
Verification and Validation: A Case Study of a Decision
Support System

A. Terry Bahai, K. Bharathan, and Richard F. Curlee,
Systems and Industrial Engineering

University of Arizona
Tucson, AZ 85721-0020
teny@sie.arizona.edu

In 1985 we started building a decision support sS~tem
to help speech clinicians diagnose small children who
have begun to stutter. This paper describes the
verification and validation of that system:
(1) having an expert use and evaluate it,
(2) running test cases,
(3) developing a program to detect redundant rules,
(4) using the Analytic Hierarchy Process,
(5) running a program that checks a knowledge base
for consistency and completeness,
(6) having five experts independently critique the
system,
(7) obtaining diagnoses of stuttering from these five
experts derived from repom of children who had
been evaluated for possible stuttering problems,
(8) using the system to expose missing and
ambiguous information in 30 clinical reports, and
(9) analyzing the di~on and bias of six experts
and the decision support system in diagnosing
stuttering. When using the final system, three
clinicians with widely differing backgrounds
woduced diagnostic opinions that evidence little
variability and were indistinguishable from those of a
panel of five experienced clinicians.

L Introduction

The development of a decision support system to help
speech clinicians diagnose and manage preschool children
at risk for a stuttering disability began in 1985. Several
yeats of testing and modification . took place before
Childhood Stuttering: A Second OpinionTM was
co~a~ercially released in 1993.

Speech-language c’~ vary widely in their
diagnoses of stuttering in young children, but discussing
such cases with exI~enout clinicians greatly reduces this
variability. It was found that using Childhood Stuttering:
A Second Opinion, led clinicians with different training
and experiences to diagnostic opinions indistinguishable
f~om those of a panel of five experienced clinicians. In
effect, using Second Opinion allows inexperienced

clinicians m "discuss" cases of incipient stuttering with a
panel of experts, a process that should increase the
reliability of their diagnoses in the real world.

In the course of its development, the product went
through several versions, each of which was tested at a
differing level of rigor.

11. Testing the First System

The first system was tested m 1985 in a simple manner
by having the expert use it and tell us how he felt about it,
what seemed right or wrong, This method was
unsatisfactory largely in terms of the time required of the
expert. Each time a minor adjustment was made to the
knowledge base, the expert had no choice but to run the
system in its entirety. The need for a testing technique
that used test cases was realized and implemented with the
next version.

HI. Testing the Second System

A second system named Stutter was developed in 1987.
A series of test cases were used to assess Stutter. The
expert ran the system and answered all the questions as
they applied to a child he had evaluated for a suspected
stuttering problem. After Stutter presented its diagnostic
conclusions and advice, the intermediate knowledge was
saved into a disk file, and a text editor used to remove
values derived by the inference engine, leaving only the
user’s responses to the system’s questions. A range of files
were similarly generated and the sets of answers were
saved under different names. Stutter was constructed to
get its inputs from such files, and each file thus became a
test case. The knowledge engineer did not have to always
depend on the expert’s time to check each change in the
knowledge base.

Many test case were accumulated and used for testing
over the life of the project. Whenever a rule was added or
modified, each test case was loaded into the system and
used to look for run-time errors. When the medification
consisted of an additional question to be asked of the user,

2 AI & Manufacturing Workshop

From: Proceedings of the AI and Manufacturing Research Planning Workshop. Copyright © 1996, AAAI (www.aaai.org). All rights reserved. 



the test files had to be maintained by the expert having to
provide the answers to every case where the question was
fired. White the expert’s knowledge couAd at times be
obtained by a phone call, rids was not always feasfole.
While on the surface the problem did not appear to be
eliminated, in actual fact, the ~ continued to lDaintain
close contact with the evolution of the system, while his
time was less taxed.

Other than the domain expert, knowledge engineers and
end users are also good sources of test cases. Those
~eated by a knowledge engineer are often more
parsimonious because more rules can be exercised by
fewer test cases. Typically, an ~ a knowledge
engineer and an end user are like three blind men
describing an elephant: each focuses on different aspects
of the system. The test cases of each will
diff~ but overlapping Ix~ens of the knowledge base;
therefore it may be wise to always gather test cases from
all three sources.

Next a computer program was created that used these
test cases to test the expert advisory system more
systematically (Kang & Bahill, 1990). The firing of each
tale was recorded as each test case was rim. A role was
said to succeed if all of its premt~s evaluated true and the
action specified in its conclusion was performed. Rules
that were never found to succeed for any test case were
flagged as probable mi.qakes and were bqrought to the
attention of the human expert. Of course, a rule that never
succeeds during such testing may not be an error. Some
rules may be intended for unusual or infrequently
occurring cases that were not exercised by the test cases
that were used. Conversely, rules that succeed for every
test case may also he mistakes. If a rule is always true it
may be better to replace it with a fact; however, the~ are
control rules that must always succeed. Consequently, thi.~
technique is useful in screening a system’s rules for
potential error; but a human must decide whether the rule
in question is appropriate or not.

The best way to test an expert advisory system, in our
opinion, is to have the domain expert run the system and
create a representative .~_mple of test cases, Next,
determine which rules never succeed___ and which always do.
Our ~ indicates that a test case for every five
rules in the knawledge base may be sutficient (i.e. 20 test
cases for a 100 ride system) even though clearly more test
cases are better and having many more test cases than
rules would be best. For those rules that do not succeed,
the expert should provide test cases that he thinks will
make them mcceed until most do succeed, Then, the
knowledge engineer should try to determine the reason
that the remaining rules are not succeeding, It should also
be noted that some test cases are not real. The expert for
ore" system characterized some test cases as canoms that
had idealized, exaggerated or stereotyped signs and

symptoms of stuttering. To increase the number of test
cases, he took a number of existing test cases and
systematically changed those answers that should not
change the system’s output and looked to see ff they did.
Thus these types of test cases reflect an expert’s
coaceptmlization of a domain rather than real cases from
the domain.

IV. Testing the Third System

The third expert advisory system, which was named
Expert Stuttering Program (ESP), was ready for testing 
1989. It was the first to be tested with a special program,
Validator, that we wrote to help find mistakes in
knowledge bases (Jafar & BahiIl, 1991; 1993). By this
time, of course, there were many publications about
verification and validation of panic-I~r knowledge-based
systems, (referenced in Jaf~r & Bahill 1991).

Validotor assesses the consistency and completeness of
a knowledse base. It checks for syntactic errors, unused
rules, unused facts, unused questions, incorrectly used
legal values, redundant constructs, rules that use illegal
values, and multiple methods for obtaining values for
eXla’essions and systematically indicates pote~ian errors to
the knowledge engineer.

A. Verification with Validator
Verification, or building the system right, ensures that a

system correctly implements specifications and determines
how well each prototype conforms to design requirements.
It gxmnmtees lmXluct consistency at the end of each phase
(with itself and with previous prototypes) and ensures a
smooth transition from (me lm)totype to another.

Validator checks both the syntax and semantics of a
knowledge base and brings po~n~al errors to the attention
of the knowledge engineer, who has the task of fixing such
errors. Validator has four verification modules: a
~, a syntax analyzer, a symactic error check~,
and a debugger.
The Preprocessor:

Syntactic errors can cause a production language (which
is used here to refer to AI languages as well as expert-
system shells) to misintmpret a Imowled~ base and
consequm~y to alter its syntactic stmctm¢, leading to
semantic errors. Validatot~s ~ performs a low-
level syntax check. Detecting such errors saves
knowledge engineers and experts much time, fxe~an,
and grief. This type of checking is dependent on a
system’s production language and amelimates the
shortcomings of the language’s compiler. Va!i,~__~ bailds
inten~ relxes~t~ion ~ of tl~ knowled~ base,
which its other three modules analyze for syntactic
compliance.

Bah;ll 3

From: Proceedings of the AI and Manufacturing Research Planning Workshop. Copyright © 1996, AAAI (www.aaai.org). All rights reserved. 



The Syntax Analyzer:
Many syntactic errors are caused by misspellings,

typographical errors, or ill-formed knowledge-hase
structures. Therefore, Validator’s syntax analyzer creates
alphabetical listings of the c:~pressions in the knowledge
base according to their categories: goals, rule premises,
rule conclusions, questions (with legal values), and facts
(with values). This list comprises a knowledge base
dictionary that makes it easier for a knowledge engineer to
find mistakes. For example, a knowledge engineer, forced
to read an entire knowledge base, may be hard pressed to
remember if a hyphen or an underscore is to be used to tie
two words together. But if the two constructs are adjacent
in a list it is easy to see an inconsistency.
The Syntactic Error Checker:

People can easily detect inconsistent expressions ff they
are presented in pairs rather than in large collections, but
they need to rely on machines for detecting global and
indirect inconsistencies. The syntactic error checker looks
for syntax that, while legal, pro~ces unspecified behavior
by the production language’s compiler. For example, "out-
of-range values" (such as incorrect usage of reserved
words) us,ally escape detection by the complier and the
knowledge engineer. Validator detects these errors in the
contexts in which they occur.

Expressions get their values from facts, from user
responses to questions, or from the conclusions of rules.
There are four basic types of values.
(I) Legal values are acceptable answers to questions.
(2) Utilized values appear in rule premises and allow the
rule premise in which they appear to be evaluated to true.
(3) Concluded values appear in rule conclusions and are
set for an expression when a rule using that expression

(4) Assigned values are assigned to expressions with facts
or certain commands spe~fic to the production language.
(a) Utilized Vexsus Legal Values:

Legal values guard against typngraphical errors and
help in abbreviating long answers. If no legal values are
provided, a system accepts any response as a valid answer,
so typographical errors and wrong responses may escape
detection. Even if errors are detected, effective error-
recovery procedures are time-consuming and increase the
size of the knowledge base. It should be noted that
providing legal values will not prevent a knowledge
engineer from using out-of-range values in a rule. For
example, Myeln-derived production languages do not
check a knowledge base to ensure that only legal values
have been used; these languages only check user responses
to questions to see if they match the legal values ~ed
by the knowledge engineer. Legal values are related to
questions, not to rules or facts. Illegal values are common

in knowledge bases and often result in the failure of rules
using such values.
Co) Unused Legal Values:

The syntactic error checker searches the premises of
rules, looking for declared but unused legal values, which
it flags as potential errors. It also lists all unasked
questions. Unused legal values are common in knowledge
bases. Many result from errors, others are remnants of old
constructs that were put into the knowledge base by
mistake or were incompletely removed. Deleting such
constructs reduces the size of the knowledge base and
speeds inferences during the use of a system. If Validator
searched the following knowledge base, it weald note that
the legal values for coat of animal are {hair, feathers,
beads} but the utilized values are {hair, feathers, scales}.
Validator would point out that it is not possible to get a
value of beads for coat of animal and would indicate that
this is likely a mistake. It would also point out that one
legal value, scales, has never been used, and would
suggest that this may also be a mistake.

goal = identity of animal.

if coat of animal = scales
then type of animal = fish.

if coat of animal = hair
then type of animal = manunal.

if coat of animal = feathers
then type of animal = bird.

if type of animal = lizard
then identity of animal = Gila

question(coat of animal)=
’What is the coat of animal?’

monster.

legalvalues (coat of animal) 
[hair, feathers, beads].

(c) Utilized Versus Conclnded Values:
ff the values used in the premises of rules do not match

the values used in the conclusions of those rules, the rules
will fail. In the above knowledge base, the utilized values
for type of animal are {fish, mammal, bird, lizard},
whereas the concluded values are {fish, mammal, bird},
which indicates that it would be impossible for this system
to conclude that a JiT~ard is a ~ of animal.

The Debugger:
Debugging is a tedious, difficult, time-consuming, and

costly process of finding and correcting errors in the
knowledge base. On many occasions, the presence of
errors is discovered during developmental testing but

4 AI & Manufacturing Workshop

From: Proceedings of the AI and Manufacturing Research Planning Workshop. Copyright © 1996, AAAI (www.aaai.org). All rights reserved. 



finding them tlepencL~ on the knowledge engineer’s
intuition, experience, and common sense. However,
computer-aided debugging tools are mo~ reliable because
they reduce the Ix~sibility of human errors. Validator’s
debugger checks for rules that use variables, negations,
and unknowns. It regards the knowledge base as a closed
world, and assumes that all the information about the
domain is captured in the knowledge base. Thus, all
possible rules and axioms should be either implied or
implicitly modeled in the knowledge base.

Variable-unsafe Rules: variables can be used in both the
premises and the conclusions of rules. They act as
symbolic place holders. Each construct that uses
variables is logically equivalent to the large set of
constructs that could be obtained by replacing those
variables with suitable terms. A backward-chaining rule
that has variables is variable-safe (closed) if:
{1) Its conclusion is homomorphic to a fact or 
consequence in the knowledge base,
(2) Variables that appear as attributes of an expression 
a conclusion also appear as attributes of an expression in
the rule’s premise;
(3) Vaxiables that appear as attributes of an expression in 
premise aLso appear as utilized values in ia~ous premises
of the same rule or as attributes of an expression in the
conclusion;
(4) Variables that appear as concluded values of a rule also
appear as utilized values in the rule’s premise.

A knowledge base is variable-safe if its set of rules
evaluate to true, no matter what values are substitcted for
its variables. Variable-tmsafe rules u,gmily lead to infinite
loops that violate the closed-world assumptions.

Illegal Use of Negations: negations can be used only in
the premises of rules. A rule that has a negation in its
conclusion violates clused-world assumptions, because a
false fact is not explicitly declared in the knowledge base,
but is inferred from not being able to conclude a given
value for an expression.

Illegal Use of Unknowns: the most common origin of
unknown is the result of a user’s response to a question.
Unknown can also be concluded as a result of the
unsuccessful firing of all the rules that concern an
expression. However, like negations, unknown can be
used only in the premises of rules. A rule that concludes
nnknown for an expression violates the clesed-world
assumIXion, because an unknown fact is not explicitly
declared in the knowledge base; rather, it is inferred from
not being able to conclude a value for an expression.

B. Validation with Validator
Validation, building the right system, ensures the

consistency and completeness of the whole system. The

validation part of Validator has two modules: a chaining
thread tracer and a knowledge base completeness module.
The chaining thread tracer deterlnines if rules call file by
tracing their connectivity back to the goal. Rules that
cannot fire are flagged as dead rules and are brought to the
attention of the knowledge engineer. A rule is also
flagged as dead if it is the root of a dead tree. Thus,
flagging a dead rule may uncover a whole set of dead
rules.

One aspect of validation is checicing the knowledge base
for completeness, that is, attempting to determine if
something is missing from the knowledge base. This
checking usually proceeds in two ways. The first is direct
and involves a knowledge engineer and an expert working
together reviewing, refining and analyzing each item in
the knowledge base. They check the completeness of
every module. They also check the consistency,
effectiveness and efficiency of every knowledge base item.
Then they review each rule and decide whether to split it,
modify it, or delete it from the knowledge base.

The second approach requires a knowledge engineer to
work on the structure and representation of the knowledge
base. Knowledge base items are analyzed, compared for
redundancy, completeness, and correctness of usage. This
approach is structured, algOrithmic, and more exhaustive
tha~ the direct approach. It also uses heuristics that can
be automated to produce fast and effective results.
Validator allowed us to use this second approach. After
all potential errors flagged by Validator had been resolved,
we continued testing this expert advisory system using test
cases and additional domain ~.

V. Testing the Fourth System

The fourth version of this evolving decision support
system, Second Opinion~, was ready for field testing in
1991. It had already undergone testing with all the
techniques mentioned above when our knowledge engineer
traveled to the tmiversflies of four other experts and spent
a day with each rnnning the system on real cases. The
cxl~s wc~ ~ pl~d with tha porforn,~nce of the
system, but each offered suggestions for changes, which
were implemented. Next, the clinical records of 30
anonymous child~ea whose parents suspected them of
stuttering were colle~ed and rewritten after deleting any
information that might identify the child or his family.
Each expert, at a workshop in Tucson, provided a
diagnosis for each of the 30 children al~r reading the
rewrittan clinical reports. Next, they discussed these
rewritten reports and their diagnosis. The latter diagnoses
were used to derive a consensus diagnosis for each child
and Second Opinion was changed to match the consensus

Bahill s

From: Proceedings of the AI and Manufacturing Research Planning Workshop. Copyright © 1996, AAAI (www.aaai.org). All rights reserved. 



opinions. Unfortunately, the performance of the system
was not evaluated quantitatively before its modification.

If there is a collection of input-output data that is known
to be correct (sometimes called a gold standard), then 
variety of quantitative teclmiqnes can be used to help
validate a system, many of these are described by
(Adelman, 1992). In effect, the expert panel’s diagnoses
reflected our effort to develop such a gold standard.

VI. Testing the Fifth System
While testing a fifth version of this decision support

system, Childhood Stuttering: A Second OpinionTM in
1992, we discovered that its outputs differed when
different experts used it. We asked two cxperts to use the
system based on information each obtained from reading
the thirty clinical reports. The output of the system was
the same for ten of these reports even though there were
different answers to, on average, one-third of the
questions. This suggests that the D’stem is robust to
diff~ attributable to users. The output of the system
was highly similar for another ten reports but diffcred
significantly on the remaining ten. These findings
suggested that some differences might be attributable to
the clinical reports. For example, one report stated "Jose
felt frusuate~" Some experts understood this statement to
mean that the child was showing frustration about his
disfluency, while others understood it to reflect his
frastmtion with English and Spanish word-finding
difficulties. It was decided, therefore, to resolve such
amhignities in these clinical reports before testing the
decision support system further.

First, fifteen of the thirty clinical reports were carefully
edited so that any lacunae, ambiguities, and conflicting
statemems were removed. Next, ten additional clinical
reports were obtained and edited in a similar manner.
These twenty five edited reports wexe then used to test the
latest version of the decision support system. It would
have been better, of course, to use a few hundred vali~t,d
clinical report& but developing these clinical reports was
expensive. In 1992 and 1993 more time was spent
acquiring and preparing these reports than in developing
and reflnin$ the rules in the system’s knowledge base.

A. New Tools
In Table I, diagnoses of four apocryphal experts and

that of a decision support system for four clinical reports
are displayed. These data are not real but were created to
illustrate the use of several statistical toob. Diagnoses of
the experts are denoted with lower case letters a, b, c, and
d, and that_ of the decision support system with dss. The
four clinical re~orts ale dl~gilated by the upper case
letters A, B, C, and D

Table I
Heuristic Data Set

Diagnostic
Score

5
4
3
2

Name of" Clinical Report
A B C D

b, d,

dss
1 a,c a,c

b c, d
d dss

b, d c, dss a
dss a b

The numbers in the Diagnostic Score column represent
five diagnostic opinions, which correspond to the
following descriptions:
!. Little cause for concern about stutterin~ There is little
reason to suspect that a stuttering problem may be
emerging in this child at this time. The types and
frequencies of disfnencies that were observed and
described are characteristic of those of nonstuttering
children.
2. Some cause for concern about stuttering. This child is
evidencing some danger signs of incipient stuttering as
well as some that are characteristic of nonstuttermg
children. This pattern of equivocal findings suggests that
the child may be at risk for an emerging stuttering
problem.
3. Mild concern about stuttering. This child is evidencing
relatively consistent signs of early stuttering.
4. Moderate concern about stuttering This child presents
speech and behavioral signs which suggest that stuttering
may not be a mmsient problem.
5. Severe concern about stuttering. This child evidences
speech and behavioral signs that may signal the evolution
of a severe stuttering problem.

Two quantitative measures of the agreement between
the experts and the decision support system, which were
originally suggested by Lucien Duckstein, can be used to
characterize the dispersion and bias of these diagnostic
~!~, Each diagnosis is denoted with a capital R with a
subscript identifying the individual expert. The term
dispersion shows how much the diagnosis of each expert
varied from those of every other expert. It is computed
with

where i runs over the set {a. b, c. d, d~v}, k runs over the
set {a, b, c, d. dss},j runs over the set {A, B, C, D}, 1= 5
(the number of evaluators) and J - 4 (the number 
clinical reports).

For the data in Table I the dispersions are

6 AI & Manufacturing Workshop

From: Proceedings of the AI and Manufacturing Research Planning Workshop. Copyright © 1996, AAAI (www.aaai.org). All rights reserved. 



"Expert" Dispersion
a 1.47
b 1.68
c 1.37
d 1.35
dss 1.06

The term bias shows inclinations of the individuals.
is computed with

1 Df 1 ~u

J

For the data in Table II the biases are

It

"Expert" Bias
a -1.19
b 0.38
c -0.25
d 1.00
dss 0.06

These measures can be used to help validate a decision
support system. For the data in Table I all the "experts"
performed less consistently than did the decision snppon
system, because four experts had dispersion scores greater
than that of the decision support system+ The opinions of
expert too’, for example, were the least consistent. The
data also illustrate that exl~rts may be biased. The
diagnosis of expert "a" suggest that he viewed each child’s
flneuc7 problem as less severe than the other experts,
while those of expert "d" were at the other extreme. The
decision suplxm system, on the other hand, showed litOe
bias. These data were contrived to illustrate such ideal
behavior by a decision SUl~Ort system.

B. The Final System Test
The 25 new clinical reports were nmi,ed to five highly

ex~+~lKX~d Sta~ 8 Gliniclsns who wl~ asked to

evaluate the likelihood that each child was stuttering
Table II summar/z~ the statistical results of the d/agnostic
scores of these five experiem~ clinicians, of the
examining clinicians who prepared the original t~orts,
and the of derision support system for each of the 25
reports, The five ex~’rleuced din/clans are ~ by
the letters It, b, C, d, al~ e. The e~mmining clinicians Who
evaluated each child are designated by ec, and the decision
mmplmrt system by dins.

TaMe II
Clinical Results

Expert Bias Dispersion
a -0. I I 0.76
b 0.17 0.79

c -0.17 0.71
d 0.50 0.88
e 0.14 0.86

ec -0.42 0.85
dss -0.10 O. 80

Based on the data in Table II, the performance of the
decision support system is indistinguishable from that of
experienced dbfician~ Its dispersion is higher than some
clinicians but lower than others. Its bias is very small. In
contrast, the ¢xaminillg clinicians’ diagnostic scores do
stand out from the panel of clinicians, as is indicated by
the large negative bias score. This seems reasonable,
because the clinicians who conducted these evainmions
had access to data that the other clinicians lacked: they
examined the actual children. Furthermore, they likely
reviewed video tapes of their evaluation and discussed
di~cult cases with other clinicians before arriving at a
diagnosis and writing their clinical reports. Therefore
their diagnostic opinions may be the most valkt The
decision support system’s diagnoses were designed to fall
between those of the examining clinicians and the mean of
the panel of e, xI~euced clinicians. The low bias and
dispersion of the decision support system indicates its
tohlg~ss.

When experienced clinicians have aa opportunity to
confer and discuss their diagnostic opinions, differences in
opinion that they may have usually decrease. At the time
of their discussions, panel men.tams were shown both the
mean and range of diagnostic scores for each case. The
intended puzpme of these discussions was to clarify
information about a case, not to develop a consenm~ bet
the range of diagnostic scores was smaller after the
discussions. This redaction in range may be dee to panel
members considering add/lional diagnostic factors during
their discussions than were considered when their initial
diagnoses were given. It may also reflect, in part, some
panel members’ decisions to modify their initial diagnostic
scores to more closely approximate the panel’s mean score.
One purpose of Second Ol~nion is to allow an
inexperienced ¢lini<~3n to "discuss" findings obtained
from a diagnostic evaluation with a panel of experts and to
learn the diagnostic opinions of the panel of experts. Such
"discussions" are intended to increase the reliability of
in~enced dinieians’ diagnoses.

The oetput of Second Opinion is robust. Three people
used it with the same twenty five clinical reports descr/bed

Bahill 7

From: Proceedings of the AI and Manufacturing Research Planning Workshop. Copyright © 1996, AAAI (www.aaai.org). All rights reserved. 



above. One was the chief scientist for our decision sopport
systems, who has had over twenty five years of experience
evaluating children with fluency problems. The second
g~ms a doctoral candidate in Communication Sciences and
Disorders at Syracuse University who had acquired
substantial previous experience with the decision support
system. The third was a master’s degree student at the
University of Arizona who had little experience e~aluating
young stutterers and no previous ~ence with any
decision support system. Their diagnostic opinions
evidence little difference. The case about which there was
the most disagreement, Couzens, led to further review of
that clinical report and the identification of ambiguities
that may have caused this discrelmncy. Use of Childhood
Stuttering: A Second Opinion, appears to promote
diagnostic opinions that are indistinguishable from those
of a panel of five experienced clinicians regardless of a
clinician’s training and background. One significant
finding is that the diagnosis of three people with widely
differing backgrounds evidenced less variability when
using the decision support system than did those of five
experienced clinicians rating the same clinical reports
without the decision support system.

As a penultimate test, the system was given to 30
students in an Expert Systems class at the University of
Arizona. It is now undergoing its ultimate test as it is
used by customers. Most of the concerns of both students
and customers involve the installation procedure. No one
yet has pointed out errors or sugo~’tcd improvements in its
knowledge base.

This decision support system is meant to assist, not
replace, inexperienced speech-language clinicians. One
thing a human does that a comimter system does not do is
track a child’s behavior over time, looking for
intprovemcnt or a worsening of signs and symptoms. In
the future we intend to build a version of this system for
teaching that will include explanations and pertinent
ref~ea-tces for each question asked. Such systems would

to be useful in training clinical skills as well as in
sopporting the skill,q of inexilerienced clinicians.

VII. Conclusions

R is difficult to detect errors in a decision support
system. Therefore, much effort was devoted during the
knowledge extraction process to insure that errors did not
creep into the knowledge base. Because all such
knowledge came from and was captured by fallible
lnnnans, it is umeasonable to expect a knowledge base to
be free of errors. Therefore, several tools and procedures
were developed to help detect errors in a decision support
system’s knowledge bese. Each was designed to work with
existing tools, and each added additional complexity to

testing procedures, and, we think, credibility to the
decision support systems’ performance. Finally wc
compared the output of the system to the evaluations of
human experts. When using Childhood Stuttering: A
Second Opinion, three clinicians with widely differing
backgrounds in stuttering produced diagnostic opinions
that evidence little variability and were indistinguishable
from those of a panel of five experienced clinicians.

In the software industry, the mantffacturing process
itself is subsumed in significance by the development
process. While the former requires physical quality
control such as uncontaminated storage media and so on,
rigorous validation and verification at the development
stage is what ensures the quality of the final product. In
the case discussed in this paper, the need for the domain
experts’ knowledge to control development while
simultaneously ensuring the technical soundness of the
knowledge base was of paramount concern To this end,
several innovations, reported above, had to be made.
While the gcneralizability of such innovations need further
examination, the point we seek to make is simply this:
within the overall need for rigorous verification and
validation, the specific methed(s) to be used are often
dictated by the specifics of the product and the
circumstances in which it is built.

Acknowledgments

This work was supported by the National Institute of
Child Health and Human Development Grant R44
HD26209 and by Bahill Intelligent Cornlmter Systems.
The contents of this paper are solely the responsibility of
the authors and do not necessarily represent the official
views of the National Institute of Child Health and Human
Development.

REFERENCES

L. Adelman, 1992. Evaluating Decision Support and
Expert Systems. New York: John Wiley & Sons.

Jafar, M. and Bahill, A. T. 1991. Interactive verification
and validation with Validator. Chapter 4 in Bahill, A. T.
e~ Verifying and Vafidaang Personal Computer-Based
Expert Systems. Englewond Cliff.a: Prentice Hall.

Jafar, M. and Bahili, A. T. 1993. Interactive verification of
knowledge-based systems. IEEE Expert 8(1 ): 25-32.

Kang, Y. and Bahill, A. T., 1990. A tool for detecting
expert system errors, AI Expert 5(2): 46-51.

8 M & Manufacturing Workshop

From: Proceedings of the AI and Manufacturing Research Planning Workshop. Copyright © 1996, AAAI (www.aaai.org). All rights reserved. 


