From:MAICS-98 Proceedings. Copyright © 1998, AAAI (www.aaai.org). All rights reserved.

Modeling Single-Task Performance Improvement Using EPIC-Soar

Ronald S. Chong (rchong @umich.edu)
Artificial Intelligence Laboratory
1101 Beal Avenue
University of Michigan
Ann Arbor, MI 48109-2110

Abstract

We present a task-independent learning procedure which pro-
duces gradual performance improvement through experience
on a perceptual-motor task. It utilizes a data structure that rep-
resents a strategy for performing the task. This learning proce-
dure is a direct result of the constraints that occur when
realistic perceptual and motor mechanisms (EPIC) are mated
to a learning cognitive modeling architecture (Soar).

Introduction

What is learned when a subject’s performance on a percep-
tual-motor task improves with experience? This is an open
research question, but the improvements may be attributed to
cognitive and motor learning.

In the cognitive system, there are at least three possible
source of task performance improvement: 1) the procedural-
ization of the declarative description of the task (instruc-
tions) through chunking or compilation; 2) the chunking or
compiling of any problem solving necessary to perform the
task; 3) the development of task strategies and priorities.

In this work, we suggest a fourth possible source of learn-
ing that may take place in the cognitive system. We will
present a task-independent learning procedure for modeling
performance improvements for perceptual-motor tasks. The
inputs to the learning procedure are: a) a representation of a
task strategy; and b) a task performance model that is equiv-
alent to what would be the product of the first three learning
procedures mentioned above. We apply the learning proce-
dure to show additional task performance improvement.

This work is based on a hybrid architecture called EPIC-
Soar (Chong, 1995; Chong & Laird, 1997). A brief discus-
sion of EPIC, Soar, and EPIC-Soar will be presented first,
followed by a description of the learning procedure and its
application to a two-choice reaction-time task.

EPIC

EPIC (Executive Process-Interactive Control) (Meyer &
Kieras, 1997a, 1997b) is an architecture whose primary goal
is to account for detailed human dual-task performance. It
greatly extends the work begun with the Model Human Pro-
cessor, MHP (Card, Moran, & Newell, 1983).

Like MHP, EPIC consists of a collection of processors and
memories. However, two key points distinguish EPIC from
its predecessor. First, the EPIC perceptual (visual, auditory
and tactile) and motor (ocular, vocal, and manual) proces-
sors are much more elaborate, each representing a synthesis
of the most recent empirical evidence. Second, EPIC is a
computational system that can be programmed and executed.

10 MAICS-98

Since EPIC was designed to study performance, its cogni-
tive processor does not have the ability to learn.

Soar

Soar is a general architecture for building intelligent systems
and for modeling human behavior (Rosenbloom, Laird, &
Newell, 1993; Newell, 1990). Soar has been used to model
human capabilities such as learning, problem solving, plan-
ning, search, natural language and HCI tasks.

Soar is a goal-oriented architecture. When a situation
arises where progress ceases on a goal, Soar generates a sub-
goal. In the subgoal, Soar searches for knowledge to apply to
allow progress to resume in the original goal. Soar incorpo-
rates a single learning mechanism called chunking which
compiles the search in a subgoal into productions in the
supergoal so that subgoaling is avoided the next time Soar is
in the same or similar situation. In combination with various
problem solving methods, chunking has been found to be
sufficient for a wide variety of learning (Lewis, et al., 1990;
Miller and Laird, 1996). However, Soar does not have
embedded in it a theory for the details of perception and
motor processes.

EPIC-Soar

The motivation to integrate EPIC and Soar can be considered
a response to (Newell, 1990):

“...one thing wrong with much theorizing about cogni-
tion is that it does not pay much attention to perception
on the one side or motor behavior on the other...The
result is that the theory gives up the constraint on...cog-
nition that these systems could provide. The loss is seri-
ous—it assures that theories will never...be able to tell
the full story about any particular behavior.”

At present there are but a few architectures that combine
perception, cognition, and action. EPIC, as we have seen,
takes up where the Model Human Processor left off and rep-
resents a significant advancement of its original ideas.

ACT-R/PM (Byrne & Anderson, 1997) is a recent
endeavor to add a Vision Manager and a Motor Manager to
ACT-R (Anderson, 1993).!

Addressing this issue from a different angle, (Gordon, et
al., 1997) highlight the paucity of tools to support the devel-
opment of computational cognitive models of users engaged
in interactive tasks. One of the many requirements suggested

IThe Motor Manager of ACT-R/PM is based on the motor pro-
cessor of EPIC.

of such tools is the support for simulated perceptual and
motor action mechanisms to allow cognitive models to inter-
act with external task simulations. Through a number of case
studies, they demonstrate that user interface development
environments (such as Tcl/Tk, Garnet, and Amulet) can be
employed to this end. Although their perceptual and motor
mechanisms are not as psychologically rigorous as those of
EPIC, this is nevertheless a step in the right direction.
Finally, EPIC-Soar (Chong, 1995; Chong & Laird, 1997)
is an integration of the perceptual and motor processors of
EPIC with Soar. This merger is an attempt to get both the
detailed predictions and explanations provided by the per-
ceptual and motor processors of EPIC (an ability Soar does
not possess) and the problem solving, planning, and learning
capabilities of Soar (an ability EPIC does not possess).

An Observation From Expert Performance

Previously, we (Chong & Laird, 1997) identified and ana-
lyzed several types of executive process knowledge needed
to transition from novice to expert performance on a dual-
task scenario modeled in EPIC and EPIC-Soar. Of the four
knowledge types identified, two have emerged as relevant.

The first type of knowledge causes anticipatory motor
programming, i.e., it prepares the motor system for an
upcoming command. When a command is sent to a motor
processor in EPIC, the command passes through two
phases—preparation, then execution—before the motor pro-
cessor is free to execute another command. These phases
take time to complete. If the preparation phase of a soon-to-
be-sent command can be completed ahead of time, then the
preparation phase (and the time required to prepare) can be
avoided when the command is finally sent. This can result in
a significant reduction in the time to execute the command.

The second type of knowledge causes consecutive com-
mands for the same modality to be pipelined. The motor pro-
cessors in EPIC can execute only one command at a time,
but pipelining is a way to make the motor processor work on
two consecutive commands at the same time. Because the
motor processor has two phases, it is possible to send a com-
mand x that first gets prepared and then executed. While x is
in the execution phase, another command y can be issued
since the preparation phase is free. The motor processor,
while continuing to execute x, will prepare the movement
features for command y. When the execution of x completes,
the features of y are immediately handed over to the execu-
tion phase for execution. Because the features for y were pre-
pared and waiting, the time to execute y is significantly
reduced.

The key observation of these two knowledge types is that
they produce expert performance simply because they allow
whole commands (or parts of command processing) to be
moved, or promoted, to a chronologically earlier event.

Anticipatory motor programming essentially moves the

preparation phase to an earlier time. Pipelining moves the
whole motor command to an earlier time such that the com-
mand will be issued as soon as the execution of a previous
command (that uses the same processor) has begun. This
observation of motor promotions is the inspiration for the
learning procedure presented here.

Before describing the learning procedure, we will first
present the representation of the initial knowledge used by
the learning procedure.

Initial Knowledge

In addressing the question “what is learned when a subject’s
performance on a perceptual-motor task improves?”’, we
asked a second, more fundamental, question: “what initial
knowledge does a subject possess after receiving task
instructions but before beginning to perform a task?” We
hypothesize that this initial knowledge plays a significant
role in the learning process.

Example Task: A Two-Choice Reaction Time Task

Consider this contrived example task. The instructions are:

When a trial starts, you are to look at the fixation point.
A stimulus will appear in the target circle (which is dis-
placed 16 degrees vertically below the fixation point).
When the stimulus appears, look at the stimulus. If it is a
left arrow, respond by pressing the key sequence L0,
L1, L2, LO with the index, middle, ring, and index fin-
gers of the left hand; if it is a right arrow, respond by
pressing the key sequence RO, R1, R2, RO with the
index, middle, ring, and index fingers of the right hand.
Look back to the fixation point to begin a new trial.

Chronological Task Strategy Data Structure

It is impossible to know exactlzy what is in a subject’s head
after reading task instructions,” but we will assume that the
subject understands the task instructions and is adequately
motivated.

In developing this theory of learning, we needed to
hypothesize as to the representation of the task that is avail-
able following language processing. Previous work has sug-
gested that it is difficult to distinguish exactly which aspects
of a task description are declarative data structures in Soar’s
working memory, and which are procedural associative
structures (production rules) in long-term memory (Young &
Lewis, 1997).

For this initial work, we have made the simplifying
assumption that the complete structure of the task is avail-
able in declarative data structures in working memory. Our
theory of acquisition is not tied to this specific representa-
tional form, but to its content, although by necessity, the
algorithms have been developed for the specific representa-
tion we present.

We have invented a data structure called a chronological
task strategy. This structure is intended to represent the ini-
tial knowledge that subjects have about the chronological
ordering of perceptual events, and the motor commands that
are required (per the task instructions) at the occurrence of
each perceptual event. This structure and a task performance
model (whose behavior is congruent with the strategy struc-
ture) are hand-coded and provided to the system.

2previous Soar research (Huffman, 1994; Lewis, Newell, & Polk,
1989) has explored the acquisition of procedures from natural lan-
guage instructions. Language comprehension issues however are
outside the scope of this work.

Chong 11

trial-start stim-onset

stim-features

®
'

> (=)

responded
-

Y

e T e oy By

Figure 1: The data structure for the two-choice reaction-time task. The pe-nodes peg-pes represent the knowledge of
the chronological ordering of events in a trial. The mc-nodes are the command to be performed; 0g = LOOK-AT-
STIM; mlg-ml5 = the keypress command chain a left arrow; mrg-mrg = the keypress command chain for a right arrow;
04 = LOOK-AT-FIXATION-POINT. The inset depicts the actual link between nodes in a command chain.

The data structure itself is a sparse tree consisting of two
types of nodes: event nodes and motor command nodes. Fig-
ure 1 shows a p0531ble chronological task strategy structure
for the two-choice reaction-time task.

The oval nodes are perceptual event nodes or pe-nodes.
The nodes in boxes are motor command nodes or mc-nodes
which contain the motor commands to be executed. The
nodes can be linked together to form command chains when
a sequence of actions for the same modality are required.
This structure not only represents the chronological ordering
of perceptual events and the motor commands as stated,
implied, or inferred from the task instructions, but it also
captures the preconditions of motor commands; before com-
mand mly can be generated, stim-features must have
occurred; and command mly can be generated only after
command mly has been generated.

There are two additional features of this structure that are
present solely because we are building our model in a cogni-
tive system that is constrained by both perception and action.
The first is the stim-features perceptual event. This event is
necessary because of the constraint of perception in EPIC. In
the human visual system, when a stimulus appears, the fea-
tures that define the object are not instantly available

3There can be no single correct structure to represent a task since
a) it is possible to have many different strategies that all accomplish
the same task; b) task strategies may change as task conditions
change; c) biases in interpreting the task instructions can result in
different strategies.

12 MAICS-98

because they take time to propagate from the sensory sys-
tem, through perception, and finally into working memory.
EPIC likewise models this delay, hence the pe-node repre-
senting the delayed arrival of the stimulus features.

The second feature concerns the links between mc-nodes
in the motor chain. Recall that when a command is sent to a
motor processor in EPIC, the command passes through two
phases—preparation, then execution—before the motor pro-
cessor is free to execute another command. These phases
take time to complete, but EPIC sends motor processor sta-
tus messages that report on the state of each phase (whether
each phase is busy or free). Additionally, EPIC may provide
proprioceptive feedback on the state of the effector perform-
ing the command. This is true for manual (hand) commands.
When a manual command is issued, the tactile sensory pro-
cessor reports on the state of completion of the action, e.g.,
for a keypress command, the tactile processor reports when
the key is touched, when the downstroke is completed, and
when the upstroke is completed.

These messages can collectively be used to define a pre-
condition space for mc-nodes located at position two or
deeper in a command cham This space allows a model to
produce a potentially wide* range of performance styles,

“Manual commands have five possible preconditions; msg,
ms4, MSy, MSg, and MSy. Ocular commands have only two pos-
sible preconditions—MSy and MS4—since there is no propriocep-
tive feedback for ocular commands,.

trial-start stim-onset stim-features responded
a) — > -
 poo
[|- onty |——- [y][s |
Lo |- o | ey [-—— [o
PO4
trial-start stim-onset stim-features responded
b) — - -
[oo]—=EA
[mig | —| mi; |——{ mip |——{ mis|
” | mrg || g
trial-start stim-onset stim-features responded
c) — > —

to the motor chains on pe4 and pe,.

Figure 2: The progression of promotions on the two-choice reaction time task: a) prepare-promotions creates pOg =
PREPARE-LOOK-AT-STIM on peg and poy = PREPARE-LOOK-AT-FIXATION-POINT on pey; b) a pe-promo-
tion moves po4 from pe, to pey; ¢) ms-promotions—depicted by shorter arrows between motor chain nodes—apply

[~ 1~ B~ B
(o]~ 1 ~ B8 ~ 8

from cautious to aggressive, or in more relevant terms, from
novice to expert.

This precondition space is represented by the event (oval)
nodes shown in the inset of Figure 1. They are motor proces-
sor status event nodes, or ms-nodes. These nodes exist only
between mc-nodes in command chains. They are sequen-
tially used as preconditions to the mc-node they precede and,
like pe-nodes, are chronologically ordered (msg first; Msy
last).

Since our example task uses keypress responses, the ns-
nodes are: msy = processor free; Ms¢ = execution free; Ms;
= key touched; msg = key depressed; ms, = key released. In
the figure, Ms, is used as the precondition to mry; a cautious
performance style.

The Promotion-Learning Procedure

The observation that chronological promotions can produce
performance improvement has inspired a promotion-based
learning procedure. This procedure performs three styles of
promotions: prepare-promotions, pe-promotions, and ms-
promotions.

The chronological task strategy structure is essential to the
procedure because it keeps track of the chronology of events
and also identifies which promotion styles can be performed.

To use this learning procedure, the user must provide a
chronological task strategy structure and an initial perfor-

5The prepare-promotion style creates anticipatory motor pro-
gramming rules while the pe-promotion and ms-promotion styles
combine to produce pipelining rules.

Chong 13

mance model which performs the task as it is represented in
the structure. The model is executed. When a motor com-
mand is generated, task-independent promotion suggestion
rules may fire to suggest that a promotion be performed for
the just-generated command.

The suggested promotion style is invoked and a promoted
command rule is learned. This new rule produces the same
motor command (except in the case of prepare-promotions),
but it is preconditioned on a chronologically earlier event.
The strategy structure is updated to reflect the promotion
(which also causes rules to be learned). The new command
rule is immediately available for use in task performance.

The learning procedure runs concurrently with task perfor-
mance, so performance is not at all hindered by the applica-
tion of the procedure.

We now briefly describe the three promotion styles. There
are essential guidelines for the application of each of the pro-
motion styles; these can be found in the Appendix.

Prepare-Promotion

When a command that is preconditioned on perceptual event
pe; is executed, a prepare-promotion suggestion is generated
if the guidelines are satisfied. The prepare-promotion style
applies and a new prepare rule is learned. This rule is pre-
conditioned on pe-node pey.q and produces a PREPARE
<action> command where <action> is the command pro-
duced by the command on pe-node pe;. The strategy struc-
ture is modified to reflect this promotion.

PE-Promotion

The final promotion style is used to promote motor com-
mands to chronologically earlier perceptual events, hence
this style is called pe-promotion.

When a pe-promotable motor command (see Appendix)
that is preconditioned on pe-node pey is executed, a pe-pro-
motion suggestion is generated if the guidelines are satisfied.
The pe-promotion style applies resulting in a promoted com-
mand rule which produces the same command but is now
preconditioned on pe-node pey.q. The strategy structure is
modified to reflect this promotion.

MS-Promotion

Motor status promotions, or ms-promotions, use the motor
status nodes to allow motor commands in a command chain
to be preconditioned on chronologically earlier motor pro-
cessor status events.

When a motor command that is preconditioned on ms-
node MSy is executed, an ms-promotion suggestion is gener-
ated if the guidelines are satisfied. The ms-promotion style
applies resulting in a promoted command rule which pro-
duces the same command but is now preconditioned on rms-
node mM8y.q. The strategy structure is modified to reflect this
promotion.

We concede that this behavior is not cognitively plausible; the
procedure’s learning rate is independent of the workload imposed
by the task—typically, a high-workload task produces slower learn-
ing rates than low-workload task. We have temporarily set aside
this consideration to test and develop the procedure’s core ideas.

14 MAICS-98

Reaction Time (ms)
B
8
v

|
\
I
|
|
|
|
|
i
|
|
|
I
|
|
|
|
|
i
I
|
i

io 20 Trials 3‘0 40 50
Figure 3: Raw RT data for a single run of 50 trials. Pro-
motion learning was exhausted after 10 trials with the
final RT being around 1500 +/- 50ms. This variability is
small; +/-1 cognitive cycle.

Referring to the inset in Figure 1, the first time that the
command represented by mry is sent, an ms-promotion sug-
gestion will be generated. The ms-promotion procedure will
create a new command rule which is preconditioned on ms,
(key depressed) instead of ms, (key released). The strategy
structure will also be modified so that mry is linked to mss.

When this newly learned rule fires at a later time, mry will
be ms-promoted to MS» (key touched). This continues with
every application of the promoted commands until mry is
preconditioned by msg, at which point ms-promotions for
mr4 have been exhausted.

Promotion-Learning Applied To The Example Task

For our example task as shown in Figure 1, the initial perfor-
mance model and the strategy structure were defined to ini-
tially give very novice-like performance; i.e. all chained mic-
nodes and rules were configured to be preconditioned by
ms,4. We ran the model for fifty trials with the learning pro-
cedure. Figure 2 shows the sequence of effects of promotion
on the structure of the example task.

Prepare-promotions were first applied to both of the ocular
commands. This resulted in the addition of two new mc-
nodes pOg and PO4. At this point, the system will prepare the
motor system for the 0y and 01 commands on events peg
and pes, respectively.

One pe-promotion was then performed to promote the pre-
pare mc-node pOq from pey to pey. The preparation of 04
will now occur earlier at pey.

Finally, numerous ms-promotions were performed to
gradually transition from cautious to aggressive behavior in
the ocular and manual motor chains. This is depicted by the
shortening of the arrows between the mc-nodes. When ms-
promotions have been exhausted, all motor chain commands
are preconditioned on Ms.

Figure 3 shows the learning curve. There is a large learn-
ing effect; a difference of almost 700ms. On the first trial,
the predicted reaction time is around 2250ms. After ten tri-
als, it has leveled out to between 1500 and 1600ms.

By the end of the 50-trial run, Soar has built 75 chunks, of
which thirty are motor command chunks. However, at the
end of learning (after trial 10), only eight (8) of those motor
chunks are applicable: one for pog, one for po4, and one for
each keypress at position two or greater in the motor chains.
The 22 other motor chunks are not applicable because when
a motor command is promoted, the rule that initially pro-
duced the command is disabled by the new earlier-firing
rule. Only the newest command rules are applicable.

The remaining 45 chunks are strategy modification chunks
which were created as the structure was modified during
learning. They capture the evolution of the strategy data
structure.

We could now re-run the system, giving it the initial strat-
egy structure as before along with these 75 new chunks. The
structure modification chunks would first all fire, reproduc-
ing the order in which the strategy structure evolved during
learning. After these firings, the structure would correspond
to the behavior implicit in the eight applicable motor com-
mand chunks. As the task ran, these eight applicable motor
command chunks would fire appropriately, and the task per-
formance would be at the same level as shown in Figure 2
for trials >10.

The preceding discussion and Figure 2 have no doubt
given the impression that promotion suggestions/styles are
generated and/or applied in a predetermined order. This is
not the case however. Figure 2 was made just to show an
example of each promotion style. Promotion styles are actu-
ally executed serially in a “first-come first-served” fashion.

Discussion

The primary goal of this paper was to present a task-indepen-
dent learning procedure which produces gradual perfor-
mance improvement through experience on a perceptual-
motor task. It utilizes a data structure that represents a strat-
egy for performing the task. This learning procedure is a
direct result of the constraints that occur when realistic per-
ceptual and motor mechanisms (EPIC) are mated to a learn-
ing cognitive modeling architecture (Soar).

The inspiration for this learning procedure must be cred-
ited to the integration of realistic perceptual and motor pro-
cessor (EPIC) with the cognitive architecture (Soar). The
constraints provided by EPIC’s motor processor clearly
defined the precondition space over which a learning proce-
dure could explore. This is just one of the many benefits of
building computational models in systems that incorporate
perception, cognition, and action.

Another possible benefit is that the set of promotions
styles along with the precondition space suggests a possible
sources of individual differences between subject’s task per-
formance. While this learning procedure relentlessly applied
promotions styles at every possible opportunity, it is con-
ceivable that subjects may not do the same. With the addi-
tion or removal of knowledge, it may be possible for this
system to aid in explaining some individual differences.

In the Introduction, we mentioned three cognition-based
sources of performance improvements. This work appears to
support our suggestion that the promotion learning proce-
dure may be a fourth source of performance improvement.
By using a performance model that was the equivalent of

what would be generated by the three sources, we applied
the learning procedure and realized a large amount of addi-
tional performance improvement.

Future Work

The section that is conspicuous in its absence is one that
compares human learning and performance results with that
predicted by our model. We are presently searching for suit-
able visual-manual tasks that have existing data. However,
this will permit us to validate only the final performance of
the system since, typically, practice effects are specifically
trained out prior to data collection. In the interim however,
there is some evidence of the procedure’s validity from its
application in other work being done on dual-task perfor-
mance improvement (Chong, 1998).

Presently, the learning procedure runs concurrently with
task performance. There is no cost on task performance from
the learning procedure, and no cost to the learning procedure
due to task performance. As noted earlier, this is not cogni-
tively plausible, and is now the focus of ongoing research.

Also, the strategy data structure is a declarative data struc-
ture stored and maintained in Soar’s working memory. We
expect to look at a more mixed declarative/procedural repre-
sentation of this structure and the impact that has on the
learning.

References

Anderson, J. R. (1993). Rules of the Mind. Hillsdale, NJ:
Lawrence Erlbaum Associates.

Baxter, G. D., Ritter, E. E., Jones, G., & Young, R. M. (1997).
Exploiting User Interface Management Systems in Cogni-
tive Modelling. Submitted report.

Byrne, M. D. & Anderson, J. R. (1997). Enhancing ACT-R’s
Perceptual-Motor Abilities. In Proceedings of the Nine-
teenth Annual Conference of the Cognitive Science Society.
Hillsdale, NJ: Lawrence Erlbaum.

Card, S. K., Moran, T. P, & Newell, A. (1983). The psychol-
ogy of human-computer interaction. Hillsdale, NI:
Lawrence Erlbaum.

Chong, R. S. (1995). Perception, Cognition, and Action: One
Small Step Towards Unification. Unpublished report.

Chong, R. S. (1998). Modeling Dual-Task Performance
Improvement Using EPIC-Soar. Submitted report.

Chong, R. S. & Laird, J. E. (1997). Identifying Dual-Task
Executive Process Knowledge Using EPIC-Soar. In Pro-
ceedings of the Nineteenth Annual Conference of the Cog-
nitive Science Society. Hillsdale, NJ: Lawrence Erlbaum.

Kieras, D. E. (1994). An Introduction to the EPIC architec-
ture for computational models of human performance, In
Proceedings of the Fourteenth Soar Workshop.

Huffman, S. B. (1994). Instructable Autonomous Agents.
Ph.D. thesis, The University of Michigan, Ann Arbor.

Lewis, R. L., Huffman, S. B., John, B. E,, Laird, J. E, Leh-
man, J. F, Newell, A., Rosenbloom, P. S., Simon, T. &
Tessler, S. G. (1990). Soar as a unified theory of cognition:
Spring 1990. In Proceedings of the Twelfth Annual Confer-
ence of the Cognitive Science Society. Hillsdale, NIJ:
Lawrence Erlbaum.

Lewis, R. L., Newell, A., & Polk, T. A. (1989). Toward a
Soar theory of taking instructions for immediate reasoning

Chong 15

tasks. In Proceedings of the Eleventh Annual Conference of
the Cognitive Science Society. Hillsdale, NJ: Lawrence
Erlbaum.

Meyer, D. E. & Kieras, D. E. (1997a). EPIC: A computational
theory of executive cognitive processes and multiple-task
performance: Part 1. Psychological Review, 104, 3-65.

Meyer, D. E. & Kieras, D. E. (1997b). EPIC: A computa-
tional theory of executive cognitive processes and multi-
ple-task performance: Part 2. Psychological Review.

Miller, C. S. & Laird, J. E.(1996). Accounting for Graded
Performance within a Discrete Search Framework. Cogni-
tive Science, 20(4), 499-537.

Newell, A. (1990). Unified theories of cognition. Cambridge,
MA: Harvard University Press.

Rosenbloom, P. S., Laird, J. E., & Newell, A. (1993). The
Soar Papers. Cambridge, MA: The MIT Press.

Young, R. M. & Lewis, R. L. (1998). The Soar Cognitive
Architecture and Human Working Memory. In Miyake, A.
and Shah, P. (Eds), Models of Working Memory: Mecha-
nisms of Active Maintenance and Executive Control. New
York: Cambridge University Press.

Appendix
Here are the guidelines for the application of the three pro-
motion styles.

Prepare-Promotion Guidelines

There are five guidelines for creating prepares; four will be
presented here and the fifth will appear later.

First, prepare-promotion suggestions apply only to the
first command in a motor chain; i.e. the command closest to
the perceptual event node. Commands that appear later in the
chain are prepared-for because it is faster to just send the
command rather than to first sending a PREPARE
<action> command, then immediately sending the actual
command.

Second, prepare suggestions apply only to commands that
are preparable. Commands are preparable only if it is known
exactly what command is to be produced at a later time.

For example, the PUNCH motor commands in our two-
choice reaction time task (Figure 2) are not preparable since
the identity of the stimulus is needed before it can be known
which motor command to prepare.

Another example of this would appear in modeling a con-
tinuous tracking task. Since the cursor is continuously mov-
ing, it is not possible to prepare a joystick move ahead of
time since you need to know the current location of the cur-
sor before the PLY command can be sent if you want accu-
rate tracking performance.

The preparability of a command is indicated by a value of
t for the Apreparable field in the motor command node in
the data structure.

The third guideline, which is somewhat reasonable, is that
a prepare cannot be made for an existing prepare.

The fourth guideline states that when the prepare com-
mand is moved to the previous perceptual event node, it
must be added to the tail of the motor chain (if one exists) of
the same modality type (ocular or manual).

16 MAICS-98

PE-Promotion Guidelines

First, only pe-promotable commands can be pe-promoted. A
command is pe-promotable only if it is not inextricably
bound to the perceptual event to which it was initially
attached. (The pe-promotability of a command is indicated
by a value of t for the Ape-promotable field of the motor
command node in the data structure.)

For example, neither 0g or 04 in Figure 1 are pe-promot-
able because the task instructions specifically state that the
responses should following the appearance of the stimulus,
and it is implied that looking back at the stimulus should
occur after the response is complete. However, the prepares
nodes created by the prepare-promotion style are pe-promot-
able since they are not part of the task instructions. Note that
04 could be made pe-promotable if the strategy structure rep-
resented an interpretation of the task instructions that did not
require that it be sent only after a response was made.

Second, as with prepare-promotions, only the first com-
mand in a motor chain can be promoted. Of course, when the
first command is promoted, the command that was second is
now first and will be eligible for pe-promotion if it is pe-pro-
motable.

The third guideline is similar to the fourth guideline for
prepare-promotions. When a command is moved to the pre-
vious perceptual event node, the command must be added to
the tail of the motor chain (if one exists) of the same modal-
ity type (ocular or manual). This guideline is demonstrated
in Figure 2b. The first promotion is a prepare-promotion.
Since there is no ocular motor command on the trial-start or
stimulus-features events, pog and poy become the first/
only node in those ocular motor chains. However, with the
pe-promotion of p0Oy, there is an existing ocular motor chain
(the single command, 0g) therefore, po4 must be chained
after 0.

Prepare-Promotion Guidelines, continued

Having introduced the pe-promotions style we can now
present the fifth and final prepare-promotion guideline
promised earlier: prepare-promotions cannot be applied to
commands that are pe-promotable.

The reasoning is as follows. Say x is a command that is pe-
promotable. The best improvement possible for x comes by
moving the whole command ahead by pe-promotion. pe-pro-
motions of x will continue until a) all earlier perceptual event
nodes are exhausted (i.e., x is hanging off trial-start), in
which case a prepare could not possibly be made since there
is no earlier pe-node; or b) x has been pe-promoted to the tail
of a motor chain, and in this case, the first guideline for pre-
pare-promotions prohibits creating prepares for all but the
first command in a motor chain.

MS-Promotion Guidelines

There are presently no guidelines for restricting the applica-
tion of ms-promotions.

