
A Problem Representation Approach for Decision Support Systems

Scan C. G. Kern
Air Force Institute of Technology

Department of Electrical and Computer Engineering
Wright-Patterson AFB OH 45433

sean.kem@afit.af.mil

Michael T. Cox
Wright State University

Department of Computer Science and Engineering
Dayton, OH 45435-0001

mcox @cs.wright.edu

Abstract
The choice to include the human in the decision process
affects four key areas of system design: problem
representation, system analysis and design, solution
technique selection, and interface requirements
specification. We introduce a design methodology that
captures the necessary choices associated with each of these
areas. In particular we show how this methodology is
applied to the problem representation process for an actual
decision support system for satellite operations scheduling.
We highlight the main issues related to problem
representation in the large and how these issues seek to
capitalize on the strengths of the computer system and the
human user. We discuss our implementation of a scheduling
problem representation scheme that embodies these
concerns and we show the decision support advantages
gained as a result of this representation.

Introduction

The goal of mixed-initiative systems is to synergistically
combine the capabilities of the human user and the
computer system with the intent to produce higher quality
solutions than either the human or the computer can
produce independently (Cox & Veloso, 1997; Ferguson,
Allen & Miller, 1996; Oates & Cohen, 1994). In one form
mixed-initiative systems act as decision support aids,
assisting the user in reaching the most optimal problem
solution.

Supporting the user’s ability to monitor the actions of
the system and to guide the decision process of the system
are two key considerations in the successful design of a
decision support system. Both of these points rely on the
correct specification of human-computer interaction points.
Traditional, computer-centered system design approaches
do not do this well, if at all, and are insufficient for the
design of decision support systems. These approaches
typically leave the definition of human-computer
interaction points till after the component and system level
designs are complete. This is too late however since the
component and system level design decisions can impose
inflexible constraints on the choice of the human-computer
interaction points. This often leads to the design of human-

68 MAICS-2000

computer interaction points that are only "good enough."
These approaches result in ill-conceived problem
representations and poor user-system interaction points
because the system lacks the underlying architecture to
support these constructs efficiently. Decision support
systems require a new, human-centered design approach
rather than the traditional computer-centered approaches.

Human-centered design refers to the process of
designing a software system that enables the human to
monitor the actions of the system and provide varying
degrees of guidance regarding the decisions made by the
system. The ability of the user to monitor system actions is
critical to the user’s understanding of the current problem
space. Supplying the user with knowledge of the problem
space is essential for providing assistance to the user as the
context of the user’s interaction approaches the manual end
of the guidance continuum. The guidance continuum may
range from full automation, to explicit manual operation, to
some combination of these.

The methodology shown in Figure 1 provides an
alternative to the computer-centered design techniques. It
is a human-centered design process that systematically
decomposes the design problem into an ordered sequence
of design decisions that are sensitive to the level of user
involvement in the problem solution process (Kern, 2000).
The result of each design decision acts as input to the
subsequent design decision.

Figure 1: Scheduling system design methodology

The design decisions surrounding the scheduling
problem representation step identify and classify the object
classes of interest in the problem domain. It further
organizes these classes based on the responsibilities of the

From:MAICS-2000 Proceedings. Copyright © 2000, AAAI (www.aaai.org). All rights reserved. 



participants in the solution process. A participant, for
example, may be responsible for describing the problem
state while another may act on the problem state to achieve
some system-wide goal. The result is a process level
description that clarifies the relationships between process
participants with regard to the objects in the problem
domain. This allows for the case that more than one human
or computer may be responsible for the overall problem
specification and solution.

The system analysis and design step uses this process
level description to select an appropriate architecture and
system design methodology. Based on the chosen
architecture and the levels of user guidance and monitoring
expected, the designer can choose the appropriate class of
problem solution techniques. The culmination of the
previous steps results in an interface requirements
definition. The interface requirements definition specifies
the manner in which the user can monitor and guide the
actions of the decision support system. These design steps
must be defined in a manner that supports the user’s
problem understanding, interaction, and ability to respond
to the problem environment.

In our approach we represent the problem in a way that
provides intuition to the user, uses common terms, and
ensures understanding. We also state the case for choosing
a mixed-initiative, agent-oriented design approach. This
choice influences the underlying system architecture and
ensures mechanisms to support the appropriate levels of
user monitoring and guidance exists. User interfaces are
mapped directly to the architectural components,
guaranteeing the emergence of a tightly coupled
human/agent team. This tight coupling is at the heart of a
well-designed, distributed decision support process and is
central to the methodology this research presents.

The focus for this discussion is the problem
representation step. Section 2 discusses the concept of a
scheduling problem representation. We highlight the main
issues related to problem representation and how these
issues seek to capitalize on the strengths of the computer
system and the human user. Section 3 describes our
implementation of the scheduling problem representation
scheme in our prototype application and discusses the
decision support advantages gained as a result of this
representation. Finally, section 4 concludes with a brief
discussion and future research.

Problem Representation

Several object-oriented frameworks exist that aid in the
development of scheduling systems (Smith & Becker,
1997; Beck, 1998; Cesta, Oddi, & Susi, 1999; Dorn,
Girsch, & Vidakis, 1999). They take advantage of the large
body of theoretical work in scheduling to identify abstract
objects common to scheduling problems in the large. Smith

and Becker represent these abstract objects in their
Abstract Scheduling Domain Model depicted in Figure 2
(Smith & Becker, t997).

E

Figure 2: Abstract Scheduling-Domain Representation

Our research extends this abstract domain model and
provides a methodology for using this abstract domain
model to assist in the problem representation process. The
following subsections describe the process we used to
represent the satellite operations scheduling problem in our
prototype application and the extensions we made to the
Abstract Scheduling Domain Model.

The Problem Representation Process

Current literature does well to describe the types of objects
that comprise the abstract scheduling problem. However
there is no documented process for representing the
scheduling problem of a given domain with respect to the
abstract scheduling problem. We present a process here
that capitalizes on the existing theoretic scheduling
research to aid in the problem representation process for a
given domain.

The schedule problem representation process presented
here requires the Abstract Schedule Domain Model and
domain expertise as input. The Abstract Scheduling
Domain Model is used as the representation of choice
because it clearly depicts the abstract objects and their
relations. In addition other frameworks surveyed implicitly
support similar forms of this model. Expert interviews,
analysis of the existing domain scheduling process, and
other methods of gathering domain expertise are good
sources of information for constructing the scheduling
problem representation.

The first phase in problem representation is a domain
analysis of the problem domain. Domain analysis results in
the identification of objects central to the scheduling
problem. The second phase uses the abstract objects (e.g.,
ACTIVITY, RESOURCE) in the Abstract Scheduling
Domain Model as classification categories to group the
objects. The result of this classification is a specification of
the concrete scheduling objects that represent completely

Knowledge- and Reasoning-Based Systems 69



and accurately the given scheduling problem. The third
phase organizes these classified concrete objects with
regard to the participants in the system. Three categories
are defined to represent participant responsibilities in the
system. We identified the participants responsible for
introducing the objects into the system and those
participants responsible for processing and managing the
objects in the system. The final phase introduces the flow
of schedule objects between participants. The result is a
process level description of the given scheduling problem.
The overall output of the problem representation step is a
complete representation of the scheduling domain at the
concrete object level and at the process level. Figure 3
shows the phases in this step.

objoct
Classification

Participant-Object ~7
Organization

Process Level [
D °seription I

Figure 3: Scheduling-Problem Representation

The following steps summarize the problem
representation approach taken in our research.

1. Identify inputs and outputs of the current process (e.g.,
schedule request)

2. Select a corresponding abstract object from the
Abstract Scheduling Domain Model

3. Compare inputs and outputs to an abstract object’s
properties and capabilities and find matches (e.g.,
schedule request = DEMAND)

4. Follow a relation link (e.g., ACTIVITY produces
PRODUCT) from the abstract object selected in Step 
and repeat Step 3 until all relevant concrete objects are
identified and classified.

5. Organize concrete objects by process participant (e.g.,
Participant A is responsible for all resources)

The strengths of this approach are threefold. First, it
uses common software engineering techniques (i.e.,
domain analysis and object classification) that are familiar
to software developers in general, aiding the overall system
design process. Second, it incorporates a concrete
scheduling object organization scheme as well as a process
level organization scheme that aids in the selection of

70 MAICS-2000

appropriate component level and system architectures in
the following design methodology step. Third, it represents
the concrete scheduling objects in a manner that is
intuitively clear to the user. This representation process
also educates the user in a manner that enables the user to
understand the underlying actions of the system thereby
engendering a sense of trust in the system’s actions.
Understanding the problem space and trust are two key
benefits of this process and are considered desirable traits
of mixed-initiative systems (Burstein & McDermott, 1994;
Brown & Cox, 1999).

Extensions to the Abstract Scheduling Domain
Model

The existing Abstract Scheduling Domain Model proved
valuable except in two cases. One of the underlying goals
of our research is to assist the user in scheduling activities
by automatically generating activities using available
system data. The properties and capabilities defined for the
abstract DEMAND scheduling object in the Abstract
Scheduling Domain Model does not include a provision for
modeling DEMANDS as automatic entities. In fact none of
the systems surveyed addressed the issue of automatic
demand generation. We therefore include a property for a
DEMAND that enables the system to determine whether or
not a DEMAND should be automatically generated for
subsequent processing. When a demand is defined in the
system as automatic, it is further defined in domain-
dependent terms based on the frequency and/or conditions
that govern its automatic generation. These domain
dependencies are not considered extensions to the model,
but must be considered nonetheless by the system designer.
This is discussed further in Section 3.

The other case where it was necessary to extend the
Abstract Scheduling Domain Model is with respect to the
properties and capabilities of a RESOURCE. To assist the
user in generating necessary schedule demands, it is
helpful for a resource to have a "sense of self". By actively
monitoring conditions in the system, the resource can
"ask" the system to generate a demand on its behalf.
Conversely the system can poll the resource for any
pending demands and the resource can respond based on
its internal state. In this way the resource acts as an active
agent in the system. This is not inconsistent with the
abstract RESOURCE object. We do not suggest a core of
abstract capabilities or properties to include in the model to
represent active and passive resources. We do suggest that
a provision be made that recognizes the decision support
benefits of this approach.



Implementation

Following the approach shown in Figure 1 we
implemented a prototype scheduling system called SOSA,
Satellite Operations Scheduling Assistant. It is an object-
oriented class library written in the Java programming
language consisting of five Java packages comprising the
software agents, messaging mechanism and conversation
protocols, concrete and abstract scheduling objects, and
interface components of the system. We identified,
classified, and organized the concrete scheduling objects in
the satellite operations domain in the manner described in
Section 2. The result is a problem representation that
enables the system to provide decision support services to
the user as enabling the user to monitor and guide the
system services. The following example supports these
statements.

In our example domain, the user currently submits a
request to the human scheduler to schedule an activity.
Scheduling theory does not support the notion of an
activity as the unit of submission; a demand is the
appropriate way to represent a user requirement. The user
should instead submit a demand to the system. The system
in turn processes the demand resulting in one or more
products that satisfy the demand. The products are further
processed to generate one or more atomic activities that,
when executed, produce the needed products. Using our
problem representation approach, the user moves away
from an activity-centric scheduling mentality to a demand-
centric one. The user is no longer specifying the individual
activities he needs to achieve a system goal state, but
instead submits a demand that automatically equates to the
activities that move the system to the desired goal State.

There are several benefits to this approach. First,
activity-centric scheduling requires the user to know the
individual activities necessary for achieving the goal
system state. If activity-types are added or deleted the user
needs to be aware of this each time he attempts to schedule
activities to achieve a desired system state. In demand-
centric scheduling these facts are abstracted from the user
and handled by the system. Second, in activity-centric
scheduling the user is required to know the temporal
relations between these activities (if any exist). If the
requirement for Activity B to follow Activity A was 4
hours and is now changed to 3 hours, the user needs to be
aware of this for all future submissions of Activities A and
B. In the demand-centric approach the system again
abstracts this knowledge from the user. Third, the user
typically needs to know the resources required by each
activity in order to submit an activity request. In demand-
centric scheduling the system tracks the resources required
for each activity. The problems with activity-centric
scheduling are further exacerbated when dealing with
novice users.

Our prototype system modeled automatic demands as
location-specific, time-specific, or a combination of the
two. Location-specific demands are automatically
generated by the system whenever the physical location of
the satellite warrants. A satellite’s attitude in relation to the
sun and/or moon is one type of location-specific
consideration. Time-specific demands are generated on a
regularly recurring basis (i.e., the first Monday of the
month). Finally a combination demand is automatically
generated for a specific time as long as the satellite’s
location is/is not within given location thresholds.

The move towards viewing resources as active objects
and relying on the resources to generate demands on their
behalf is a direct result of the choice to model demands as
automatic or manual. We recognized early that there were
state properties associated with the satellite resources that
could aid in our goal to provide automated decision
support services to the user. This is particularly true since
the satellite in our domain is the "center of attention" so to
speak. The satellites are "aware" of their physical locations
and the current system time. When conditions for an
automatic demand are met, the satellite submits a demand
to the system. This is a significant decision support service
since the human satellite engineer is relieved from
manually verifying the conditions for each satellite in the
constellation.

The focus of the schedule representation problem now
shifts from representing demands to representing products
in the system. The products are called mission types in the
satellite operations domain and are composed of activities,
called command plans. Additionally mission types contain
the temporal relations that exist between the command
plans. We developed a user interface that allows the user to
add, remove, and modify mission types in the system. This
is equivalent to the user adding, removing, and modifying
a portion of the system rules used for scheduling. This is
the abstraction mechanism we employed to remove the
common user from memorizing the activities and temporal
relations required to achieve a desired goal state. The
expert user can specify the appropriate scheduling rules
and all subsequent users, novice or otherwise, can benefit.
Figure 4 shows the Mission Type Editor interface.

In the example depicted in Figure 4, the ranging
mission type is comprised of six ranging command plans.
Each ranging command plan starts four hours after the
previous one. The user has the option to add command
plans from the Command Plan Library, deleting command
plans from the ranging mission type, or modify the
temporal relations between the respective command plans.
The main point to make here is that once a mission type is
defined, the user no longer is required to know the number
and type of command plans required to complete a mission
or their respective temporal relations. This approach also
provides an intuitive way to describe the products that are
produced by the system and the activities that produce
those products.

Knowledge- and Reasoning-Based Systems 71



Figure 4: The Mission Type Editor

Conclusions

We inlxoduced a software design process that can be used
to design a decision support system for scheduling. We
emphasized the necessity for identifying desired levels of
user monitoring and guidance of the decision support
system early in the design process. We showed the major
steps in the design process and examined in detail the first
of these steps (i.e., problem representation). We described
a process for representing the scheduling problem that
identifies, classifies, and organizes concrete scheduling
objects. This leads to a process level description that is
used in the subsequent System Analysis and Design step.
We took advantage of existing work in scheduling theory
using the Abstract Schedule Domain Model and explained
our need to extend the model to account for our goal of
automatic demand generation. This was accomplished by
adding an automatic property to the DEMAND as well as
introducing active resource-directed demand generation.
These extensions relieve some of the user’s burden of
identifying demands essential for successful mission
accomplishment. Finally we showed how our
representation is implemented in our prototype system
SOSA and how it aids the user in defining the system rules
that are used to schedule activities.

This research provides a methodology that enables a
system designer to replace the manual, error-prone nature
of the current scheduling environment in satellite
operations with a decision support system that aids the
user. Aid is provided by supporting the definition of
scheduling rules (i.e., mission demands, mission types, and
command plans), reducing the level of user knowledge
required to schedule activities effectively, and automating
demands that can be generated based on available data.

Acknowledgements

Support for this research was provided to the second author
by Wright State University and by the Ohio Board of
Regents through the OBR Research Challenge Fund.

72 MAICSo2000



References

Brown, S., & Cox, M. (1999). Planning for Information
Visualization in Mixed-Initiative Systems. In M. T. Cox
(Ed.), Proceedings of the 1999 AAAI-99 Workshop on
Mixed-Initiative Intelligence (pp. 2-10). Menlo Park, CA:
AAAI Press.

Burstein, M. and McDermott, D (1994). Mixed-Initiative
Military Planning: Directions for Future Research and
Development.

Cesta, A., Oddi, A., & Susi, A. (1999). O-OSCAR: 
Flexible Object-Oriented Architecture for Schedule
Management in Space Applications. In Proceedings of the
Fifth International Symposium on Artificial Intelligence,
Robotics and Automation in Space (I-SAIRAS-99).

Cox, M. T., & Veloso, M. M. (1997). Controlling for
unexpected goals when planning in a mixed-initiative
setting. In E. Costa & A. Cardoso (Eds.), Progress in
Artificial Intelligence: Eighth Portuguese Conference on
Artificial Intelligence (pp. 309-318). Berlin: Springer.

Dorn, J., Girsch, M., & Vidakis, N (unpublished).
DEJA VU: A Reusable Framework for the Construction of
Intelligent Interactive Schedulers.
http://www.dbai.tuwien.ac.at/proj/DejaVu/document/docu.
htm

Ferguson, G., Allen, J. F., & Miller, B. (1996). TRAINS-
95: Towards a mixed-initiative planning assistant. In
Proceedings of the Third International Conference on AI
Planning Systems. Edinburgh, Scotland, May 29-31.

Kern, S.C.G. (2000). Designing a Decision Support System
for Satellite Operations Scheduling. MS thesis, Dept. of
Electrical and Computer Engineering, Air Force Institute
of Technology.

Lieberman, H. (1999). Attaching Interface Agents to
Applications. Unpublished.

Oates, T., & Cohen, P. R. (1994). Toward a plan steering
agent: Experiments with schedule maintenance. In
Proceedings of the Second International Conference on
Planning Systems (pp. 134-139). Menlo Park, CA: AAAI
Press.

Smith, S.F., & Becker, M. (1997) An Ontology for
Constructing Scheduling Systems. In Working Notes of
1997 AAAI Symposium on Ontological Engineering,
Stanford, CA.: AAAI Press.

Knowledge- and Reasoning-Based Systems 73




