
Behavior Composition in the Presence of Failure

Sebastian Sardina
Department of Computer Science

RMIT University
Melbourne, Australia

sebastian.sardina@rmit.edu.au

Fabio Patrizi and Giuseppe De Giacomo
Dipartimento di Informatica e Sistemistica

Sapienza Universita’ di Roma
Roma, Italy

{fabio.patrizi,degiacomo}@dis.uniroma1.it

Abstract

In this paper we articulate theoretical bases for robust behav-
ior composition of multiple modules (e.g., agents, devices,
etc.) by relying on the formal notion of simulation. Specifi-
cally, we consider the problem of synthesizing a fully control-
lable target behavior from a library of available partially con-
trollable behaviors that are to execute within a shared, fully
observable, but partially predictable, environment. Both be-
haviors and environment are represented as finite state tran-
sition systems. While previous solutions to this problem as-
sumed full reliability, here we consider unforeseen potential
failures, such as a module, or the environment, unexpectedly
changing its state, or a module becoming temporarily unavail-
able or dropping out permanently. Based on the notion of sim-
ulation, we propose an alternative synthesis approach that al-
lows for refining the solution at hand, either on-the-fly or par-
simoniously, so as to cope with failures. Interestingly, it turns
out that the proposed simulation-based technique is computa-
tionally an improvement over previously known methods that
assumed full-reliability.

Introduction
In this paper we articulate theoretical bases for robust be-
havior composition of multiple modules (e.g., agents, de-
vices, etc.). Specifically, we consider the problem of syn-
thesizing a fully controllable target behavior from a li-
brary of available partially controllable behaviors that are
to execute within a shared, fully observable, but partially
predictable environment (De Giacomo & Sardina 2007;
Sardina, Patrizi, & De Giacomo 2007). A behavior stands
for the logic of any artifact that is able to operate in the en-
vironment. For example, consider a painting blocks-world
scenario in which blocks are painted and processed by dif-
ferent robotic arms; different behaviors stand for different
types of arms, all acting in the same environment. The aim
is to realize a desired (intelligent) virtual painting system by
suitably “combining” the available arms.

Technically, we abstract the actual behaviors and envi-
ronment as finite state transition systems. More precisely,
each available module is represented as a nondeterministic
transition system (to model partial controllability); the target
behavior is represented as a deterministic transition system

Copyright c© 2008, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

(to model full controllability); and the environment is rep-
resented as a nondeterministic transition system (to model
partial predictability). The environment’s states are fully ac-
cessible by the other transition systems. Working with finite
state transition systems allows us to leverage on research in
the area of Verification (Piterman, Pnueli, & Sa’ar 2006;
Tan & Cleaveland 2001; Kupferman & Vardi 1996; Alura,
Henzinger, & Kupferman 2002; Clarke, Grumberg, & Peled
1999).

Solving the composition problem consists in automati-
cally synthesizing —(Pnueli & Rosner 1989)— a controller
that coordinates the (partially controllable) available behav-
iors to obtain the target behavior (De Giacomo & Sardina
2007). This synthesis problem can be recast in a variety of
forms within several sub-areas of AI and CS, including web-
service composition (McIlraith & Son 2002; Berardi et al.
2005; Muscholl & Walukiewicz 2007), agent-oriented pro-
gramming (Georgeff & Lansky 1987), robotics (Pettersson
2005), planning (Ghallab, Nau, & Traverso 2004), and plan
coordination and monitoring (Katz & Rosenschein 1993;
Grosz & Kraus 1996; Tripathi & Miller 2001).

In the literature, the above behavior composition setting
has so far always been studied assuming full reliability of
all available modules and, as a result, the (default) approach
for dealing with behavior failures is to “re-plan” for a new
solution, if any, from scratch. It is obvious that full reliabil-
ity is an unrealistic assumption in many dynamic settings,
where modules may become unexpectedly unavailable for
various reasons. For instance, an agent (e.g., a RoboCup
robot player) may, at some point, break down or opt not to
participate in the composition anymore, possibly because it
has agreed to join another behavior composition. It could
also be the case that, while still cooperating, the agents may
move too far apart losing the communication. The unavail-
ability of a behavior may be temporary, i.e., the behavior
will eventually resume operation, or permanent, i.e., the be-
havior will not participate any more in the overall system.

In this paper, we propose a solution for the composition
problem that is able to cope with unexpected behavior fail-
ures in an incremental, and often fully reactive, way. Specif-
ically, we propose a novel technique to synthesize the con-
troller that is based on the formal notion of simulation (Mil-
ner 1971; Henzinger, Henzinger, & Kopke 1995). We ar-
gue that, when it comes to behavior failures, the composi-

Proceedings, Eleventh International Conference on Principles of Knowledge Representation and Reasoning (2008)

640

tion solution obtained is robust in two ways. First, it can
handle temporary behavior unavailability as well as unex-
pected behavior/environment evolution in a totally reactive
and on-the-fly manner, that is, without any extra effort or “re-
planning” required to continue the realization of the target
behavior, if at all possible. Second, the composition solution
can be parsimoniously refined when a module becomes per-
manently unavailable, or unexpectedly resumes operation.

Interestingly, the results here show that the computational
complexity of synthesizing such robust solutions remains
the same as in the case of full-reliability. In fact, the tech-
nique we propose improves the known results by better char-
acterizing the sources of complexity (cf. Theorem 2).

We remark that it is not the objective of this work to guar-
antee up-front to stand (any) potential failures. That could
possibly be achieved by extending each behavior with a dis-
tinguished “failure” state and adding corresponding transi-
tions from where failure may occur. Instead, if we think
of each available module’s transition system as a “contract,”
what we want is to address unforeseen breaches of such con-
tract. The failures we investigate here can therefore be seen
as the “core” ways of breaking the contract represented by
the transition systems.

The rest of the paper is organized as follows. We first
describe the general setting and problem we are concerned
with. After that, we explain the role of potential failures
within such framework. Then, we propose a new approach
to the problem at hand by appealing to the notion of simu-
lation. In the next two sections, we show how the new ap-
proach can be used to cope with the discussed failures. We
end the paper by drawing some conclusions.

The Framework
The setting we are concerned with is that in (De Giacomo &
Sardina 2007), summarized below. For the sake of brevity
we make some minor and non-substantial simplifications
with respect to the original one. (In particular, we drop “final
states” in transition systems—every state may be considered
“final” in De Giacomo & Sardina 2007’s terminology.)

Environment and behaviors We assume to have a shared
fully observable environment, which provides an abstract
account of actions’ preconditions and effects, and a mean
of communication among modules. In doing so, we take
into consideration that, in general, we have incomplete in-
formation about the actual preconditions and effects of ac-
tions (akin to an action theory). Therefore, we allow the
environment to be nondeterministic in general. In other
words, the incomplete information on the actual world, and
hence its partial predictability, shows up as nondetermin-
ism in our setting. Formally, an environment is a tuple
E = 〈A, E, e0, ρ〉, where:
• A is a finite set of shared actions;
• E is the finite set of environment’s states;
• e0 ∈ E is the initial state;
• ρ ⊆ E × A × E is the transition relation among states:
〈e, a, e′〉 ∈ ρ, or e

a−→ e′ in E , denotes that action a per-

formed in state e may lead the environment to a successor
state e′.
A behavior is essentially a program for an agent –or the

logic of some available device– which provides, step by step,
the agent with a set of actions that can be performed. Pre-
cisely, at each step, the agent selects one action among those
provided and executes it. Then, a new set of actions is pro-
vided, the agent selects one, executes it, and so on. Ob-
viously, behaviors are not intended to be executed on their
own but, rather, to interact with the environment (cf. above).
Hence, they are equipped with the ability to test conditions
(i.e., guards) on the environment, when needed. Formally, a
behavior over an environment E = 〈A, E, e0, ρ〉 is a tuple
B = 〈B, b0, G, %〉, where:
• B is the finite set of behavior’s states;
• b0 ∈ B is the initial state;
• G is a set of guards, that is, boolean functions g : E 7→
{true, false};

• δ ⊆ B × G × A × B is the behavior’s transition rela-
tion, where 〈b, g, a, b′〉 ∈ %, or b

g,a−→ b′ in B, denotes that
action a executed in behavior state b, when the environ-
ment is in a state e such that g(e) = true, may lead the
behavior to a successor state b′.
Observe that behaviors are, in general, nondeterministic,

that is, given a state and an action, there may be several tran-
sitions whose guards evaluate to true. Consequently, when
choosing the action to execute next, one cannot be certain of
the resulting state, and hence of which actions will be avail-
able later on, since this depends on what particular transition
happens to take place. In other words, nondeterministic be-
haviors are only partially controllable.

We say that a behavior B = 〈B, b0, G, %〉 over an envi-
ronment E = 〈A, E, e0, ρ〉 is deterministic if there are no
behavior state b ∈ B and no environment state e ∈ E for
which there exist two transitions b

g1,a−→ b′ and b
g2,a−→ b′′ in B

such that b′ 6= b′′ and g1(e) = g2(e) = true. Notice that,
given a state in a deterministic behavior and a legal action in
that state, we always know exactly the next behavior’s state.
In other words, deterministic behaviors are indeed fully con-
trollable through the selection of the next action to perform.

A system S = 〈B1, . . . ,Bn, E〉 is built from an environ-
ment E and n predefined, possibly nondeterministic, avail-
able behaviors Bi over E . A target behavior is a determin-
istic behavior over E that represents the fully controllable
desired behavior to be obtained through the available behav-
iors.
Example 1. Figure 1 depicts an extended version of the
painting arms scenario described in (De Giacomo & Sardina
2007). The overall aim of the system is to process exist-
ing blocks, which can be cleaned and painted. Before being
processed, a block needs to be prepared; only one block at
a time can be processed. Cleaning and painting require re-
sources, namely, water and paint, respectively: we assume
there are two tanks, for water and paint, and that both are
recharged simultaneously by pressing a recharging button.

The nondeterministic environment E provides the general
rules of the domain. For instance, blocks can be painted or

641

e1 e2

e3e4

prepare

recharge

clean

dispose

paint
clean
recharge

recharge

dispose paint
clean

recharge

prepare

ENVIRONMENT E

a1 a2
e1 ∨ e2 : clean

dispose
recharge

recharge

dispose
ARM BA

b1 b2 b3 b4prepare

paint clean

paint

recharge

prepare

clean

ARM BB

c1 c2
recharge

paint
prepare

ARM BC

t1

t4

t2

t3t5

prepare

clea
n

pa
in

t

paint
dis

pos
e

recharge

TARGET ARM BT

Figure 1: The painting arms system S = 〈BA,BB ,BC , E〉 and the target arm BT .

cleaned only after they have been prepared. It also includes
some information about a water tank used to clean blocks:
in states e1 and e2, the water tank is not empty; whereas in
states e3 and e4, it is.

The desired behavior of an arm-agent module that one
would like to have is given by the (deterministic) target be-
havior BT . Notice that it is optional to clean blocks when
using BT —only some dirty blocks may need to be washed
before being painted. Observe also that BT is “conserva-
tive,” in that it always recharges the tanks after processing a
block.

The desired arm BT does not exist in reality. Nonetheless,
there are three different arms available. The first arm BA, a
cleaning-disposing arm, is able to clean and dispose blocks.
The second arm BB is capable of preparing, cleaning, and
painting blocks. The third arm BC is a paint arm, which can
also prepare blocks for processing. All three arms are able
to press the recharge button to refill tanks. Notice that arm
BB behaves nondeterministically when it comes to painting
a block. This nondeterminism shows the incomplete infor-
mation we have of BB’s internal logic. Observe also the
requirement of arm BA for the environment to be in a state
(e1 or e2) where water is available so as to be able to perform
a clean action. It is still physically conceivable, though, to
clean a block in environment state e3, by some method that
does not rely on water (cf. E). �

Enacted behaviors Given a behavior B = 〈B, b0, G, %〉
over an environment E = 〈A, E, e0, ρ〉, we define the
enacted behavior of B over E as a tuple TB = 〈S,A, s0, δ〉,
where:
• S = B × E is the (finite) set of TB’s states –given a state

s = 〈b, e〉, we denote b by beh(s) and e by env(s);
• A is the set of actions in E ;
• s0 ∈ S, with beh(s0) = b0 and env(s0) = e0, is the

initial state of TB;
• δ ⊆ S × A × S is the enacted transition relation, where
〈s, a, s′〉 ∈ δ, or s

a−→ s′ in TB, iff: (i) env(s) a−→
env(s′) in E ; and (ii) beh(s)

g,a−→ beh(s′) in B, with
g(env(s)) = true for some g ∈ G.

Enacted behavior TB is technically the synchronous prod-
uct of the behavior and the environment, and represents all
possible executions obtained from those of behavior B once
guards are evaluated and actions are performed in the en-
vironment E . In general, the sources of nondeterminism in
enacted behaviors are twofold: the environment (effects of
actions on the environment are nondeterministic); and the
behavior itself (which may be nondeterministic).

All available behaviors in a system are to act concurrently,
in an interleaved fashion, in the same environment. To refer
to the behavior that emerges from their joint execution, we
define the notion of enacted system behavior.

Let S = 〈B1, . . . ,Bn, E〉 be a system, where E =
〈A, E, e0, ρ〉 and Bi = 〈Bi, bi0, Gi, %i〉, for i ∈ {1, . . . , n}.
The enacted system behavior of S is the tuple TS =
〈SS ,A, {1, . . . , n}, sS0, δS〉, where:

• SS = B1 × · · · × Bn × E is the finite set of TS ’s states;
when sS = 〈b1, . . . , bn, e〉, we denote bi by behi(sS), for
i ∈ {1, . . . , n}, and e by env(sS);

• sS0 ∈ SS with behi(sS0) = bi0, for i ∈ {1, . . . , n}, and
env(sS0) = e0, is TS ’s initial state;

• δS ⊆ SS×A×{1, . . . , n}×SS is TS ’s transition relation,

where 〈sS , a, k, s′S〉 ∈ δS , or sS
a,k−→ s′S in TS , iff:

– env(sS) a−→ env(s′S) in E ;

– behk(sS)
g,a−→ behk(s′S) in Bk, with g(env(sS)) =

true, for some g ∈ Gk; and
– behi(sS) = behi(s′S), for i ∈ {1, . . . , n} \ {k}.

Note that the enacted system behavior TS is technically the
asynchronous product of the available behaviors plus the
synchronous product with the environment. It is analogous
to an enacted behavior except for the presence of index k
in transitions. The presence of such index makes explicit
which behavior in the system is the one performing the ac-
tion in the transition—all other behaviors remain still.

Example 2. The enacted behavior TBC
describes the evolu-

tion of arm BC if it were to act alone in the environment.

642

c1
e1

c1
e2

c1
e3

c1
e4

c2
e1

c2
e2

c2
e3

c2
e4

recharge

prepare

paint

recharge

rech
arge paint

prepare

ENACTED ARM TBC

Observe that some joint states may be reached (only) when
other behaviors are also acting: state 〈c1, e4〉 would be
reached after actions prepare, clean, and dispose are
executed. �

Controller and composition The controller is a system
component able to activate, stop, and resume any of the
available behaviors, and to instruct them to execute an ac-
tion among those allowed in their current state (of course,
also taking the environment into account). The controller
has full observability on the available behaviors and the envi-
ronment, that is, it can keep track (at runtime) of their current
states. Although other choices are possible, full observabil-
ity is the natural one in this context, since both the available
behaviors and the environment are already suitable abstrac-
tions for actual modules: if details have to be hidden, this
can be done directly within the abstract behaviors exposed,
by means of nondeterminism.

To formally define controllers, we first need the follow-
ing technical notions. A trace for a given enacted behavior
TB = 〈S,A, s0, δ〉 is a, possibly infinite, sequence of the

form s0 a1

−→ s1 a2

−→ · · · , such that (i) s0 = s0; and (ii)

sj aj+1

−→ sj+1 in TB, for all j > 0. A history is just a finite

prefix h = s0 a1

−→ · · · a`

−→ s` of a trace. We denote s` by
last(h), and ` by length(h). The notions of trace and his-
tory extend immediately to enacted system behaviors: sys-

tem traces have the form s0 a1,k1

−→ s1 a2,k2

−→ · · · , and system

histories have the form s0 a1,k1

−→ · · · a`,k`

−→ s`.
Let S = 〈B1, . . . ,Bn, E〉 be a system and H be the set

of its system histories (i.e., histories of TS). A controller
for system S is a function P : H × A 7→ {1, . . . , n, u}
which, given a system history h ∈ H and an action a ∈ A
to perform, selects a behavior —actually, returns its index—
to delegate a to for execution. For technical convenience,
a special value u (“undefined”) may be returned, thus mak-
ing P a total function which returns a value even for irrele-
vant histories or actions that no behavior can perform after a
given history.

The problem we are interested in is the following: given
a system S = 〈B1, . . . ,Bn, E〉 and a deterministic target
behavior Bt over E , synthesize a controller P which realizes
the target behavior Bt by suitably delegating each action
requested by Bt to one of the available behaviors Bi in S. A
solution to such problem is called a composition.

Intuitively, the controller realizes a target if for every trace
of the enacted target, at every step, it returns the index of
an available behavior that can perform the requested action.

Note that these controllers are somewhat akin to an advanced
form of conditional plans and, in fact, the problem itself is
related to planning (Ghallab, Nau, & Traverso 2004), being
both synthesis tasks. Here, though, we are not planning for
choosing the next action, but for who shall execute the next
action, whatever such action happens to be at runtime.

One can formally define when a controller realizes the
target behavior —a solution to the problem— as done in
(De Giacomo & Sardina 2007). In particular, one first de-
fines when a controller P realizes a trace of the target Bt.
Then, since the target behavior is a deterministic transi-
tion system, and thus its behavior is completely character-
ized by its set of traces, one defines that a controller P
realizes the target behavior Bt iff it realizes all its traces.

Example 3. Let P1 and P2 be the two finite controllers de-
picted below. Their main difference has to do with the arm
used to paint blocks: while P1 uses arm BB , the latter uses
arm BC . Also, P1 recharges the tanks with either BA or BB ,
depending on BB’s state: if arm BB is in state b1, then arm
BA is used to recharge; and if arm BB is in state b3, then arm
BB is used instead. On the other hand, controller P2 always
uses arm BC to recharge the tanks.

s1

s4

s2

s3s5

prepare,B

clea
n
,A

paint,B

paint,B

di
sp

os
e,

A

b 1
:r

ec
h
a
rg

e,
A

b 3
:r

ec
h
a
rg

e,
B

CONTROLLER P1

s1

s4

s2

s3s5

prepare, C

clea
n
,A

paint, C

paint, C

di
sp

os
e,

A

re
ch

a
rg

e,
C

CONTROLLER P2

The controller P1 is indeed a composition of BT on E , that
is, P1 realizes all the traces of TBT

. This is not the case for
controller P2, which does not even realize the simple one-
action trace 〈t1, e1〉

prepare−→ 〈t2, e2〉 of TBT
.

Finally, take P ′
1 to be like P1 but with the edge from s5 to

s1 re-labeled “recharge, A” (i.e., action recharge is to be
always delegated to arm BA). Then, P ′

1 would only realize
those traces where behavior BB always happens to evolve
to state b1 after doing a paint action. Because of that, P ′

1
would not count as a solution either. �

We close this section by pointing out that techniques for
checking the existence of (and indeed synthesizing) a con-
troller are known (De Giacomo & Sardina 2007; Sardina,
Patrizi, & De Giacomo 2007). Such techniques are based
on a reduction to PDL satisfiability (Harel, Kozen, & Tiuryn
2000), and provide an EXPTIME upper-bound to the com-
putational complexity, being at most exponential in the num-
ber of states of the available behaviors, of the environment,
and of the target behavior. Note that this bound is actually
tight since EXPTIME-hardness was shown in (Muscholl &
Walukiewicz 2007).

643

On Behavior Failures
In discussing the above behavior composition problem, we
have implicitly assumed that the available component mod-
ules are fully reliable—they are always available and behave
“correctly” relative to the behavior/environment specifica-
tion provided to the system.

Nonetheless, there are many situations and domains in
which assuming full reliability of components is not ade-
quate. For example, in multi-agent complex and highly dy-
namic domains, one cannot rely on the total availability nor
on the reliability of all the existing modules. There are a
variety of reasons why modules may stop being available
at some point or another. Devices may break down, agents
may decide to stop cooperating, communication with agents
may drop, exogenous events may change the state of the en-
vironment, and so on. Similarly, behaviors may possibly
re-appear into the system at a later stage, thus creating new
“opportunities” for the overall system.

As mentioned before, behaviors’ and environment’s spec-
ifications can be seen as contracts, and failures, as the ones
above, as breaches of such contracts. We identify five core
ways of breaking contracts, namely:1

(a) A behavior temporarily freezes, that is, it stops respond-
ing and remains still, then eventually resumes in the same
state it was in. As a result, while frozen, the controller
cannot delegate actions to it.

(b) A behavior unexpectedly and arbitrarily (i.e., without re-
specting its transition relation) changes its current state.
The controller can in principle keep delegating actions to
it, but it must take into account the behavior’s new state.

(c) The environment unexpectedly and arbitrarily (i.e., with-
out respecting its transition relation) changes its current
state. The controller has to take into account that this af-
fects both the target and the available behaviors.

(d) A behavior dies, that is, it becomes permanently unavail-
able. The controller has to completely stop delegating
actions to it.

(e) A behavior that was assumed dead unexpectedly resumes
operation starting in a certain state. The controller can
exploit such an opportunity and start delegating actions to
it again.

The composition techniques in (De Giacomo & Sardina
2007; Sardina, Patrizi, & De Giacomo 2007) do not address
the above cases, since they assume that controllers always
deal with fully reliable modules. As a consequence, upon
any of the above failures, we are only left with the option of
“re-planning” from scratch for a whole new controller.

What we shall propose in the remainder of this paper is
an alternative way of solving the composition problem (i.e.,
synthesizing controllers) that is intrinsically more robust.
Roughly speaking, this alternative approach deals with un-
expected failures by suitably refining the solution at hand, ei-
ther on-the-fly (for cases (a), (b), and (c)), or parsimoniously
(for cases (d) and (e)), thus avoiding full re-planning.

1Obviously, we assume an infrastructure that is able to distin-
guish between these failures.

Composition via Simulation
Let us next present our approach for synthesizing composi-
tion solutions that are suitable for dealing with faults. Such
an approach is inspired by that presented in (Berardi et al.
2008), developed in the context of service composition and
based on the standard notion of simulation (Milner 1971;
Henzinger, Henzinger, & Kopke 1995). Intuitively, a (tran-
sition) system S1 “simulates” another system S2 if it (i.e.,
S1) is able to match all of S2’s moves. Due to (devilish)
nondeterminism of the available behaviors and the environ-
ment, we cannot use the off-the-shelf notion of simulation,
but a variant which we call ND-simulation.

Let S = 〈B1, . . . ,Bn, E〉 be a system, Bt be the target
behavior over E , and let TS = 〈SS ,A, {1, . . . , n}, sS0, δS〉
and Tt = 〈St,A, st0, δt〉 be the enacted system and enacted
target behaviors corresponding to S and Bt, respectively.

An ND-simulation relation of Tt by TS is a relation R ⊆
St × SS , such that 〈st, sS〉 ∈ R implies:

1. env(st) = env(sS);
2. for all a ∈ A, there exists a k ∈ {1, . . . , n} such that

for all transitions st
a−→ s′t in Tt:

• there exists a transition sS
a,k−→ s′S in TS with

env(s′S) = env(s′t); and

• for all transitions sS
a,k−→ s′S in TS with env(s′S) =

env(s′t), we have 〈s′t, s′S〉 ∈ R.
In words, if a pair is in the ND-simulation, then (i) they share
the same environment; and (ii) for all moves of the target
(with respect to the environment), there exists a behavior Bk,
which regardless of its nondeterminism, always evolves to a
successor state which is still in the ND-simulation relation
with the target. Intuitively, the (enacted) system can “match”
every possible move of the (enacted) target.

We say that a state st ∈ St is ND-simulated by a state
sS ∈ SS (or sS ND-simulates st), denoted st � sS , iff there
exists an ND-simulation R of Tt by TS such that 〈st, sS〉 ∈
R. Observe that this is a coinductive definition. As a result,
the relation � is itself an ND-simulation, and it is in fact
the largest ND-simulation relation, i.e., all ND-simulation
relations are contained in �. The largest ND-simulation can
be computed by the following NDS algorithm.

Algorithm 1 NDS(Tt, TS) – Largest ND-Simulation
1: R := St × SS \ {〈st, sS〉 | env(st) 6= env(sS)}
2: repeat
3: R := (R\C), where C is the set of 〈st, sS〉 ∈ R such

that there exists a ∈ A for which for each k there is a
transition st

a−→ s′t in Tt such that either:

(a) there is no transition sS
a,k−→ s′S in TS such that

env(s′t) = env(s′S); or

(b) there exists a transition sS
a,k−→ s′S in TS such that

env(s′t) = env(s′S) but 〈s′t, s′S〉 6∈ R.
4: until (C = ∅)
5: return R

Roughly speaking, the algorithm works by iteratively re-

644

t1
e1

t4
e2

t2
e2

t3
e2

t5
e1

t5
e4

t3
e3

t4
e3

prepare

cl
ea

n

pa
in

t

paint

dispose

rech
a
rg

e

cl
ea

n
paintdispose

re
ch

a
rg

e

ENACTED TARGET ARM TBT

111
e1

121
e2

111
e3

131
e1

211
e2

221
e2

111
e2 131

e2

231
e2

prepare,Brecharge, A

paint,Bpa
in

t,
B

clean, A

clean, B

dispose,A

paint,Bpaint,B

recharge,B

di
sp

os
e,

A

dispose,Adi
sp

os
e,
A

221
e3

231
e3

211
e4

211
e3

131
e4clean, A

paint,Bpaint,Bdispose,A

recharge,A

dispose,A

recharge,B

132
e1

232
e3

132
e2

232
e2

recharge, C

prepare, C

paint, C

clean, Apaint, C

recharge, C

clean, A

clean,A

clea
n
,A

clean, A

clean
,A

paint, C

ENACTED SYSTEM BEHAVIOR TS

Figure 2: The largest ND-simulation relation between the enacted target behavior TBT
and (a part of) the enacted system

behavior TS is shown using patterns. A state in TS ND-simulates the states in TBT
that shares its pattern, e.g., 〈〈a1, b3, c1〉, e2〉

in TS ND-simulates state 〈t4, e2〉 in TBT
. Dashed states in TS ND-simulate no state in TBT

(e.g., state 〈〈a1, b1, c1〉, e3〉).

moving those tuples for which the conditions of the ND-
simulation definition do not apply.

Example 4. Figure 2 shows a fragment of the largest ND-
simulation relation for our painting blocks-world example.
For instance, state 〈〈a1, b3, c2〉, e2〉 in TS ND-simulates state
〈t2, e2〉 in TBT

, shown in the picture by the same filling
pattern. So, every conceivable action taken in 〈t2, e2〉 can
be replicated in 〈〈a1, b3, c2〉, e2〉, and moreover, this prop-
erty propagates to the new resulting states. Observe that
state 〈〈a1, b1, c1〉, e1〉 in TS ND-simulates two states in TBT

:
〈t1, e1〉 and 〈t5, e1〉. �

The next result shows that checking for the existence of
a composition can be reduced to checking whether there ex-
ists an ND-simulation between the enacted target and the
enacted system that includes their respective initial states.

Theorem 1. Let S = 〈B1, . . . ,Bn, E〉 be a system and Bt a
target behavior over E . Let Tt = 〈St,A, st0, δt〉 and TS =
〈SS ,A, {1, . . . , n}, sS0, δS〉 be the enacted target behavior
and the enacted system behavior for Bt and S, respectively.
A controller P for a system S that is a composition of the
target behavior Bt over E exists iff st0 � sS0.
Proof (sketch). We prove the two directions separately.

If. Given st0 � sS0 we show how to build a controller P
that is a composition. We proceed as follows. We observe
that given a history h, we can extract the resulting state of
the enacted system sS as last(h). Moreover, we can extract
the sequence of actions performed in h and the resulting en-
vironment state, and hence the state of the enacted target
behavior, say st. Now, if tuple 〈st, sS〉 is in the largest ND-
simulation, that is st � sS , then for every action a ∈ A that
the target may execute in st, there is some index ka which
maintains the ND-simulation. We then define P (h, a) = ka.
If, instead st 6� sS , then function P (h, a) can assume any
value, in particular, P (h, a) = u. It can be shown that such

controller P is indeed a composition.
Only-if. We assume there exists a controller P that is a

composition. Let us define relation R as the set of tuples
〈st, sS〉 for which there exists a history h obtained by run-
ning a controller P from the initial state sS0 such that the
resulting states of the enacted target and the enacted sys-
tem after history h are st and sS , respectively. It can be
shown that such relation R is indeed an ND-simulation of
Tt by TS and therefore R ⊆ �. As a result, considering
that 〈st0, sS0〉 ∈ R (by just taking h to be the initial his-
tory where no action has yet been performed), it follows that
st0 � sS0, hence the thesis holds.

Theorem 1 gives us a straightforward method for check-
ing the existence of a composition. Namely: (i) compute the
largest ND-simulation relation of Tt by TS ; and (ii) check
whether 〈st0, sS0〉 is in this relation.

From the computational point of view, the algorithm NDS
above computes the largest ND-simulation relation � be-
tween Tt and TS in polynomial time in the size of Tt and
TS . Since in our case the number of states of TS is exponen-
tial in the number of available behaviors B1, . . . ,Bn, we get
that we can compute the largest ND-simulation relation� in
exponential time in the number of available behaviors. As a
result, the new technique is a notable improvement with re-
spect to the ones based on reduction to PDL (De Giacomo &
Sardina 2007; Sardina, Patrizi, & De Giacomo 2007), which
are exponential also in the number of states of the behaviors
and of the environment.2

Theorem 2. Checking for the existence of compositions by
computing the largest ND-simulation relation� can be done

2Though in light of the result in here, a better complexity anal-
ysis involving the specific PDL satisfiability procedures could be
carried out.

645

in polynomial time in the number of states of the available
behaviors, of the environment, and of the target behavior,
and in exponential time in the number of available behav-
iors.

Considering that the composition problem itself is
EXPTIME-hard (Muscholl & Walukiewicz 2007), this is the
best we can hope for.

Once we have computed the ND-simulation, synthesizing
a controller becomes an easy task. In fact, there is a well-
defined procedure that, given an ND-simulation, builds a fi-
nite state program that returns, at each point, the set of avail-
able behaviors capable of performing a target-conformant
action. We call such a program controller generator.

Formally, let S = 〈B1, . . . ,Bn, E〉 be a system, Bt a target
behavior over E , and let TS = 〈SS ,A, {1, . . . , n}, sS0, δS〉
and Tt = 〈St,A, st0, δt〉 be the enacted system behavior and
the enacted target behavior corresponding, respectively, to S
and Bt. The controller generator (CG) of S for Bt is a tuple
CG = 〈Σ,A, {1, . . . , n}, ∂, ω〉, where:

1. Σ = {〈st, sS〉 ∈ St×SS | st � sS} is the set of states of
CG, formed by those pairs of Tt’s and TS ’s states that are
in the largest ND-simulation relation; given a state σ =
〈st, sS〉 we denote st by comt(σ) and sS by comS(σ).

2. A is the finite set of shared actions.
3. {1, . . . , n} is the finite set of available behavior indexes.
4. ∂ ⊆ Σ × A × {1, . . . , n} × Σ is the transition relation,

where 〈σ, a, k, σ′〉 ∈ ∂, or σ
a,k−→ σ′ in CG, iff

• comt(σ) a−→ comt(σ′) in Tt;

• comS(σ)
a,k−→ comS(σ′) in TS ;

• for all comS(σ)
a,k−→ s′S in TS , 〈comt(σ′), s′S〉 ∈ Σ.

5. ω : Σ × A 7→ 2{1,...,n} is the output function, where

ω(σ, a) = {k | ∃ σ′ s.t. σ
a,k−→ σ′ in CG}.

Thus, CG is a finite state transducer that, given an action a
(compliant with the target behavior), outputs, through func-
tion ω, the set of all available behaviors that can perform a
next according to the largest ND-simulation�. Observe that
computing CG from the relation � is easy, since it involves
checking local conditions only.

If there exists a composition of Bt by S, then st0 �
sS0 and CG does include state σ0 = 〈st0, sS0〉. In
such cases, we get actual controllers, called generated con-
trollers, which are compositions of Bt by S, by picking up,
at each step, one available behavior among those returned
by ω in CG.

Formally we proceed as follows. A trace for CG start-
ing from σ0 is a finite or infinite sequence of the form

σ0 a1,k1

−→ σ1 a2,k2

−→ · · · , such that σj
aj+1,kj+1

−→ σj+1 in CG,
for all j. A history for CG starting from state σ0 is a prefix
of a trace starting from state σ0. By using histories, one can
introduce CG-controllers, which are functions CGP CHOOSE :
HCG × A 7→ {1, . . . , n, u}, where HCG is the set of CG
histories starting from any state in Σ, and defined as fol-
lows: CGP CHOOSE(hCG, a) = CHOOSE(ω(last(hCG), a)),

for all hCG ∈ HCG, where CHOOSE stands for a choice
function that chooses one element among those returned by
ω(last(hCG), a)). Let us assume that the controller genera-
tor CG of S for Bt includes state σ0 = 〈st0, sS0〉. Then, for

each CG’s history hCG = σ0 a1,k1

−→ · · · a`,k`

−→ σ` starting from
σ0 = σ0, we can obtain its corresponding system history
projS(hCG), called the projected system history, as follows:

projS(hCG) = comS(σ0)
a1,k1

−→ · · · a`,k`

−→ comS(σ`), i.e.,
we take the “system” component of each CG state σi in the
history. Moreover, from a CG-controller CGP CHOOSE, we
obtain the corresponding generated controller as the func-
tion PCHOOSE : H × A 7→ {1, . . . , n, u}, where H is the
set of system histories starting from sS0, defined as fol-
lows. For each system history h and action a: (i) if h =
projS(hCG) for some CG history hCG, then PCHOOSE(h, a) =
CGP CHOOSE(hCG, a); else (ii) PCHOOSE(h, a) = u.

Through generated controllers, we can relate CGs to
compositions and show that, one gets all controllers that
are compositions by considering all choice functions for
CHOOSE. Notably, while each specific composition may be
an infinite state program, the controller generator CG, which
in fact includes them all, is always finite.

Theorem 3. If CG includes the state σ0 = 〈st0, sS0〉, then
every controller generated by CG is a composition of the
target behavior Bt by system S.

Theorem 4. Every controller that is a composition of the
target behavior Bt by system S can be generated by CG.

Intuitively, CG is analogous to a sort of “meta-plan” or a
stateful nondeterministic “complete universal plan,” which
keeps all the existing plans at its disposal and decides which
one to follow for the next action, possibly with contingent
decisions.

Example 5. The controller generator (CG), with the largest
ND-simulation at hand, can decide how to delegate actions
as the target arm BT ’s requests come in. For instance, if a
clean action is requested after a block has been prepared,
the CG knows it ought to delegate such request to arm BA

so as to stay within the ND-simulation. While physically
possible, delegating such action to arm BB would bring the
enacted system into state 〈〈a1, b1, c1〉, e3〉 which is known
not to be in ND-simulation with the (enacted) target. �

Reactive Adaptability
Next we show that Theorems 3 and 4 give us a sound and
complete technique for dealing with failure cases (a), (b),
and (c) without any re-planning. As a matter of fact, once
we have the controller generator CG, actual compositions
can be generated “just-in-time,” as (target compliant) ac-
tions are requested. What is particularly interesting about
CG-controllers is that one can delay the choice performed
by CHOOSE until run-time, where one can take into account
contingent information, e.g., about availability of behaviors.
This gives the controller a great flexibility, which, in a sense,
can “switch” compositions online as needed. We call such
CG-controller, just-in-time CG-controller, and denote it by
CGP jit.

646

Freezing of behaviors CGP jit already addresses tempo-
rary freezing of behaviors, i.e., failure case (a). In particu-
lar, if a behavior is temporarily frozen, then CGP jit simply
avoids choosing it, and continues with one of the other pos-
sible choices.3 Obviously, if no other choices are possible,
then CGP jit shall wait for the behavior to come back.

State change of behaviors and environment CGP jit

also addresses unexpected changes in the internal state of
behaviors and/or of the environment, that is, failure cases
(b) and (c).4 To understand this, let us denote by TS(zS) the
variant of the enacted system behavior whose initial state
is zS instead of sS0. Similarly, let us denote by Tt(zt) the
enacted target behavior whose initial state is zt instead of
st0. Now suppose that the state of the enacted system be-
havior changes, unexpectedly, to state ŝS , due to a change
of the state of a behavior (or a set of behaviors) and/or of
the environment. Then, if st is the state of the target when
the failure happened, one should recompute the composition
with the system starting from ŝS and the target starting from
ŝt, where ŝt is just st with its environment state replaced
by the one in ŝS (note ŝt = st for failures of type (b)).
Observe, though, that ND-simulation relations are indepen-
dent from the initial states of both the target and the sys-
tem. Therefore, the largest ND-simulation between Tt(ŝt)
and TS(ŝS) is the ND-simulation � we already have. This
implies that we can still use the very same controller genera-
tor CG (and the same just-in-time CG-controller CGP jit as
well), with the guarantee that all compositions of the system
variant for the target variant, if any, are still captured by CG
(and CGP jit too). Put it all together, we only need to check
whether ŝt � ŝS , and, if so, continue to use CGP jit (now
from the CG history of length 0: 〈ŝt, ŝS〉).
Example 6. Upon an unexpected change in the system, in
the environment or any available behavior, the CG can re-
act/adapt to the change immediately. For instance, suppose
the target is in state t3, the environment in state e3, and the
available behaviors BA, BB , and BC are in their states a2,
b2, and c2, respectively. That is, TBT

is in state 〈t3, e3〉
whereas TS is in state 〈〈a2, b2, c1〉, e3〉. Suppose that, in
an unexpected way, the environment happens to change to
state e2—someone has re-charged the water tank. All that is
needed in such case is to check that the new states of TBT

and TS , namely 〈t3, e2〉 and 〈〈a2, b2, c1〉, e2〉, are still in the
ND-simulation. Since they are, the CG continues the real-
ization of the target from such (new) enacted states. �

Computing reactive compositions on-the-fly We close
the section by observing that CGP jit, that is CGP CHOOSE

with CHOOSE resolved at run-time, (and CG for the mat-
ter) can be computed on-the-fly by storing only the ND-
simulation �. In fact, at each point, the only information
required for the next choice is ω(σ, a), where σ ∈ Σ (recall

3If more information is at hand, CGPjit may use it to choose
in an informed way, though this is out of the scope of this paper.

4Although hardly as meaningful as the ones above, unforeseen
changes in the target’s state can be accounted for in a similar way.

Σ = �) is formed by the current state of the enacted target
behavior and that of the enacted system behavior. Now, in
order to compute ω(σ, a) we only need to know �.

Parsimonious Refinement
When considering failure cases (d) and (e), a simple reac-
tive approach is not sufficient and more complex refinement
techniques are required. We show then how to do the com-
position refinement in an intelligent manner. Let us start by
defining a parametric version of the algorithm for comput-
ing the largest ND-simulation. Such a version, called NDSP,
takes two extra parameters: Rinit, the starting relation from
which the largest ND-simulation is extracted; and Rsure, a
relation containing tuples already known to be in the ND-
simulation to be computed.

Algorithm 2 NDSP(Tt, TS ,Rinit,Rsure)
1: R := Rinit \ Rsure

2: R := R \ {〈st, sS〉 | env(st) 6= env(sS)}
3: repeat
4: R := (R\C), where C is the set of 〈st, sS〉 ∈ R such

that there exists a ∈ A for which for each k there is a
transition st

a−→ s′t in Tt such that either:

(a) there is no transition sS
a,k−→ s′S in TS such that

env(s′t) = env(s′S); or

(b) there exists a transition sS
a,k−→ s′S in TS such that

env(s′t) = env(s′S) but 〈s′t, s′S〉 6∈ R ∪Rsure.
5: until (C = ∅)
6: return R∪Rsure

The next result shows that the output of algorithm NDSP
coincides with that of NDS, provided its two new parameters
are used adequately.

Lemma 5. Let S be a system and Bt a target be-
havior. If Rsure ⊆ NDS(Tt, TS) ⊆ Rinit, then
NDSP(Tt, TS ,Rinit,Rsure) = NDS(Tt, TS).
Proof (sketch). Let Ri

1 and Ri
2 be the sets represent-

ing R in algorithms NDS and NDSP, respectively, after
i repeat-loop iterations. It can be shown, by induction
on i, that Ri

2 ∪ Rsure ⊆ Ri
1 ⊆ NDS(Tt, TS) and that

NDS(Tt, TS) ⊆ Ri
2 ∪ Rsure. Hence, since at the limit

Ri
2 ∪ Rsure = NDSP(Tt, TS ,Rinit,Rsure), the thesis fol-

lows.

Next, we introduce convenient notations to shrink and ex-
pand systems and ND-simulation relations. Consider a sys-
tem S = 〈B1, . . . ,Bn, E〉 and a set of behavior indexes
W ⊆ {1, . . . , n}. We denote by S(W) the system de-
rived from S by considering only (i.e., projecting on) all
behaviors Bi such that i ∈ W (note S = S({1, . . . , n})).
Let Tt be an enacted target behavior over E . We denote
by �W the largest ND-simulation relation of Tt by TS(W).
Let U ⊆ {1, . . . , n} such that W ∩ U = ∅. We denote
by �W ⊗ U , the relation obtained from �W by (trivially)
putting all behaviors Bi, with i ∈ U , back into the sys-
tem. Formally, we can define such operation as follows

647

(without loss of generality, assume W = {1, . . . , `} and
U = {` + 1, . . . ,m}):

�W ⊗ U =
{〈st, s

′〉 | s′ = 〈b1, . . . , b`, b`+1, . . . , bm, e〉
such that 〈st, 〈b1, . . . , b`, e〉〉 ∈�W and
bi is a state of Bi, for i ∈ {` + 1, . . . ,m} }.

When “putting back” a set of behaviors into the system
in this way, we are guaranteed to (already) get an ND-
simulation for the (expanded) system S(W ∪ U). Observe,
however, that it may not necessarily be the largest one.

Lemma 6. Let W,U ⊆ {1, . . . , n} such that W ∩ U = ∅.
Then,

• �W ⊗ U ⊆�W∪U ;
• �W ⊗ U is an ND-simulation of Tt by TS(W∪U).

Proof. Without loss of generality, take W = {1, . . . , `},
and U = {` + 1, . . . ,m}. Suppose that
〈〈t, e〉, 〈b1, . . . , b`, b`+1, . . . , bm, e′〉〉 ∈ �W ⊗ U .
Due to the definition of operation ⊗, it is the
case that 〈t, e〉�W 〈b1, . . . , b`, e′〉. This means that
e = e′ and that for each a ∈ A, there exists index
ka ∈ W satisfying the requirements of the ND-
simulation definition for system S(W). Clearly then
〈t, e〉 �W∪U 〈b1, . . . , b`, b`+1, . . . , bm, e′〉. Indeed, e = e′,
and for every a ∈ A, the same index ka would also satisfy
the requirements of the ND-simulation definition for system
S(W ∪U)—the new behaviors are not used and they cannot
remove capabilities of the other behaviors. This shows that
�W ⊗U is an ND-simulation of Tt by TS(W∪U), and hence,
�W ⊗ U ⊆�W∪U , as �W∪U is the largest ND-simulation
of Tt by TS(W∪U).

Let F ⊆ W be the (indexes of the) behaviors that happen
to become permanently unavailable. We denote by �W|F
the relation obtained from �W by projecting out all (failed)
behaviors Bi such that i ∈ F . Interestingly, the new largest
ND-simulation after failure is in fact contained in the re-
lation obtained by merely projecting out the failed compo-
nents from the ND-simulation at hand right before the fail-
ure. Specifically, we have:

Lemma 7. Let W,F ⊆ {1, . . . , n} such that F ⊆ W . Then,

• �W\F⊆ �W|F ;
• �W|F may not be an ND-simulation of Tt by TS(W\F).

Proof. By Lemma 6, �(W\F) ⊗F ⊆ �(W\F)∪F , that is,
�(W\F)⊗F ⊆ �W . By projecting out F on both relations,
we get �(W\F)⊗F |F ⊆ �W|F . Then, since �⊗X|X =�
for any � and X , �(W\F)⊆ �W|F follows.

It is immediate to find cases where the containment is
proper, and hence the second part follows.

Notice that despite �W being the largest ND-simulation
when the behaviors in W are active, the projected relation
�W |F is not necessarily even an ND-simulation relation for
(contracted) system S(W \ F).

Permanent unavailability When a behavior becomes per-
manently unavailable (cf. case (d)), one cannot rely on wait-
ing for it to resume when the composition really needs it.
Instead, one can either continue the composition and just
“hope for the best,” that is, hope that the failed behavior will
not be required, or one can “refine” the current composition
to continue guaranteeing the full realization of the target.

The following theorem guides such a refinement. Due to
Lemma 7, it is enough just to start the NDSP algorithm from
the relation obtained by merely projecting out the failed
components, generally resulting in substantially less algo-
rithm iterations. Indeed, as behaviors become unavailable,
the effort to obtain the new largest ND-simulation relation is
systematic and incremental in that no tuples that were previ-
ously discarded will be considered.
Theorem 8. Let S = 〈B1, . . . ,Bn, E〉 be a system and Bt

a target behavior over E . Let W ⊆ {1, . . . , n} be the
(indexes of the) behaviors currently working in S, and let
F ⊆ {1, . . . , n}, with F ⊆ W , be the (indexes of the) be-
haviors that become permanently unavailable. Then,

�(W\F)= NDSP(Tt, TS(W\F),�W |F , β),

for every β such that β ⊆�(W\F) .

Proof. It follows from Lemmas 5 and 7.

Example 7. Suppose that arm BT is being successfully re-
alized by means of controller P1. At some point, however,
arm BB suddenly breaks down in state b3, just after painting
a block. WithBB out, controller P1 cannot guarantee the tar-
get anymore. Interestingly, though, controller P2 can now
keep realizing BT from the new (unexpected) sub-system.
To handle such failure case, first behavior BB is projected
out from the ND-simulation relation �{A,B,C}, thus get-
ting �{A,B,C}|{B}. Then, the new largest ND-simulation
relation is computed using NDSP and starting from relation
�{A,B,C}|{B}, thus getting �{A,C}, see picture below.

1 1
e1

1 1
e2

2 1
e2

dispose,Adi
sp

os
e,
A

2 1
e3

1 1
e4

dispose,A

1 2
e1

2 2
e3

1 2
e2

2 2
e2

recharge, C

prepare, C

paint, C

clean, A

paint, C

recharge, C

clean, A

paint, C

SIMULATION
WITHOUT
ARM BB

Observe that tuple 〈〈t3, e3〉, 〈〈a2, c1〉, e3〉〉 would in-
deed be in relation �{A,B,C}|{B}, but it would later be

648

filtered out by the NDSP algorithm—the original tuple
〈〈t3, e3〉, 〈〈a2, b2, c1〉, e3〉〉 ∈ �{A,B,C} relied on BB for
maintaining the ND-simulation. Finally, if arm BB happens
to resume, then the CG comes back to the ND-simulation of
Figure 2. �

Resumed behaviors Consider now the case in which
while behaviors with indexes in W are currently operating,
some behaviors that are supposed to be permanently unavail-
able, unexpectedly become available again, cf. case (e). Let
the indexes of such behaviors be U , with U ∩W = ∅. Obvi-
ously, this could never reduce the capabilities of the whole
system, but could enhance it with more choices. To exploit
them, one needs to compute the new largest ND-simulation
�(W∪U). In doing so, one can leverage on the fact that
�(W∪U) contains the relation �W ⊗ U (cf. Lemma 6) by
completely avoiding consideration (for potential filtering) of
those tuples in �W ⊗ U , that is, we pass those tuples as the
“sure set” to the NDSP algorithm.

Theorem 9. Let S = 〈B1, . . . ,Bn, E〉 be a system and
Bt a target behavior over E . Let W ⊆ {1, . . . , n} be
the (indexes of the) behaviors currently working in S, and
U ⊆ {1, . . . , n}, with W ∩ U = ∅, be the (indexes of the)
resumed behaviors. Then,

�(W∪U) = NDSP(Tt, TS(W∪U), α,�W ⊗ U),

for every α such that �(W∪U)⊆ α.

Proof. It follows from Lemmas 5 and 6.

Observe that U could even include new behaviors not in-
cluded in {1, . . . , n}—the thesis of Lemma 6 would still
hold.

Reusing previous computed ND-simulations Suppose
that we have already computed and stored the ND-
simulations for the sets of indexes in W (of course,
{1, . . . , n} ∈ W), and suppose we are to compute the ND-
simulation �W for W 6∈ W . Let us then define:

ᾱ =
⋂
{W ′∈cW

W }�W ′ |(W ′\W);

β̄ =
⋃
{W ′∈bW

W }�W ′ ⊗ (W \W ′);

where cW
W and bW

W stand for the set of tightest supersets
and subsets, respectively, of W in W , namely:

cW
W = {W ′ ∈ W | W ⊆ W ′ ∧ ∀V ∈ W.W ⊆ V → V 6⊂ W ′};

bW
W = {W ′ ∈ W | W ′ ⊆ W ∧ ∀V ∈ W.V ⊆ W → W ′ 6⊂ V ′}.

Then, by using the above Theorems 8 and 9 we get that:

�W = NDSP(Tt, TS(W), ᾱ, β̄).

Notice that by using NDSP(Tt, TS , ᾱ, β̄) to compute �W ,
we maximally reuse the computations already done to de-
vise other ND-simulations. Of course, once we have com-
puted �W , we can immediately compute CGP jit on-the-fly
as before.

Conclusions
In this paper, we presented a simulation-based technique for
behavior composition (De Giacomo & Sardina 2007) which
radically departs from previous approaches. Such technique
is a substantial improvement over the previous ones from
the complexity-theoretic perspective (it is exponential in the
number, and not the size, of the available behaviors). More
importantly, it produces flexible solutions that are ready
to handle exceptional circumstances unforeseen at specifi-
cation time, avoiding re-planning altogether in significant
cases and bounding it in others.

We remark that the proposed technique is quite suitable
for optimized implementations. First, optimized techniques
exist for computing simulation, such as those in (Hen-
zinger, Henzinger, & Kopke 1995; Tan & Cleaveland 2001;
Gentilini, Piazza, & Policriti 2003), and implemented in
systems such as CWB-NC.5 Second, it is known that a
relationship exists between simulation and checking in-
variance properties in temporal-logic-based model check-
ers and synthesis systems, see e.g., (Vardi & Fisler 1999;
Asarin et al. 1998). In fact, we are currently implementing
the technique proposed in this paper using the synthesis sys-
tem TLV,6 see e.g., (Piterman, Pnueli, & Sa’ar 2006). An-
other option would be to exploit ATL-based verifiers, such
as Mocha,7 which can check game-structures for properties
such as invariants, and extract winning strategies for them,
see e.g., (Alura, Henzinger, & Kupferman 2002).

the
The kind of failures we have considered here can be seen

as core forms of breach-of-contract with respect to the spec-
ification. Of course other forms of failures are possible (Tri-
pathi & Miller 2001; Pettersson 2005; Marin, Bertier, &
Sens 2003), but they essentially assume more information at
hand upon a failure, e.g., a module may state unavailability
duration and/or the state, or possible states, it will join back.
Moreover, such additional information may be of statistical
or probabilistic nature. Exploiting such information for fail-
ure reaction opens interesting directions for future work.

require more information unavailability duration and/or
the state, or possible back, cf Conclusions.

Acknowledgments
The authors would like to thank the anonymous reviewers
for their interesting comments. The first author was sup-
ported by the Australian Research Council and Agent Ori-
ented Software (grant LP0560702), and the National Sci-
ence and Engineering Research Council of Canada under a
PDF fellowship. The other authors were partially supported
by the the European FET basic research project FP6-7603
Thinking Ontologies (TONES).

References
Alura, R.; Henzinger, T. A.; and Kupferman, O. 2002.
Alternating-time temporal logic. Journal of the ACM
49(5):672–713.

5http://www.cs.sunysb.edu/∼cwb/
6http://www.cs.nyu.edu/acsys/tlv/
7http://www.cis.upenn.edu/∼mocha/

649

Asarin, E.; Maler, O.; Pnueli, A.; and Sifakis, J. 1998.
Controller synthesis for timed automata. In Proceedings
of the IFAC Conference on System Structure and Control,
469–474.
Berardi, D.; Calvanese, D.; De Giacomo, G.; Hull, R.; and
Mecella, M. 2005. Automatic composition of transition-
based semantic web services with messaging. In Proceed-
ings of the International Conference on Very Large Data
Bases (VLDB), 613–624.
Berardi, D.; Cheikh, F.; De Giacomo, G.; and Patrizi, F.
2008. Automatic service composition via simulation. In-
ternational Journal of Foundations of Computer Science
19(2):429–452.
Clarke, E. M.; Grumberg, O.; and Peled, D. A. 1999.
Model checking. Cambridge, MA, USA: The MIT Press.
De Giacomo, G., and Sardina, S. 2007. Automatic syn-
thesis of new behaviors from a library of available behav-
iors. In Proceedings of the International Joint Conference
on Artificial Intelligence (IJCAI), 1866–1871.
Gentilini, R.; Piazza, C.; and Policriti, A. 2003. From
bisimulation to simulation: Coarsest partition problems.
Journal of Automed Reasoning 31(1):73–103.
Georgeff, M. P., and Lansky, A. L. 1987. Reactive reason-
ing and planning. In Proceedings of the National Confer-
ence on Artificial Intelligence (AAAI), 677–682.
Ghallab, M.; Nau, D.; and Traverso, P. 2004. Automated
Planning: Theory and Practice. Morgan Kaufmann.
Grosz, B. J., and Kraus, S. 1996. Collaborative plans
for complex group action. Artificial Intelligence Journal
86(2):269–357.
Harel, D.; Kozen, D.; and Tiuryn, J. 2000. Dynamic Logic.
The MIT Press.
Henzinger, M. R.; Henzinger, T. A.; and Kopke, P. W.
1995. Computing simulations on finite and infinite graphs.
In Procedings of the 36th Annual Symposium on Founda-
tions of Computer Science (FOCS), 453–462.
Katz, M. J., and Rosenschein, J. S. 1993. The generation
and execution of plans for multiple agents. Computers and
Artificial Intelligence 12(1):5–35.
Kupferman, O., and Vardi, M. Y. 1996. Module check-
ing. In Proceedings of the 8th International Conference on
Computer Aided Verification (CAV), 75–86. London, UK:
Springer-Verlag.
Marin, O.; Bertier, M.; and Sens, P. 2003. Darx - A frame-
work for the fault tolerant support of agent software. In
Proceedings of the 14th IEEE International Symposium on
Software Reliability Engineering (ISSRE).
McIlraith, S., and Son, T. C. 2002. Adapting Golog for pro-
gramming the semantic web. In Principles of Knowledge
Representation and Reasoning (KR), 482–493.
Milner, R. 1971. An algebraic definition of simulation be-
tween programs. In Proceedings of the International Joint
Conference on Artificial Intelligence (IJCAI), 481–489.
Muscholl, A., and Walukiewicz, I. 2007. A lower bound on
web services composition. In Proceedings of the 10th Int.

Conf. on Foundations of Software Science and Computa-
tion Structures (FoSSaCS), volume 4423 of Lecture Notes
in Computer Science (LNCS). Springer.
Pettersson, O. 2005. Execution monitoring in robotics: A
survey. Robotics and Autonomous Systems 53(2):73–88.
Piterman, N.; Pnueli, A.; and Sa’ar, Y. 2006. Synthesis
of reactive(1) designs. In Emerson, E. A., and Namjoshi,
K. S., eds., Proceedings of the International Conference on
Verification, Model Checking, and Abstract Interpretation
(VMCAI), volume 3855 of Lecture Notes in Computer Sci-
ence (LNCS), 364–380. Charleston, SC, USA: Springer.
Pnueli, A., and Rosner, R. 1989. On the synthesis of a
reactive module. In Proceedings of the ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Lan-
guages, 179–190.
Sardina, S.; Patrizi, F.; and De Giacomo, G. 2007. Au-
tomatic synthesis of a global behavior from multiple dis-
tributed behaviors. In Proceedings of the National Confer-
ence on Artificial Intelligence (AAAI), 1063–1069.
Tan, L., and Cleaveland, R. 2001. Simulation revisited.
In In Proceedings of Tools and Algorithms for the Con-
struction and Analysis of Systems (TACAS), volume 2031
of LNCS, 480–495.
Tripathi, A., and Miller, R. 2001. Exception handling in
agent-oriented systems. In Exception Handling, volume
2022 of Lecture Notes in Computer Science (LNCS), 128–
146. Springer-Verlag.
Vardi, M., and Fisler, K. 1999. Bisimulation and model
checking. In Proceedings of the Conference on Correct
Hardware Design and Verification Methods (CHARME),
338–341.

650

