
Coevolution Learning:
Synergistic Evolution of Learning Agents and Problem Representations

Lawrence Hunter

National Library of Medicine
8600 Rockville Pike
Bethesda, MD 20894
hunter@,nlm.nih.gov

Abstract
This paper describes exploratory work inspired by a
recent mathematical model of genetic and cultural
coevohition. In this work, a simulator implements two
independent evolutionary competitions which act
simultaneously on a diverse population of learning
agents: one competition searches the space of free
parameters of the learning agents, and the other
searches the space of input representations used to
characterize the training data. The simulations
interact with each other indirectly, both effecting the
fitness (and hence reproductive success) of agents
the population. This framework simultaneously
addresses several open problems in machine learning:
selection of representation, integration of multiple
heterogeneous learning methods into a single system,
and the automated selection of learning bias
appropriate for a particular problem.

Introduction
One clear lesson of machine learning research is that
problem representation is crucial to the success of all
inference methods (see, e.g. (Dietterich, 1989; Rendell
Cho, 1990; Rendell & Ragavan, 1993)). However, it
generally the case that the choice of problem representation
is a task done by a human experimenter, rather than by an
automated system. Also significant in the generalization
performance of machine learning systems is the selection
of the inference method’s free parameter values (e.g. the
number of hidden nodes in an artificial neural network, or
the pruning severity in a decision tree induction system),
which is also a task generally accomplished by human
"learning engineers" rather than by the automated systems
themselves.

The effectiveness of input representations and free
parameter values are mutually dependent. For example, the
appropriate number of hidden nodes for an artificial neural
network depends crucially on the number and semantics of
the input nodes. This paper describes exploratory work on
a method for simultaneously searching the spaces of

representations and parameter settings, using as inspiration
a recent mathematical model of the coevolution of genetics
and culture from anthropology (Durham, 1991).
important additional feature of this work is that is provides
a simple, seamless and effective way of synergistically
combining multiple inference methods in an integrated and
extensible framework. When only a single inference
method is used, this framework reduces to a variant on
constructive induction. However, with multiple and
diverse learning agents, the system is able to generate and
exploit synergies between the methods and achieve results
that can be superior to any of the individual methods acting
alone.

The work presented here fits into a growing body of
research on these issues. The importance of bringing
learning engineering tasks within the purview of the theory
and practice of automated systems themselves was
described at length in (Schank, et al., 1986). Some
effective computational methods for aspects of this task
have been reported recently. (Kohavi & John, 1995,)
describes an automated method for searching through the
space of possible parameter values for C4.5. Genetic
algorithms have also been used to search the space of
parameter values for artificial neural networks (Yao,
1993). There has also been recent work on selecting
appropriate ("relevant") subsets of features from a superset
of possible features for input representation in machine
learning ((Langley, 1994) is a review of 14 such
approaches), as well as a long history of work on
constructive induction ((Wnek & Michalski, 1994)
includes a review, but see also (Wisniewski & Medin,
1994) for critical analysis of this work. This paper
describes an exploratory approach that appears to have
promise in addressing these issues in an integrated way.

Background
The idea of coevolution learning is to use a kind of genetic
algorithm to search the space of values for the free
parameters for a set of learning agents, and to use a system

Hunter 81

From: Proceedings of the Third International Conference on Multistrategy Learning. Copyright © 1996, AAAI (www.aaai.org). All rights reserved.

metaphorically based on recent anthropological theories of
cultural evolution to search through the space of possible
input representations for the learning agents. This section
provides some brief background on these ideas.

Evolutionary algorithms are a weak search method
related to, although clearly distinguishable from, other
weak methods (e.g. beam search). They are based on
metaphor with naturally occurring genetic evolution. In
general, evolution has three components: inheritance, or the
passage of traits from one individual to another: variation,
of the generation of novel traits or combinations of traits"
and selection, a competition between individuals based on
their traits that effects the probability that an individual will
have descendants that inherit from it. There are many ways
of building computational models that evolve, including
genetic algorithms, genetic programming and evolutionary
strategies; see (Angeline, 1993) for an excellent survey
and analysis of the approach.

Anthropological theories of culture have been
converging for some time on what are now known as
"’ideational" theories. They hold that culture "consists of
shared ideational phenomena (values, beliefs, ideas, and the
like) in the minds of human beings. [They refer] to a body
or ’pool’ of information that is both public (socially shared)
and prescriptive (in the sense of actually or potentially
guiding behavior)." (Durham, 1991), p. 3. Note that this
view is different from one that says culture is some
particular set of concrete behavior patterns; it instead
suggests that culture is just one of the factors that shapes
behavior. An individual’s phenotype (here, its behavio0 is
influenced by its genotype, its individual psychology and
its culture. Durham summarizes "*the new consensus in
anthropology regards culture as systems of symbolically
encoded conceptual phenomena that are socially and
historically transmitted within and between populations"
(p. 8-9). This historically rooted, social transmission
ideational elements can be analyzed as an evolutionary
process. The characterization of that evolutionary process
(and its relationship to genetic evolution) is the subject
Durham’s book, and also the subject of a great deal other
research dating back at least one hundred years (much of
which is surveyed by Durham).

There are several significant differences between cultural
and genetic evolution. Cultural traits are transmitted
differently than genetic ones in various ways. It is possible
to transfer cultural traits to other members of your current
generation, or even to your cultural "parents." It is also
possible for one individual to pass cultural waits to very
many more others than he or she could genetically. The
selection pressure in the competition among cultural
entities is not based on their reproductive fitness as with
genetic evolution, but on the decisions of individuals to
adopt them, either through preference or imposition. And
most importantly for the purposes of this work, cultural
evolution involves different sources of variation than
genetic evolution. Rather than relying on mutation or
sexual recombination of genomes to provide novel genetic
variants, culture relies on individual’s own discovery, and

synthesis as the source of novelty. By providing a
computational model in which individuals are able to learn
from their experiences and share what they have learned, it
becomes possible to simulate a cultural kind of evolution.

A key aspect of any model of cultural evolution is the
specification of the smallest unit of information that is
transmitted from one agent to another during cultural
transmission, christened the "meme" by Richard Dawkins.
Although there is a great deal of argument over what
memos are (ideas. symbols, thoughts, rules patterns, values,
principles, postulates, concepts, essences and premises
have all been suggested), and a great deal of theoretical
analysis describing how memes compete, are transformed,
interact with genes, etc., I am aware of no attempts to
operationalize the term so that it would be possible to build
computational simulations of populations of memes.

A memo must play several roles in a simulation of
cultural inheritance. First, it must be able to have an effect
on the behavior of the individuals in simulation. Second,
individuals must be able to create new memos as a result of
their experiences (e.g. by innovation, discovery or
synthesis). Third, it must be possible for other individuals
in the simulation to evaluate memes to determine whether
or not they will adopt a particular meme for its own use.
In the sections below, I will show how the input
representation used by a machine learning system can be
used to meet these requirements.

A Formal Definition of Coevolution Learning

A coevolution learning system functions by evolving a
population of learning agents. The population is defmed by
a classification task T, a set of classified examples of that
task expressed in a primitive representation Ep, a fitness
function for agents fA, and a set of learning agents A:

ecoevffi-{Y, Ep, fA, A}
A fitness function for agents maps a member of the set A to
a real number between 0 and 1. For convenience, it is
useful to define PL to be the subset of Pcoev where all the
agents use learning method L (see below).
Each learning agent A is defined by a learning method L, a
vector of parameter values v, a fitness function for memes
fro, and an ordered set of problem representation
transformations R:

Ai-{L, V, fm, R}
The vector of parameter values may have different length
for different learning methods. Each member of the set of
problem representation transformations Ri is a mapping
from an example (ep ~ Ep) to a value which is a legal
element of an input representation for L (e.g. a real
number, nominal value, bit, horn clause, etc.). The
individual mappings are called memes. The ordered set of
memos (Ri) is called the agent’s memome, and the vector
of parameter values is called its genome. The fitness
function for memos fm is a function that maps a member of
the set Ri to a real number between 0 and 1.

82 MSL-96

From: Proceedings of the Third International Conference on Multistrategy Learning. Copyright © 1996, AAAI (www.aaai.org). All rights reserved.

A transformed example ei is the result of sequentially
applying each of the problem representation
transformations ri e Ri to an example ep ~ Ep. The
application of the set of problem representation
transformations to the set of examples in primitive
representation results in a set of transformed examples,
which is called El. When Ei~Ep, the transformation is
said to be the identity.

Given a population as defined above, the process of
coevolution is defined in the pseudocode in figure 1. The
creation of the next generation of agents is a minor variant
on traditional genetic algorithms. Instead of having the
genome be "bits" it is a vector of parameter values. The
crossover, mutation and fitness proportional reproduction
functions are all identical with the related operations on bit
vectors in genetic algorithms. It is, of course, possible to
transform parameter vectors into bitstring representations
themselves, if it were desirable. In addition to using
parameter vectors instead of bits, the other difference is
that each subpopulation using a particular learning method
(the PL’s) has its own type of parameter vector, since the
free parameters and their legal values vary among learning

methods. These parameter vectors may be of different
sizes, so crossover can only be applied with members of
the same subpopulation.

The main difference between coevolution learning and
other evolutionary methods derives from the creation and
exchange of momes. The meme creation process takes the
output of learning agents that have been applied to a
particular problem, and identifies combinations of the input
features that the learner determined were relevant in
making the desired distinction. The process of parsing
output and creating new memes is specific to each learning
method. For example, a program that learns rules from
examples might create new memes from the left hand sides
of each of the induced rules. Or, a program that learned
weights in a neural network might create new memes’ that
were the weighted sum of the inputs to each of its hidden
nodes (perhaps thresholded to remove marginal
contributions). Specific meme generation methods are
discussed in more detail in the implementation section,
below.

Initialize the population with random legal parameter vectors and the identity representation
transformation.

Determine the phenotype of each agent i by applying learning algorithm Li to transformed examples Ei
using parameter values vi using K-way cross-validation. The phenotype is an ordered set of: the
output of the learner’s cross-validation runs, the cross validation accuracies and the learning
time.

Determine the fitness of each agent by applyingfA to the phenotype of each agent.

Create new memes by parsing the output in each learner’s phenotype and extracting important feature
combinations. The union of all memes generated by aU members of the population is called the
meme pool.

Exchange memes. For each agent i, apply its meme fitness function Fm to elements of the meme pool.
Select the agent’s target number of memes (a free parameter) from the meme pool with
probability proportional to the fitness of the memes.

Repeat from * meme-transfers-per-generation times

Determine phenotype of the agents with their new memes

Determine the fitness of the agents

Create the next generation of agents by mutation, crossover and fitness proportional reproduction.
Agents whose genomes are mutated keep their memomes intact. For each pair of agents whose
genomes are crossed over to create a new pair of agents, the memomes of the parents are
arbitrarily assigned to the offspring.

Repeat from * until a member of the population can solve the problem

Figure 1: Pseudocode of eoevolution algorithm

Hunter 83

From: Proceedings of the Third International Conference on Multistrategy Learning. Copyright © 1996, AAAI (www.aaai.org). All rights reserved.

An Implementation of a Coevolution Learner
COEV (short for "the beginning of coevolution") is
simple implementation of the coevohition learning
framework, written in Carnegie Mellon Common Lisp 17f
and the PCL Common Lisp Object System, running on a
Silicon Graphics Indigo 2 workstation. The current
implementation includes the C4.5 decision tree induction
system and C4.5rules rule extraction tool (Quinlan, 1991),
the LFC++ constructive induction program (Rendell
Ragavan, 1993; Vilalta, 1993) and the conjugate gradient
descent trained feedforward neural network (CG) from the
UTS neural network simulation package (van Camp, 1994).
Each learning method is associated with an object class
which defines how to execute it, how to parse the results
returned, and what the vector of free parameters is for that
type of learner.

Most of the documented parameters for each of type of
learning program is included in the free parameter vector
for that system, along with a specification of either an
upper and lower bound for the parameter’s values or a list
of possible parameter values. For example, the parameter
vector for the UTS conjugate gradient descent learner
includes the number of hidden nodes in the network, the
maximum number of iterations before halting, the output
tolerance (specifying how close to 1 or 0 an output has to
be to count as true or false), a flag for whether or not to use
competitive learning on the output, two nominal parameters
specifying the kind of line search and direction finding
method to use, and three parameters specifying the
maximum number of function evaluations per iteration, the
minimum function reduction necessary to continue the
search and the maximum slope ratio to continue the search.
Theses parameters are explained more fully in the
documentation available with the source code.

Each learner must also have a method for extracting new
features from its output. LFC++, like other constructive
induction programs, specifically defines new features as
part of its output. For C4.5, the output of the C4.5rules tool
was parsed so that each left hand side of each rule was
reified into a new feature definition. For the neural
network learner, a new feature was created for each hidden
node defined by the weighted sum of the inputs to that
node, with any input whose contribution to that sum was
less than the threshold of the node divided by the number
of inputs removed from the sum. These extracted features
are added to the meme pool.

Memes (feature combinations) must be assigned
fitnesses by agents. It is possible for each agent to have its
own method of determining meme fitness. However, a
simplified method is used in COEV. Whenever a program
generates a new meme, its fitness is defined to be the
average "importance" of the feature combination, weighted
by the accuracy of the learners that used the meme. In
Durham’s terms, the inventor of the new meme "’imposes"
its belief in its value on others. In addition, receivers of
memes have a parameter which determines how much

84 MSL-96

weight they put on memos they generate themselves versus
memes generated by others. This mechanism could be
straightforwardly generalized to weight the fitnesses of
memes generated by different classes of agents differently.
Importance is defined differently for different learning
methods. For C4.5 and LFC++, the importance of a feature
combination is the ratio of correctly classified examples
that triggered the rule containing the feature to the total
number of occurrences of the feature. So, for example, if
"A and not B" is a feature extracted from a single C4.5
learner that had a 80% cross-validation accuracy, and 9 of
the 10 examples the feature appeared in were classified
correctly by the rule containing the feature, it’s importance
would be 9/10 and its fitness would be 0.9 * 0.8 = 0.72.
For UTS, the importance of a feature is the absolute value
of the ratio of the weight from the hidden node that defined
the feature to the threshold of the output unit. If there is
more than one output unit, it is the maximum ratio for any
of the output units. Features that play a significant role in
learners that are accurate have higher fitness than features
that do not play as much era role or appear in learners that
are less accurate. It is possible for a feature to have
relatively low prevalence in the population and yet still be
important if it tends to generate correct answers when it is
used.

In addition to defining the fitness of features, COEV
must define the fitness of learners themselves for the
evolution of parameter values. The fitness function tbr
learners was selected to evolve learners that are accurate,
robust and fast:

(tA,- f (A,) = c(A,) - k 07))
where C(Ai) is the cross-validation accuracy of the agent
Ai, S(Ai) is the standard deviation of that accuracy, tAi
the time it took for that agent to learn, tA is the mean
execution time for that type of agent, S(tA) is the standard
deviation of that mean, and k is a constant that trades off
the value of accuracy versus that of learning time.
Execution time is measured as the number of standard
deviations from the mean learning time for that class of
learners so that classes of learners with different training
times can coexist in the same population. In the COEV
system, k was selected to be 3 and accuracies and standard
deviations are measured in percentage points. So, a learner
that had a mean accuracy of 80%, a standard deviation of
9% and took ! standard deviation less than the mean
training time for that class of learner would get a fimess
score of 80 - q9 - (-1) = 78.

Several other aspects of the framework must be specified
in order to implement the system. Meme definitions must
be stored in a canonical form so that it is possible to detect
when two or more generated memes are in effect identical
and should have their fitness scores combined. Memes in
COEV are represented as boolean combinations of
primitives or mathematical formula over primitives, which

From: Proceedings of the Third International Conference on Multistrategy Learning. Copyright © 1996, AAAI (www.aaai.org). All rights reserved.

can be slraighfforwardly compared, although the extension
to first order predicate calculus would make this a more
difficult problem. The number of memes that an agent uses
(i.e. the dimensionality of its input representation) is treated
as a flee parameter of the agent, and allowed to vary from
two to twice the number of primitives. In addition, agents
are allowed to prefer memes of their own creation to
memes created by other learners. A single parameter,
ranging over [0,1] specifies the internal meme preference
of each agent.

Simulation Results on a Simple Test Problem
The COEV system was applied to an artificial problem
designed to be moderately difficult for the machine
learning programs included in the system. The problem
was to identify whether any three consecutive bits in a nine
bit string were on, e.g. 011011011 is false, and 001110011
is true. This problem is analogous both to detecting a win
in tic-tac-toe and to solving parity problems, which are
known to be difficult for many types of learning systems.
There are 512 possible examples, and the problem is simple
enough so that the machine learning systems used (even the
neural network) run reasonably quickly. This is important,
since each program is executed a large number of times
(see the computational complexity section, below).

This problem was run on a system that used only LFC++
and the CG learners. The population consisted of 10
LFC++ learners and 10 CG learners, and was run for 10
generations. Six fold cross-validation was used, and there
was one meme exchange per generation. This rather
modest problem therefore required 2400 learner
executions, taking more than four days of R4400 CPU
time. (The CPU time use was dominated by the 1200
neural network training runs.) Despite the large amount of
computation required for this simple problem, it is
reasonable to hope that the amount of computation required
will grow slowly with more difficult problems (see the
computational complexity section, below).

This simulation illustrated three significant points. First,
the coevolution learning system was able to consistently
improve as it evolved. The improvement was apparent in
both the maximum and the average performance in the
population, and in both the cross-validation accuracies of
the learning agents and in their fitnesses (i.e. accuracy,
speed and robustness). Figure 2 shows these results. In ten
generations, the average fitness of the population climbed
from 51%% to 75%, and the standard deviation fell from
21% to 12.5%. Looking at the best individual in the
population shows that the maximum fitness climbed from
84% to 94%, and the maximum cross-validation accuracy
climbed from 82.3% to 95%. Average execution time fell
by more than 25% for both classes of learners (it fell
somewhat more sharply, and in much greater absolute
magnitude for the neural network learners.)

Figure 3 illustrates the separate contributions of the
genetic evolution component and the memetic evolution
component compared to coevolution in the performance of
the best individual learning agent in the population.
Consider first the purely genetic evolution of the free
parameter vectors. When there is no memetic component,
there is no interaction between the different classes of
learners, since crossover and other sources of genetic
variation apply only to a specific type of learner. Using
genetic search to find the best free parameter values for a
neural network is known to be slow (Yao, 1993). In this
genetic-only neural network simulation, only a small
improvement was found in the fifth generation. Similarly
for the genetic evolution of LFC++’s free parameters, a
modest difference was found in the sixth generation.
Memetic evolution alone (without changing any of the free
parameter values) showed a more significant effect.
Because both the neural network and the constructive
induction program make contributions to memetic
evolution, any synergies between them will appear in the
memetic-only curve (see discussion of figure 4, below).
However, the steady rise of the coevolution curve,
compared to the memetic-evolution only curve suggests
that some adjustment of the free parameter values to match
the representation changes induced by memetic transfer
may have a positive effect. At the end of 10 generations,
the maximum accuracy of the coevolved population is
more than 5 percentage points higher than the memetic
only population. However, it is worth noting that the
memetic only population equaled that pcfformance figure
earlier in the simulation, and then drifted away.

Figure 4 illustrates the synergy that coevolution f’mds
between the CG agent population and the LFC++ agent
population. When run with only a single type of learner,
the memetic evolution part of COEV becomes a kind of
constructive induction program, where the output of the
learner is feed back as an input feature in the next iteration.
Since LFC++ is already a constructive induction program,
it is somewhat surprising to note that LFC++ agents
coevolving with each other still manage a small amount of
improvement. Perhaps this is due to the fact that the
appropriate features for this problem have three conjuncts.
and LFC++ under most free parameter values tends to
construct new features from pairs of input features. CG
alone does not do very well on this problem. Even when
coevolved with itself, its most accurate agent improves
only from about 60% to a bit over 70% in ten generations.
However, when these two learning methods are combined
in a single coevolution learner, the results are clearly better
than either of the methods used alone. The gap between
the best performance of the pair of methods and the best
single method tends to be about 5 percentage points in this
simulation, and the difference tends to be larger as the
population evolves.

Hunter 85

From: Proceedings of the Third International Conference on Multistrategy Learning. Copyright © 1996, AAAI (www.aaai.org). All rights reserved.

100

90

8O

70

60

5O

4O

3O

20

10

0

.o.

.̄..."

....m __._:_
m ’ "! i

mm .

i mm

m

"" ...

max fitness
max accuracy .¯
mean fitness (SD) ’...
min fitness

0 5 10
Generation

Figure 2: Fitness of best, worst and population average (with S.D.) fitness over I0 generations.

100

90 .- ¯

80

’-L
O¢.)
<
> 70
O

60

LFC++ (genetic only)
cg (genetic only)
memetic only (LFC++ & CG)
coevolution

5O
0 5 10

Generations

Figure 3: Genetic evolution only, memetic evolution only and coevolution

86 MSL-96

From: Proceedings of the Third International Conference on Multistrategy Learning. Copyright © 1996, AAAI (www.aaai.org). All rights reserved.

100

90

80

70

60

5O

40

3O

20

10

...........

0

CG alone
LFC++ alone
LFC++ & CG together

....................... =

2 4 6 8 10
Generation

Figure 4: Synergistic interaction of the different types of learners

Why does Coevolution Appear to Work?

This is intended to be an exploratory paper, describing a
novel approach to learning. It does not present any proofs
nor any detailed empirical evaluations. However, it is
possible to speculate about why the method appears to
work, and this speculation may be useful in guiding future
research in this area.

Constructive induction systems have not been able to
solve problems that are a great deal more difficult than
their root form of induction, even though they
automatically generate relevant feature combinations to use
in representation. One possible explanation is that there
features are constructed with the same learning biases as
the method that uses those features to build concepts,
limiting the value of composing these actions. Since the
learning agents in coevolution learning express a variety of
biases, it may be that features discovered by one learner
can more significantly facilitate learning by another learner
which embodies a different bias.

Coevolution learning has a different advantage over
most other forms of multistrategy learning. In these other
forms, the relationships between different learning methods
tend to be predefined by the learning researcher (see the
introduction and many of the chapters in (Michalski
Tecuci, 1994)). For example, the KBANN system
(Towell, et al., 1990) uses a domain theory to specify
neural network architecture, then trains the net and extracts

a revised domain theory. Flexibility in the type of learning
used and the order in which learning agents are executed
may make possible important synergies that are difficult to
capture with a predefmed relationship.

My own earlier work was dedicated to building a planner
which could select among and combine multiple learning
methods based on reasoning about explicit goals for
knowledge (Hunter, 1989; Hunter, 1990; Hunter, 1992)
However, first principles planning for achieving learning
goals is even more difficult than planning for physical
goals. Due to the large inherent uncertainty in predicting
the outcome of the execution of any particular learning
method, it is extremely difficult to reason about the likely
outcome of any significant composition of learning actions.
I also pursued the use of plan skeletons, templates and
strategies, which are the usual response to the difficulties of
first principles planning, but these run into the same
problems in maintaining flexibility as other predefined
approaches to multistrategy learning. Coevolution learning
is able to flexibly combine learning methods (even in novel
ways) without having to reason ahead of time about what
the outcome of that combination will be.

The reason that coevolution appears to work better than
just memetic evolution alone may be the two way linkage
between parameter values and representations. Not only
does it appear to be the case that which parameter values
produce the best outcome depends on the input
representation used, but it also appears that the selection of
parameter values has a significant effect on what new

Hunter 87

From: Proceedings of the Third International Conference on Multistrategy Learning. Copyright © 1996, AAAI (www.aaai.org). All rights reserved.

features are constructed. This seems especially relevant
when considering that two of the parameters in COEV
specify how many input features each learner will use, and
what the propensity of each learner is for taking those
features from external sources is.

Computational Complexity. and
Parallelization Issues

One of the drawbacks to coevolution learning is the large
amount of computation required. Doing an evolutionary
search is slow in general, and when the evaluation of a
single individual can take minutes or hours (as training
neural network can) then the problem is exacerbated.
There are three reasons to be optimistic that this approach
can be used to solve large scale problems.

First, the fitness function for the population includes a
time factor, which tends to increase the speed of learning as
the evolution progresses. Average running time of both
LFC++ and CG was substantially lower at the end of ten
generations than it was at the beginning. The search
through the space of parameter values not only finds values
that provide good results, but also ones that provide them
quickly.

Second, as better input representations are found, most
learning methods increase their learning speed. Since the
concepts learned from good representations tend to be
simple (that’s what makes a representation good), and most
machine learning methods have a computational cost that is
dependent on the complexity of the learned concept, as the
system evolves better representations, the speed of learning
should go up.

Finally, coevolution learning is well suited to
parallelization. The vast majority of the computation is
done by the learning agents, which are entirely independent
of each other during learning. The only communication
required is at the time of meme and gene exchange, where
all agents must register their fitnesses and the fitnesses of
their memes. It is also possible to relax even that
requirement, so that agents use only a sample of the
fitnesses from other agents to determine who to exchange
memes and genes with. Since the selection of memes and
genetic partners is probabilistic anyway, sampling will be
indistinguishable from exhaustive search if the sample size
is large enough. By using sampling, it is also possible to
do asynchronous updating of the population.

Future directions
There are three current research goals for coevolution

learning currently being pursued. The first is to empirically
demonstrate its effectiveness on realistic problems. In
particular, we are hoping to demonstrate that this approach
solves problems that are very difficult for other machine
learning or statistical approaches. Solving real world
problems is likely to require additional learning methods.
larger agent populations and longer evolution times.

The second goal is to add several new learning
techniques to the system. In particular, we are interested in
adding:

88 MSL-96

¯ a function finding system that can generate memes
that identify mathematical relationships between features;

¯ a feature relevance metric (e.g. (Kira & Rendell,
1992)) that can be added to the meme fitness function:

¯ a relation learning system (e.g. (Quinlan, 1990)
one of the ILP learners) that can help the system transcend
the limits of boolean feature combinations
Each of these desired additions presents challenges to the
design of the current system that must be addressed.

Our third current goal is to add at least some coarse
grained parallelism to the system so that it can be run on a
network of workstations. Due to the nature of the
computations, we expect nearly speedup nearly linear with
the number of workstations used, up to the point where
there is one workstation per agent.

Conclusion

Coevolution provides a powerful metaphor for the
design of a machine learning system. Models of genetic
evolution have already driven significant advances in
machine learning. When nature added cultural evolution to
genetic evolution, the result was spectacular. The
computational model of culture proposed in this paper is
tremendously empovershed in comparison to people.
Nevertheless, the ability of even this drastically simplified
model of coevolution to s~aergize the abilities of disparate
learners appears promising.

References

Angeline, P. J. (1993) Evolutionary Algorithms and
Emergent Intelligence. Ph.D. diss, Ohio State University.

Dietterich, T. (1989). Limitations on Inductive Learning.
Proceedings of Sixth international Workshop on Machine
Learning, (pp. 125-128). Ithaca, NY: Morgan Kaufman.

Durham, W. H. (1991). Coevolution: Genes, Culture and
Human DiversiO,. Stanford, CA: Stanford University Press.

Hunter, L. (1989) Knowledge Acquisition Planning:
Gaining Expertise Through Experience. PhD diss. Yale
University, Available as YALEU/DCS/TR-678.

Hunter, L. (1990). Planning to Learn. In Proceedings
The Twelveth Annual Conference of the Cogntive Science
Society, (pp. 26-34). Boston, MA:

Hunter. L. (1992). Knowledge Acquisition Planning: Using
Multiple Sources of Knowledge to Answer Questions in
Biomedicine. Mathematical and Computer Modelling.
16(6/7), 79-91.

Kira. K., & Rendell, L. 0992). The Feature Selection
Problem: Traditional Methods and a New Algorithm. In
Proceedings of National Conference on AI (AAAI-92),
(pp. 129-134). San Jose, CA: AAAI Press.

Kohavi, R., & John, G. (1995). Automatic Parameter
Selection by Minimizing Estimated Error. In Proceedings

From: Proceedings of the Third International Conference on Multistrategy Learning. Copyright © 1996, AAAI (www.aaai.org). All rights reserved.

of ECML-95: The Eighth European Conference on
Machine Learning.

Langley, P. (1994). Selection of Relevant Features
Machine Learning. In Proceedings of AAAI Fall
Symposium on Relevance. New Orleans, LA: AAAI Press.

Michalski, R. S., & Tecuci, G. (Ed.). (1994). Machine
Learning IF." A Multistrategy Approach. San Mateo, CA:
Morgan Kaufman Publishers.

Quinlan, J. R. (1990). Learning Logical Definitions from
Relations. Machine Learning, 5(3), 239-266.

Quinlan, J. R. (1991). C4.5. In Sydney, Australia:
Available from the author: quinlan@cs.su.oz.au.

Rendell, L., & Cho, H. (1990). Empirical Learning as
Function of Concept Character. Machine Learning, 5(3),
267-298.

Rendell, L., & Ragavan, H. (1993). Improving the Design
of Induction Methods by Analyzing Algorithm
Fmlctionality and Data-based Concept Complexity. In
Proceedings of IJCAI, (pp. 952-958). Cl~amhery, France:

Schank, R., Collins, G., & Hunter, L. (1986). Transcending
Inductive Category Formation In Learning. Behavioral and
Brain Sciences, 9(4), 639-687.

Towell, G. G., Shavlik, J. W., & Noordewier, M. O.
(1990). Refmement of Approximate Domain Theories
Knowledge-Based Artificial Neural Networks. In
Proceedings of Seventh International Conference on
Machine Learning, .

van Camp, D. (1994). UTS/Xerion. In Toronto, Canada:
Available by anonymous file Wansfer from
ftp.cs.tornnto.edu:/pub/xerion/uts-4.0.tar.Z.

Vilalla, R. (1993). LFC++. In Available from the author:
vilalta@cs.uiuc.edn.

Wisniewski, E., & Medin, D. (1994). The Fiction and
Nonfiction of Features. In R. Michalski & G. Tecuci (Eds.),
Machine Learning IV: A Multistrategr’ Approach San
Francisco, CA: Morgan Kanfmaun.

Wnek, J., & Michalski, R. (1994). Hypothesis driven
constructive induction in AQI 7: A method and
experiments. Machine Learning 14:139-168.

Yao, X. (1993). Evolutionary artificial neural networks.
International Journal of Neural Systems, 4(3), 203-221.

Hunter 89

From: Proceedings of the Third International Conference on Multistrategy Learning. Copyright © 1996, AAAI (www.aaai.org). All rights reserved.

