforce
the consistency constraint. Indeed, under these conditions,
whenever a clausep ← k, q1, ..., qm is consistent, all
clauses of the formp ← k, p1, ..., pn with {p1, ..., pn} ⊆
{q1, ..., qm} will also be consistent. Therefore, the consis-
tency constraint is anti-monotonic and can be incorporated
in the same way as the s-freeness constraint.

440 KR 2004

Discovering Associations
Specifying all clauses that hold in the domain may be cum-
bersome and the question arises as to whether the data min-
ing system may not be able to discover the clausal regu-
larities that hold among the data. For item sets, sequen-
tial patterns and even graphs (Yan & Han, 2002; Boulicaut,
Bykowski, & Rigotti, 2003; Zaki, 2000), techniques have
been developed that discover high confidence association
rules during the mining process and once discovered, em-
ploy them to prune the search. To this aim, we upgrade the
notions ofδ-free and closed item sets (Boulicaut, Bykowski,
& Rigotti, 2003) to clausal logic:

Definition 4 A clauseh← k, q1, ..., qn is δ-free(with δ be-
ing a small positive integer), if and only if there exists no
clausec of the formh ← k, p1, ..., pm, not p0, where each
pi corresponds to a singleqj , for whichfreq(c,D) ≤ δ.

To understand this concept, first consider the clausesh ←
k, p1, ..., pm, not p0 and the case thatδ = 0. If such a
clause has frequency 0, this implies that the association rule
p0 ← k, p1, ..., pm has a confidence of 100 per cent. The
negative literalnot p0 is used because we need to know that
the rule holdsfor all substitutions. Now, the definition of0-
freeness is analogous to that of s-freeness except that these
association rules are not specified in the background theory
but instead are regularities that hold in the data. Indeed,

Theorem 1 For δ = 0, if KB would contain all 100 per
cent confidence association rules then a clause isδ-free if
and only if it is s-free w.r.t.KB.

Now consider the case thatδ 6= 0. Then rather than re-
quiring association rules to be perfect, a (small) number of
exceptions are allowed in each association rule.

Example 4 The clause p(K) ← key(K), drinks(K,B),
beer(B)is s-free and therefore 0-free. It is however not 1-
free becausep(K) ← key(K), drinks(K,B), not beer(B)has
a frequency of 1. Similarly,p(K) ← key(K), drinks(K,B),
brandy(B)is 0-free and 1-free but not 2-free.

Observe that asδ increases, the number ofδ-free clauses will
decrease.

For δ = 0, we can define a corresponding notion of
closedness.

Definition 5 A clause h ← k, q1, ..., qn is closed if
and only if there exists no clausec of the form h ←
k, p1, ..., pm, not p,where eachpi (but not p) corresponds
to a singleqj , for whichfreq(c,D) = 0.

Theorem 2 If KB contains all 100 per cent confidence as-
sociation rules then a clause is closed if and only if it is
s-closed w.r.t.KB.

We have not defined a corresponding notion ofδ-closedness
because traditional deduction rules do not hold any more.
Indeed, from the fact that the association rulesp ← q and
q ← r have at mostδ exceptions, one may not conclude that
p← r has onlyδ exceptions.

Again, it is easy to see thatδ-freeness is an anti-
monotonic property, which will be useful when developing
algorithms.

One of the interesting properties ofδ-free clauses is that
they can be used to closely approximate the frequencies of
any frequent clause, cf. (Boulicaut, Bykowski, & Rigotti,
2003). The following theorem follows from a corresponding
result for item sets due to (Boulicaut, Bykowski, & Rigotti,
2003).

Theorem 3 Let D be a database. LetS be a set ofδ-
free clauses (w.r.t.D). Let c1 : p(K) ← x1 . . . xm and
c2 : p(K) ← x1 . . . xn be clauses withn > m such that
∀i ∈ {m . . . n − 1} : ∃(h ← b) ∈ S,∃θ : hθ = xi+1 ∧
bθ ⊂ {x1, . . . , xi}. Then,freq(c1,D) ≥ freq(c2,D) ≥
freq(c1,D)− δ.n.

An Algorithm for Mining Frequent Clauses
Algorithms for finding frequent Datalog queries are similar
in spirit to those traditionally employed in frequent item set
mining. A high-level algorithm for mining frequent clauses
along these lines is shown in Algorithm 2. It searches
the subsumption lattice breadth-first: it repeatedly generates
candidate clausesCi that are potentially frequent and tests
for their frequency. To generate candidates, a refinement op-
eratorρ is applied. To employ a minimum frequency thresh-
old in Algorithm 2 one must setcon = (freq(f,D) ≥ t).
Using the abstract constraintcon, it is also possible to em-
ploy other types of anti-monotonic constraints in Algorithm
2. Despite the similarity with traditional frequent pattern
mining algorithms, there are also some important differ-
ences.

First, traditional frequent pattern mining approaches as-
sume that the languageL is anti-monotonic. For clausal
logic, a language is anti-monotonic when for all clauses
h ← k, p1, ..., pm ∈ L, all generalizations of the formh ←
k, p1, ..., pi−1, pi+1, ..., pm ∈ L. Even though this assump-
tion holds for expressive pattern languages such as those in-
volving trees or graphs, cf. (Inokuchi, Washio, & Motoda,
2003), it is typically invalid in the case of inductive logic
programming because of the mode and type restrictions.
Indeed, consider for instance the clausep(K) ← key(K),
benzene(K,S), member(A,S), atom(K,A,c). Even though this
clause will typically satisfy the syntactic constraints, its gen-
eralizationp(K)← key(K), member(A,S)will typically not
be mode-conform. Because the languageL employed in in-
ductive logic programming is not anti-monotonic, one need
not only keep track of the frequent clauses, but also of the
(maximally general) infrequent ones. Furthermore, when a
new candidate is generated, it is tested whether the candidate
is not subsumed by an already known infrequent one. Our
c-armr implementation uses an indexing scheme to avoid
subsumption tests wherever possible. This scheme relies on
the observation that a clausec1 can onlyθ-subsumes clause
c2 when all constant, predicate, and function symbols occur-
ring in c1 also occur inc2.

Second, in order to search efficiently for solutions, it is
important that each relevant pattern is generated at most
once. Early implementations (Dehaspe & Toivonen, 1999)
of frequent pattern mining systems in inductive logic pro-
gramming were inefficient because they generated several
syntactic variants of the same clause (clauses that are equiv-

KR 2004 441

alent underθ-subsumption) and had to filter these away us-
ing computationally expensive subsumption tests. One ap-
proach that avoids this problems defines a canonical form for
clauses and employs a so-called optimal refinement operator
that only generates clauses in canonical form, cf. (Nijssen
& Kok, 2001, 2003). More formally, the canonical form we
employ is defined as follows:

Definition 6 A clauseh ← k, p1, ..., pm with variables
V1, ..., Vn (ordered according to their first occurrence from
left to right) is in canonical form if and only if(h ←
k, p1, ..., pm)θ whereθ = {V1 ← 1, ..., Vn ← n} is the
smallest clause according to the standard lexicographic or-
der on clauses that can be obtained when changing the order
of the literalspi in the clause.

If one furthermore requires that all variables in a pattern are
instantiated to a different term (as inOI-identity (Malerba
& Lisi, 2001)) when determining whether a clause covers an
example it is possible to define an optimal refinement op-
erator. A refinement operatorρ is optimal for a language
L if and only if for all clausesc ∈ L there is exactlyone
sequence of clausesc0, ..., cn such thatc0 = > (the most
general element in the search space) andcn = c for which
ci ∈ ρ(ci+1). So, when employing optimal refinement oper-
ators, there is exactly one path from> to each clause in the
search space (De Raedt & Dehaspe, 1997). This approach is
related to those employed when searching for frequent sub-
graphs, cf. (Yan & Han, 2002; Inokuchi, Washio, & Motoda,
2003), and is largely adapted in our implementation. More
specifically,c-armr’s refinement operator works as follows4:

• a total order on the predicates is imposed

• only clausesh← b1, ..., bn in canonical form are refined

• all refinements are obtained by adding a literalb to the end
of the clause

• the predicate inb must be larger than or equal to the pred-
icate inbn

• if the predicates inb andbn are different, the refinement
will be in canonical form

• if the predicatep in b and bn is identical, it is tested
whether re-ordering the literals containingp results in a
smaller clause w.r.t. the lexicographic order.

Third, computing the frequency of a clause is computa-
tionally expensive as one evaluates a query against the whole
database. Several optimizations have been proposed in this
context, cf. (Blockeelet al., 2002). In our implementation,
we employ the smartcall introduced in (Santos Costaet al.,
2002) in combination with a heuristic for speeding up the
computation of a coverage test (i.e. a test whether a clause
covers a specific example). The heuristic orders the literals
in a clause according to the number of answers it has. A
more detailed description of the effect of such an optimisa-
tion is given in Struyf & Blockeel (2003). We also store the
identifiers of the covered example with each frequent clause,
a kind of vertical representation, which allows us to reduce

4Some further complications arise when mode-declarations are
employed.

the number of coverage tests needed as well as further opti-
mizations.

One further feature of our implementation is worth men-
tioning. It was a design goal to produce alight Prolog im-
plementation that would be small but still reasonably effi-
cient. In this regard, because many Prolog systems lack
intelligent garbage collection and have indexing problems
for huge amounts of data, it turned out crucial that the main
memory required by Prolog is kept as small as possible. This
was realized by writing the setsFi to files at leveli, and then
reading the frequent clausesc again at leveli + 1 in order to
compute the refinementsρ(c) potentially belonging toCi+1.
Similarly, theIi are written to a file and indexed after each
level. The code will be released in the public domain.

Algorithm 2 Computing all clauses that satisfy an anti-
monotonic constraintcon.

C0 := {h(K)← key(K)}
i := 0;F0 := ∅;I0 := ∅
while Ci 6= ∅ do

Fi := {h ∈ Ci | con(h) = true}
Ii := Ci − Fi

Ci+1 := {h | h ∈ ρ(h′), h′ ∈ Ci}
i := i + 1
Ci := {h | h ∈ Ci and¬∃s ∈

⋃
j Ij : s � h}

end while

Adaptations for Mining Free Clauses
Let us now discuss how to adapt the previously introduced
algorithm for mining free sets.

First, concerning the s-free clauses, we have made the fol-
lowing enhancements:

• use the constraint(freq(c,D) ≥ t)∧ s-free(c,KB) in-
stead of only the minimum frequency threshold; this con-
straint is also anti-monotonic, hence the algorithm can di-
rectly be applied;

• those candidates that do not satisfy the s-freeness con-
straint are simply added to the appropriateIi

• finally, before testing whether a candidate clausec is sub-
sumed by an already known infrequent clause, replacec
by its s-closure underKB; this will allow further pruning
to take place.

Observe that the consistency constraint can be enforced in
the same way.

Second, for what concerns theδ-free clauses, we employ
the first two enhancements. Observe that it is possible as
well as desirable to employ the constraint(freq(c,D) ≥
t)∧ δ − free(c,D)∧ s− free(c,KB). Then one does not
only use the already available knowledge in the background
but also tries to discover new knowledge. One interesting
alternative for adding the non-δ-free candidates to theIi is
to simply add them to the background theory. Doing so re-
sults in propagating the effects of the discovered association
rules by combining their conclusions with those already in
the background theory. Whenδ=0, this will always yield
correct results. However, whenδ 6= 0, this might lead – in

442 KR 2004

molecule(225). bond(225,f1_1,f1_2,7).
logmutag(225,0.64). bond(225,f1_2,f1_3,7).
lumo(225,-1.785). bond(225,f1_3,f1_4,7).
logp(225,1.01). bond(225,f1_4,f1_5,7).
nitro(225,[f1_4,f1_8,f1_10,f1_9]). bond(225,f1_5,f1_1,7).
atom(225,f1_1,c,21,0.187). bond(225,f1_8,f1_9,2).
atom(225,f1_2,c,21,-0.143). bond(225,f1_8,f1_10,2).
atom(225,f1_3,c,21,-0.143). bond(225,f1_1,f1_11,1).
atom(225,f1_4,c,21,-0.013). bond(225,f1_11,f1_12,2).
atom(225,f1_5,o,52,-0.043). bond(225,f1_11,f1_13,1).
...
ring_size_5(225,[f1_5,f1_1,f1_2,f1_3,f1_4]).
hetero_aromatic_5_ring(225,[f1_5,f1_1,f1_2,f1_3,f1_4]).
...

Figure 1: An example from the mutagenesis benchmark

some cases – to some unsound conclusions (because deduc-
tion usingδ-free is not sound as discussed above).

Experiments
In this section we present an empirical evaluation of our
claims. In particular, we will compare the time needed to
find all frequent patterns and the number of clauses produced
using the different settings discussed in this paper.

A first set of experiments will use the mutagenesis dataset,
a popular benchmark in inductive logic programming (Srini-
vasanet al., 1996). This database contains the descrip-
tions of 230 molecules, including their structure (atoms and
bonds), information on functional groups and some global
chemical properties. Figure 1 contains part of the relational
description of one molecule.

In a first experiment we investigate the effect of introduc-
ing a simple background theory and requiring the clauses to
be s-free. Table 1 summarizes the results of this experiment.
Two settings are considered. In the first setting, the standard
frequent pattern discovery algorithm is used without a back-
ground theory. In the second one, the s-freeness constraint
is enforced. Timings are given in seconds. The total running
time up to each level as well as the total time used for testing
which examples are covered by the clauses are displayed. As
expected, enforcing s-freeness eliminates a substantial num-
ber of redundant clauses and also significantly reduces the
computation time.

In a second experiment, we investigateδ-freeness. Table
2 specifies the number of discovered clauses and the cpu-
time, when patterns are required to beδ-free with δ = 0.
Here, also the total time for discovering allδ-free rules up to
each level are displayed. We again consider the cases with
and without a background theory. As the background theory
only contains rules that are 100 per cent correct, these rules
are found as 0-free rules in the setting without a background
theory and hence the number of patterns is equal in both
settings. Still, the setting without background theory needs
more time to find these rules.

The generated association rules include both simple ones
such as

atom(Mol,Atm,, 92,)← atom(Mol,Atm,f,,)

(all fluor atoms are of type 92) and more complex
ones such as

sbond(Mol,Atm3,Atm2,1)←
atom(Mol,Atm3,c,,), atom(Mol,Atm2,o,49,),
atom(Mol,Atm1,o,,), sbond(Mol,Atm3,Atm1,1)

The latter clause is not valid in general even though it
holds for this specific database.

The number of clauses discovered in this setting is smaller
than that in the previous case, where only a simple back-
ground theory was provided. On the other hand, discovering
the δ-free rules requires a lot of time. Fortunately, associ-
ation rules need to be discovered only once. The cost for
coverage testing is significantly smaller as compared to the
setting withoutδ-freeness. As this cost is proportional to the
number of examples, one can expect more significant gains
when larger databases are employed.

In a third experiment we consider the effect of settingδ >
0. This causes a further reduction of the number of patterns
found and the computation time needed. E.g.forδ = 40,
7898 clauses are found in 6911 seconds. Table 3 compares
the number of clauses generated by the standard algorithm
to the number ofδ-free clauses and the number of closed
clauses. One can see that, while more costly to compute, the
number of closed clauses is much smaller than the number
of free clauses. Note that when one would close allδ-free
clauses withδ > 0, one would obtain a still smaller set. E.g.
for δ = 20, the number of closed clauses is less than 50% of
the number forδ = 0.

Tables 4, 5 and 6 report on similar experiments but now
for the carcinogenesis dataset (Srinivasan, King, & Bristol,
1999). This dataset also contains descriptions of molecules,
but it contains more variation and more complex molecules.

In Table 4, one can see that here too, using s-free clauses
reduces the number of frequent patterns and the running
time. In Table 5, we then consider the influence ofδ-
freeness. Again, we see that the number of patterns found is
further reduced. For this dataset, the background theory also
contains some properties that cannot be discovered asδ-free
rules. Therefore, using s-freeness combined withδ-freeness

KR 2004 443

level No theory S-free clauses
run cover # run cover

0 1 0.3 0.0 1 0.3 0.0
1 6 0.4 0.0 6 0.4 0.0
2 45 1.9 0.9 45 0.8 0.0
3 225 9.6 3.8 206 5.0 2.2
4 1147 59.7 21.8 921 31.8 13.4
5 5458 404.1 157.3 3674 218.1 89.5
6 24611 2820.2 1298.9 14144 1429.1 627.8
7 83322 20880.0 11372.3 50366 9401.0 4582.2

Table 1: Number of patterns generated, total runtime and time needed for the coverage test on the Mutagenesis benchmark
using the standard algorithm and the algorithms finding s-free clauses.

level No theory S-free clauses
run cover delta run cover delta

0 1 0.4 0.0 0.0 0.3 0.0 0.0
1 6 0.4 0.0 0.0 0.4 0.0 0.0
2 43 2.7 0.6 1.0 0.9 0.2 0.2
3 193 12.2 2.7 3.5 7.7 2.1 2.7
4 811 73.6 13.5 21.4 51.3 12.1 19.7
5 3057 515.3 86.3 191.5 383.6 80.1 177.3
6 10976 3228.2 592.9 1324.3 2498.6 546.7 1220.3
7 36610 26062.7 4191.9 14840.6 21563.1 3853.0 13577.5

Table 2: Number of patterns generated, total runtime, time needed for the coverage test and time needed for the discovery of
theδ-free rules on the Mutagenesis benchmark using the standard algorithm and the algorithms finding s-free patterns.

further reduces the number of frequent patterns as compared
to using onlyδ-freeness. Table 6 then indicates the effect
of closing the patterns. For this dataset, the number of pat-
terns is reduced by more than 50% after 5 levels of mining
while still yielding a very close approximation (δ = 1). Of
course, here too, increasingδ will further reduce the number
of discovered patterns.

Conclusions and Related Work
We have introduced various types of condensed represen-
tations for use in inductive logic programming and we
have demonstrated that this reduces the number of patterns
searched for, the number of solutions as well as the time
needed for the discovery task. Although condensed repre-
sentations have been used in the context of simpler pattern
languages (such as item sets, sequences and graphs), it is
the first time that they have been employed within an induc-
tive logic programming setting. A related and independently
developed approach (Stumme, 2004), that was still under re-
view, was brought to our attention after our paper had been
accepted. It is related in that it investigates the theoretical
properties of free and closed Datalog queries using formal
concept analysis. However, it neither deals with semantic
closures nor reports on an implementation or experiments.
On the other hand, it contains exciting ideas about the use
of formal concept analysis for visualization of the mining
results.

The notionsδ-free and closed clauses are a direct up-
grade of the corresponding notions for item sets. However,
the semantic notions are novel and could easily be applied

to the simpler pattern domains as well. The semantic no-
tions are somewhat related to the goal of deriving a non-
redundant theory in the clausal discovery engines by (Helft,
1989; De Raedt & Dehaspe, 1997). In these engines, one
was computing a setH of 100 per cent confidence associa-
tion rules in the form of clauses such that no clause inH was
logically redundant (i.e. entailed by the other clauses). Em-
ploying our semantic notions has a similar effect as working
with Buntine’s (1988) generalized subsumption notion.

At this point, we wish to stress that working with seman-
tically free and/or closed clauses is not only useful when
mining for frequent patterns, but can also be beneficial when
mining for other types of patterns, such as for classification
rules. This could – in an inductive logic programming set-
ting – easily be implemented by employing a semantic re-
finement operator.

Appendix: Logic Programming Concepts
A first order alphabet is a set of predicate symbols, con-
stant symbols and functor symbols. Adefinite clauseis a
formula of the formA ← B1, ..., Bn whereA andBi are
logical atoms. An atomp(t1, ..., tn) is a predicate symbol
p/n followed by a bracketedn-tuple of termsti. A termt is
a variableV or a function symbolf(t1, ..., tk) immediately
followed by a bracketedn-tuple of termsti. Constants are
function symbols of arity 0.Functor-freeclauses are clauses
that contain only variables as terms. The above clause can be
read asA if B1 and ... andBn. All variables in clauses are
universally quantified, although this is not explicitly writ-
ten. We callA the headof the clause andB1, ..., Bn the

444 KR 2004

queries # free sets # closed sets
level cumul level cumul level cumul time

0 1 1 1 1 1 1 0.01
1 6 7 6 7 6 7 0.03
2 45 52 43 50 43 50 0.30
3 206 258 193 243 165 215 2.04
4 921 1179 811 1054 613 828 15.09
5 3674 4853 3057 4111 1961 2789 134.88
6 14144 18997 10976 15087 5895 8684 1631.02
7 50366 69363 36610 51697 16730 25414 27547.37

Table 3: Number of patterns compared to the number ofδ-free patterns and the number of closed patterns, and the time needed
to compute the closed clauses from the free clauses

level No theory S-free clauses
run cover # run cover

0 1 0.9 0.0 1 1.0 0.0
1 8 1.1 0.5 8 1.1 0.0
2 58 4.4 2.6 58 1.7 0.4
3 326 65.5 57.5 302 32.8 29.0
4 1758 446.3 392.2 1448 219.3 193.3
5 8819 4480.1 4093.4 6187 2067.1 1872.6

Table 4: Number of patterns generated, total runtime and time needed for the coverage test on the carcinogenesis benchmark
using the standard algorithm and the algorithms finding s-free clauses.

bodyof the clause. Afact is a definite clause with an empty
body,(m = 1, n = 0). Throughout the paper, we assume
that all clauses arerange restricted, which means that all
variables occurring in the head of a clause also occur in its
body. A substitutionθ ={V1 ← t1, ..., Vk ← tk} is an as-
signment of terms to variables. Applying a substitutionθ
to a clause, atom or terme yields the expressioneθ where
all occurrences of variablesVi have been replaced by the
corresponding terms. Theleast Herbrand modelof a set of
definite clauses is the smallest set of ground facts (over the
alphabet) that is logically entailed by the definite clauses.

Acknowledgements
The first author was partly supported by the EU FET project
cInQ (Consortium on Inductive Querying). The authors
would like to thank Jean-Francois Boulicaut and Jan Struyf
for interesting discussions about this work, and Andreas
Karwath for his comments on an early version of this paper.

References
Bergadano, F.; Giordana, A.; and Saitta, L. 1990. Bias-

ing induction by using a domain theory: An experimental
evaluation. InEuropean Conference on Artificial Intelli-
gence, 84–89.

Blockeel, H.; Dehaspe, L.; Demoen, B.; Janssens, G.; Ra-
mon, J.; and Vandecasteele, H. 2002. Improving the effi-
ciency of inductive logic programming through the use of
query packs.Journal of Artificial Intelligence Research
16:135–166.

Boulicaut, J.-F.; Bykowski, A.; and Rigotti, C. 2003. Free-
sets: a condensed representation of boolean data for the

approximation of frequency queries.Data Mining and
Knowledge Discovery journal7(1):5–22.

Buntine, w. 1988. Generalized subsumption and its appli-
cation to induction and redundancy.Artificial Intelligence
36:375–399.

De Raedt, L., and Dehaspe, L. 1997. Clausal discovery.
Machine Learning26(2-3):99–146.

Dehaspe, L., and De Raedt, L. 1997. Mining association
rules in multiple relations. InProceedings of the 7th In-
ternational Workshop on Inductive Logic Programming,
volume 1297 ofLecture Notes in Artificial Intelligence,
125–132. Springer-Verlag.

Dehaspe, L., and Toivonen, H. 1999. Discovery of frequent
datalog patterns.Data Mining and Knowledge Discovery
3(1):7–36.

Helft, N. 1989. Induction as nonmonotonic inference. In
Proceedings of the 1st International Conference on Prin-
ciples of Knowledge Representation and Reasoning, 149–
156. Morgan Kaufmann.

Inokuchi, A.; Washio, T.; and Motoda, H. 2003. Complete
mining of frequent patterns from graphs: Mining graph
data.Machine Learning50(3):321–354.

Malerba, D., and Lisi, F. A. 2001. Discovering associations
between sapatial objects: An ILP application. InPro-
ceedings of the 11th International Conference on Induc-
tive Logic Programming, volume 2157 ofLecture Notes
in Artificial Intelligence, 156–163. Springer-Verlag.

Muggleton, S. 1995. Inverse entailment and progol.New
Generation Computing13(3–4):245–286.

KR 2004 445

level No theory S-free clauses
run cover delta # run cover delta

0 1 0.9 0.0 0.0 1 1.0 0.0 0.0
1 8 1.1 0.0 0.0 8 1.1 0.0 0.0
2 56 7,7 2.8 3.0 56 2.2 0.5 0.4
3 310 80.5 57.5 15.0 286 43.9 29.0 10.7
4 1623 627.6 390.8 241.9 1346 350.6 194.3 127.3
5 7903 11420.0 4070.0 6969.0 5642 5725.1 1891.8 3576.8

Table 5: Number of patterns generated, total runtime, time needed for the coverage test and time needed for the discovery of
theδ-free rules on the carcinogenesis benchmark using the standard algorithm and the algorithms finding s-free patterns.

queries # free sets # closed sets
level cumul level cumul level cumul time

0 1 1 1 1 1 1 0.01
1 8 9 8 9 8 9 0.02
2 56 65 56 65 56 65 0.14
3 302 367 286 351 262 327 0.64
4 1448 1815 1346 1697 1112 1439 3.80
5 6167 7982 5642 7339 4038 5477 35.65

Table 6: For the carcinogenesis dataset, the number of patterns compared to the number ofδ-free patterns and the number of
closed patterns, and the time needed to compute the closed clauses from the free clauses

Nijssen, S., and Kok, J. N. 2001. Faster association rules
for multiple relations. InProceedings of the Seventeenth
International Joint Conference on Artificial Intelligence,
IJCAI 2001, 891–896. Seattle, Washington, USA: Mor-
gan Kaufmann.

Nijssen, S., and Kok, J. N. 2003. Efficient frequent query
discovery in farmer. InProceedings of the 7th European
Conference on Principles and Practice of Knowledge Dis-
covery in Databases, volume 2838 ofLecture Notes in
Computer Science. Springer Verlag.

Pasquier, N.; Bastide, Y.; Taouil, R.; and Lakhal, L. 1999.
Efficient mining of association rules using closed itemset
lattices.Journal of Information Systems24:25–46.

Plotkin, G. 1970. A note on inductive generalization.Ma-
chine Intelligence5:153–163.

Santos Costa, V.; Srinivasan, A.; Camacho, R.; Blockeel, H.;
Demoen, B.; Janssens, G.; Struyf, J.; Vandecasteele, H.;
and Van Laer, W. 2002. Query transformations for im-
proving the efficiency of ilp systems.Journal of Machine
Learning Research4:465 – 491.

Srinivasan, A.; Muggleton, S.; Sternberg, M. J. E.; and King,
R. D. 1996. Theories for mutagenicity: A study in first-
order and feature-based induction.Artificial Intelligence
85(1–2):277–299.

Srinivasan, A.; King, R.; and Bristol, D. 1999. An as-
sessment of ILP-assisted models for toxicology and the
PTE-3 experiment. InProceedings of the 13th Interna-
tional Conference on Inductive Logic Programming, vol-
ume 1634 ofLecture Notes in Artificial Intelligence, 291–
302.

Struyf, J., and Blockeel, H. 2003. Query optimization in in-
ductive logic programming by reordering literals. InPro-

ceedings of the 13th International Conference on Induc-
tive Logic Programming, volume 2835 ofLecture Notes
in Computer Science, 329–346.

Stumme, G. 2004. Iceberg query lattices for datalog. Tech-
nical Report.

Weber, I. 1997. Discovery of first-order regularities in a re-
lational database using offline candidate determination. In
Proceedings of the 7th International Workshop on Induc-
tive Logic Programming, volume 1297 ofLecture Notes
in Artificial Intelligence, 288–295. Springer-Verlag.

Yan, X., and Han, J. 2002. gspan: Graph-based substructure
pattern mining. InProceedings of the 2002 IEEE Interna-
tional Conference on Data Mining (ICDM 2002). Japan:
IEEE Computer Society.

Zaki, M. J. 2000. Generating non-redundant association
rules. InProceedings of ACM SIGKDD Conference on
Knowledge Discovery in Databases, 34–43.

446 KR 2004

