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Abstract
This paper discusses the role that background
knowledge can play in building flexible multistrategy
learning systems. We contend that a variety of
learning strategies can be embodied in the background
knowledge provided to a general purpose learning
algorithm. To be effective, the general purpose
algorithm must have a mechanism for learning new
concept descriptions which can refer to knowledge
provided by the user or learned from some other task.
The method of knowledge representation is a central
problem in designing such a system since it should be
possible to specify background knowledge in such a
way that the learner can apply its knowledge to new
information.

Introduction

There are many reasons why one may wish to combine a
variety of learning strategies in one system. Many
experiments have confirmed that we are yet to find a single
learning algorithm that does best in all circumstances (for
example, Michie, Spiegeihalter & Taylor, 1994). It is often
more effective to use different algorithms at different times
than to try to use one algorithm all the time. This approach
raises several questions, including: under which
circumstances is a particular method appropriate and how
large does our library of algorithms have to be?

Often, multistrategy learning systems have a fixed set of
algorithms to draw upon and their interaction is pre-
determined by the programmer. In other words, they are
often designed to be specific to a particular type of learning
problem. In this paper, we suggest that general purpose
multistrategy learners can be constructed by allowing the
learner to make use of complex background knowledge.

We contend that a great deal of flexibility can be gained
by a machine learning system which uses a concept
representation language that permits references to user
defined background knowledge as well as knowledge
derived from other learning tasks. First, we illustrate the
power of complex background knowledge with an example
of numerical reasoning in inductive logic programming.
Next, we describe a machine learning system that
encourages the use of learned as well as predefined

background knowledge. Finally, we discuss the connection
between background knowledge and multistrategy learning.

An Example: Numerical Reasoning in ILP

The effectiveness of background knowledge as a means of
providing a variety of learning strategies can best be seen
through an example. Sammut, Hurst, Kedzier and Michie
(1992) describe a learning problem where a human pilot 
required to fly an aircraft in a flight simulator. During the
flight the actions of the pilot are logged, along with the
situation in which the action is performed. Flight logs are
used as input to an induction program which generates
rules for an autopilot.

The task of piloting an aircraft through a complete flight
plan is a complex task involving a number of stages each of
which is defined by a particular goal. For example, the pilot
may be told to take off; climb to a particular altitude; turn
to some heading; maintain straight and level flight until a
certain marker is reached, etc. For each stage of a flight, we
build a separate set of control rules. Further complexity is
added by the fact that an aircraft has a number of controls,
eg. elevators, ailerons, rudder, flaps, throttle, etc. Within
each stage we build rules for each control available to the
pilot. The result is a two-level controller where the top
level is an "executive" which invokes low level agents to
perform a particular task. Thus, "Learning to Fly" applies
machine learning in a number of ways to build a control
system that has different strategies for different situations.
While the result is a multistrategy controller, our original
experiments only involved a single learning algorithm.,
C4.5 (Quinlan, 1993).

Although these experiments resulted in working
autopilots capable of flying the aircraft from take-off to
landing, the rules that were generated were often large,
difficult to read and not always robust under different flight
conditions. One reason for some of these difficulties is that
only the raw data from the simulator were presented to the
learning algorithm. The data obtained from the simulator
include the position, orientation and velocities of the
aircraft as well as the control settings. While these data are
complete in the sense that they contain all the information
necessary to describe the state of the system, they are not
necessarily presented in the most convenient form. For
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Table 1. Background Predicates

pos(P~ T) p°siti°nr Pr of aircraft at time) T.
before(T 1~, T2) timer. Tlr is before time, T2.
regression(ListY, ListX, M, C) least-square linear regression, which

Y ffi M x X + C for the list of X and Y values.
tries to find

Ime , Y, M, c)
circle(’P I, P2, P3, X, Y, R)

=’<) >=r abs

linear~, Y) M) C) :- Y is M*X+C.
fits a circle to three points, specifying the centre (X, Y) and
radius) 
Prolo~ built-in predicates

example when a pilot is executing a constant rate turn, it
makes sense to talk about trajectories as arcs of a circle.
Induction algorithms, such as C4.5, can deal with numeric
attributes to the extent that they can introduce in equalities,
but they are not able to recoguise trajectories as arcs or
recognise any other kind of mathematical property of the
data.

Srinivasan and Camacho (forthcoming) have shown how
such trajectories can be recognised with the aid of a
sophisticated mechanism for making use of background
knowledge. This mechanism is part of the inductive logic
programming system Progol (Muggleton, 1995). The
feature of Progol that most interests us here is that the
learning algorithm is embedded in a custom built Prolog
interpreter. Concepts learned by Progol are expressed in the
form of Prolog Horn clauses and background knowledge is
also expressed in the same form. Moreover, the Prolog
interpreter’s built-in predicates may appear in either
learned or background clauses.

Like Marvin (Sammut, 1981; Sammut & Banerji, 1986),
Progol begins by taking the description of a single positive
example and saturates the description by adding to it
literals derived from background knowledge. These new
literals result from predicates in the background knowledge
being satisfied by data in the example. Suppose the
example contained the numbers 2 and 3 somewhere in the
example description. Also suppose that the built-in
predicate ’<’ were supplied as background knowledge.
Saturation might add a new literal, X< T, to the description
of the example. X has been substituted for 2 and Y for 3.
Progol permits mode declarations to restrict the application
of predicates to avoid an explosion in the number of literals
that the saturation procedure may try. Note that any of
Prolog’s built-in predicates can be declared as background
knowledge and any user defined Prolog program may also
be declared as background knowledge. Furthermore, since
Progol concept representation language is Horn clauses,
any learned concepts may also be entered as background
knowledge.

When saturation is completed, Progol has a most specific
clause to serve as a bound on a general-to-specific search.
Beginning with the most general clause, ie. one with an
empty body, Progol tries to find a subset of the most
specific clause that satisfies a minimum description length
criterion for the best clause. Muggleton (1995) describes
the search procedure.

Progol’s ability to use background knowledge can be
used in a multistrategy approach to learning to pilot an
aircraft. Srinivasan and Camacho applied Progol to the
problem of learning to predict the roll angle of an aircraft
during a constant rate turn at a fixed altitude. To do this
effectively, the target concept must be able to recognise the
trajectory as an arc of a circle. The predicates shown in
Table 1 are included in the background knowledge.

The pos predicate is the ’input’ to the learner since it
explicitly describes the trajectory of the aircraft as a
sequence of points in space. These points are derived from
flight logs. The before predicate imposes an ordering on the
points in the trajectory. The regression predicate provides
the key to fmding the relationship between the roll angle
and the radius of the turn. The mode declaration for
regression specifies that the first two arguments are lists
which described the sequence of pairs of coordinates for
the aircraft during the turn. The mode declaration causes
Progol to generate these lists and invokes regression
which performs a least-square regression to find the
coefficients of the linear equation which relates roll angle
and radius. Regression must be accompanied by another
background predicate, linear, which implements the
calculation of the formula.

The regression predicate is an intermediate relationship
that does not appear in the final description of the learned
concept. During saturation, regression recognises the
relationship between the angle and radius, given the
sequence of aircraft positions. Once the coefficients of the
linear equation are available, Progol can generate a
reference to linear. Thus the theory produced isl:

roll__angle(Tl, Angle) 
pos(P 1, TI), pos(P2, T2), pos(P3, 
beforeO’l, T2), before (T2, T3),
circle(P I, P2, P3, ~ ~ Radius),
llnear(Angle, Radius, 0.043,-19.442).

The circle predicate recognises that P1, P2 and P3 fit a
circle of radius, Radius and regression finds a linear
approximation for the relationship between Radius and
Angle which is:

Angle = 0.043 x Radius - 19.442

1 The theory as been siplified slightly to avoid lengthy
explanations of details not relevant to this discussion.
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The ’ ’ arguments for circle are "don’t cares" which
indicate that, for this problem, we are not interested in the
centre of the circle.

Machine learning algorithms generally tend to be poor at
numerical reasoning. This is usually left to scientific
discovery systems. However, the flight trajectory example
illustrates why, for many domains, it is important to
incorporate numerical reasoning into induction. One way to
do this is by adding background knowledge for a variety of
equation solvers.

Because Progol permits the use of arbitrary Prolog code
in its representation of concepts, it can invoke a variety of
methods for fitting data which go beyond Progors own ILP
style of learning. Linear regression is just one example of a
statistical method for fitting data. A library of such
predicates gives a system like Progol the ability to use
different strategies depending on the type of data available.
Since the components of the library are just Prolog
programs, the learning algorithm does not have to be
modified to permit different data fitting methods to be
added. Furthermore, the library may even include other
learning algorithms. In the following section, we describe
an ILP system that has such a library of learning
algorithms.

Using Induction to Build Background
Knowledge

An experimental ILP system is currently being developed
which is actually a Prolog interpreter with a variety of
machine learning and statistical algorithms included as
built-in predicates. The algorithms included so far are: Aq
(Michalski, 1973; 1986), ID3 with priming (Quinlan, 1979;
1993), Induct-RDR (Gaines, 1989), naive Bayes, regression
trees (Breiman et al, 1984), linear discriminant, DUCE
(Muggleton, 1987). All of these algorithms can be invoked
as predicates which are available as background knowledge
to an ILP system similar to Progol.

First, we give a brief example of the individual use of
some these algorithms and then we describe how they may
be combined in a multistrategy learner. Like most
attribute/value based systems, a description of the attributes
and their legal values is required. Following the example of
Cendrowksa (1987):

mode lens(
age(young, pre_presbyopic, presbyopic),
prescription(myope, hypermetrope),
astigmatism(not_astigmatic, astigmatic),
tear_production(reduced, normal),
lens(hard, soft, none)

).

The task here is to learn to predict whether a person should
wear a hard or soft contact lens or wear no contact lens.
The class value is always the last attribute in the list.
Examples are entered as ground unit clauses in Prolog’s

database. A small sample for the problem described above
is:

lens(young, myope, not_astigmatic, reduced, none).
lens(young, hypermetrope, not_astigmatic, reduced, none).
lens(young, hypermetrope, not_astigmatic, normal, soft).
Icns(pre_,presbyopic, myope, astigmatic, reduced, none).
lens(pre__presbyopic, myope, astigmatic, normal, hard).
lens(presbyopic, myope, not_astigmatic, reduced, none).
lens(presbyopic, myope, not_astigmatic, normal, none).
lens(presbyopic, hypermetrope, astigmatic, normal, none).

To run an induction algorithm, we simply invoke it as a
procedure call in Prolog. Thus, to build a decision tree, the
following call is executed:

id(lens)?

The output of all the induction algorithms is a Prolog
clause which captures, the decision tree or set of rules.
Since the output is in standard Prolog form, it can be
asserted into the database and used as an ordinary program.

lens(Age, Prescription, Astigmatism, TearProduction, Lens) :-
(TearProduction = reduced -> Lens = none
[TearProduction = normal ->

(Astigmatism = not_astigmatic -> Lens = soft
IAstigmatism = astigmatic ->

(Prescription = myope -> Lens = hard
IPrescdption = hypermetrope ->

]Age = pre_presbyopic -> Lens = none
IAge = presbyopic -> Lens = none)))).

ILP learning systems are typically used in domains where
relational information is important. These are domains in
which the common attribute/value representation of
traditional induction algorithms makes representation of
examples and concepts difficult. However, when a
relational representation is not essential, propositional
learning algorithms are often still preferable because of
their speed and ability to handle noise and numeric data.

We have seen how Srinivasan and Camacho used linear
regression to fit numeric data. In the same way, it is
possible to use regression tree methods as background
knowledge to construct a function. The following data are
samples from a flight log. Each clause gives the position of
the aircraft and the pitch angle in 10ths of degrees.

pitch(500, -2461, -977, -7).
pitch(498, -2422, -955, - 17).
pitch(489, -2385, -932, -20).
pitch(413, -2219, -801, -20).
pitch(397, -2190, -771, -I 8).
pitch(369, -213 I, -709, - 19).
pitch(265, - 1925, -494, - 15 ).
pitch(252, -1895, -463, - 13).
pitch(23 I, - i 835, -400, - 12).
pitch(21 I, -I 771, -339, -10).
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pitch(202, - 1737, -31 I, -8).
pitch(195, - 1702, -283, -7).

Suppose we wish to predict the pitch of the aircraft, based
on its current position. This is a gross simplification of
what we would really want to know since pitch is usually
not a function of position alone.

Running the CART regression algorithm, we obtain the
following regression treeI:

pitch(Alt, Dist, X, Pitch) 
(Alt <= 216 ->

(AIt <= 21.5 ->
Pitch ± -3.86;
(AIt <= 83.5 ->

Pitch = -7.70;
Pitch = -6.1 i));

Pitch -- -I 7.18).

As with linear regression, regression trees can be built
during saturation. Two background predicates are required
to achieve this. Like linear regression, one predicate is
needed to invoke the regression tree algorithm during
saturation and the second predicate is needed for execution
of the regression tree, eg. pitch. In this case, however, the
second predicate is built by the first predicate during
saturation. Note that when predicates of this form are built,
the system is performing quite sophisticated constructive
induction.

Structured Induction

The present solution to the "Learning to Fly" task is an
example of structured induction. Shapiro (1987) introduced
the idea of structured induction as a means of simplifying a
learning task and for making the result of learning more
human readable. His experiments were conducted in the
familiar domain of chess end-games. Quinlan (1979) had
previously demonstrated that it was possible to induce
decision trees for this domain. However, they were usually
large and end-game experts could fmd little in them that
corresponded to their own intuition. To overcome this
problem, Shapiro obtained the help of a chess master who
was able to describe high-level features that players looked
for.

Armed with this knowledge, Shapiro induced decision
trees for each of the high;level features and organised the
whole knowledge base as a tree of trees. The top-level tree
was hand-crafted from the knowledge obtained by the
chess expert. The subtrees were built by induction. The
result was an accurate solution which also made sense to
chess experts.

Shapiro used as uniform representation and the same
type of induction algorithm throughout his Analysis. This is

1 Prolog’s standard notation for the logial ’or’ is ’;’. We
use this symbol and T interchangably.

also true of the original flight control system. All the
control agents were synthesised using the same learning
algorithm. However, we have seen that different algorithms
may be used when one is more appropriate than another,
thus extending the notion of structured induction.

It should be noted that, multistrategy learning in the
context described here is not fully automatic, but rather, is
a collaboration between human and machine. In principle,
it is possible to give systems like Progol very little
guidance about what kinds of predicates to try to use in the
saturated clause. In practice, however, the run time for an
unconstrained search is prohibitive for large problems.
Thus, the user normally provides mode declarations to
specify the type of predicate to look for.

Background Knowledge and Generalisation
Having seen some specific examples of the use of
background knowledge in multistrategy learning, what
lesson can be learned?

Often when one sees many specialised strategies doing
subtly different things, one is tempted to ask if there is
some underlying principle that is common to all cases.

To illustrate this, let us consider Michalski’s (1983)
categorisation a number of generalisation operations. For
example, the "climbing a generalisation tree" is given as a
distinct generalisation operator. In the following, we define
a simple type hierarchy in terms of Horn clauses.

living thing(X) :- plant(X).
living_thlns(X) :- animal(X).

auimal(X) :- mammal(X).
auim~(x) :- fish(X).

mawm.l(X) :- elephant(X).
mammal(X) :- whale(X).

Suppose ’fred’ is an example of the concept ’p’ which we
wish to learn. Fred has the property that it is an elephant.

p(fred) :- elephant(fred).

Saturation proceeds as follows, mammal(fred) is true since
elephant(fred) is given. Having concluded mammal(fred),
animal(fred) follows and consequently so does
living__thing(fred). A system like Progol would construct a
most specific clause of the form:

p( fred) 
elephant(fred),
mammal(fred),
animalCfred),
living_thing(fred).

It then becomes a matter for the search procedure to
determine which subset of literals in the most specific
clause is the target concept. Thus appropriate background
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knowledge gives us generalisation by climbing a type
hierarchy. In what way does this differ from the following
implementation of the "closing the interval" rule?

The background knowledge consists of the clauses:

X in L..H :- X =< L, L =< H.

and the example,

p(2, 1, 3).

generalises to:

p(N, X, Y) :- N in X..Y.

since 2 in 1..3 is satisfied. Thus the "closing the intervar’
rule can also be ob~ined from background knowledge.

In fact, linear regression and regression trees can also be
seen as generalisation rules since they are implemented in
exactly the same way as these "basic" generalisation rules
are. So the main lesson to be learned is that while different
forms of generalisation may be appropriate for different
types of data, these forms can be described using a uniform
representation. This means that they can all share a
common mechanism for applying them. This, in turn, leads
to a very flexible framework for learning.

Scientific Discovery

Induction and scientific discovery are often thought of as
related but separate sub-fields of machine learning. This
need not be the case. It is clear from the use of linear
regression that finding models for numerical data can be
accommodated in an induction setting. Indeed, a model
finding algorithm becomes another generalisation
operation. The search for combinations of variables to
create formulae can be guided by background knowledge to
indicate what classes of formulae to look for.

Srinivasan (personal communication) has used a scheme
similar to the one described for flight trajectories to learn
the equations of motion for a pole and cart system. A
simulation of a pole and cart was run with random actions
applied to push the cart left or right. A trace of the systems
behaviour was input to Progol with the result that equations
of motion predicting the next state from the current state
were synthesised.

Discussion

This discussion as taken place in the setting of inductive
logic programming. However, the issues raised here go
beyond a debate about the suitability or otherwise of logic
as a representation language. The key issue are that:
¯ the background knowledge and the concept description

language should be the same and
¯ the expressions in the language should be executable as

programs.

Uniformity of representation ensures that knowledge can
be reused. That is, learned concepts can be added to
background knowledge for further learning. The user can
also provide pre-deflned background knowledge and the
system will not have to know what is user defined and what
has been learned because both are treated the same way.

If the representation language is executable and therefore
can be used to write programs, the background knowledge
can describe very powerful concepts, including other
learning and data modelling algorithms.

It happens that Horn clause logic has these features. For
all the limitations of this form of representation, it does
provide an excellent framework for building flexible
learning systems.
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