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Abstract

The research described below forms part of a
wider programme to develop a practical parser for
naturally-occurring natural language input which
is capable of returning the n-best syntactically-
determinate analyses, containing that which is
semantically and pragmatically most appropriate
(preferably as the highest ranked) from the ex-
ponential (in sentence length) syntactically le-
gitimate possibilities (Church & Patil 1983),
which can frequently run into the thousands
with realistic sentences and grammars. We have
opted to develop a domain-independent solu-
tion to this problem based on integrating sta-
tistical Markov modelling techniques, which of-
fer the potential for rapid tuning to different
sublanguages / corpora on the basis of super-
vised training, with linguistically-adequate gram-
matical (language) models, capable of return-
ing analyses detailed enough to support semantic
interpretationI.

Probabilistic LR Parsing

Briscoe & Carroll (1991, 1992) describe an ap-
proach to probabilistic parse selection using a real-
istic unification-based grammar of English consisting
of approximately 800 phrase structure rules (written
in the Alvey Natural Language Tools (ANLT) formal-
ism (Briscoe et al. 1987) which produces rules in 
syntactic variant of the Definite Clause Grammar for-
malism (Pereira & Warren 1980). This is a wide-
coverage grammar of English which has been shown,
for instance, to be capable of assigning a correct anal-
ysis to about 98% of a corpus of 10,000 noun phrases
extracted randomly from manually analysed corpora
(Taylor, Grover & Briscoe 1989). The ANLT grammar
is linked to a lexicon containing about 64,000 entries

I This research is supported by SERC / DTI-IED project
4/I/1261 ’Extensions to the Alvey Natural Language Tools’
and by ESPRIT BRA 3030 ’Acquisition of Lexical Knowl-
edge for Natural Language Processing Systems’.

for 40,000 lexemes, including detailed subcategorisa-
tion information appropriate for the grammar, built
semi-automatically from the Longman Dictionary of
Contemporary English (LDOCE, Procter 1978).

The probabilistic model developed by Briscoe & Car-
roll represents a refinement of probabilistic context-free
grammar (PCFG). A maximally informative context-
free ’backbone’ is derived automatically from the
ANLT grammar (in which all categories are repre-
sented as feature bundles). This backbone is used to
construct a generalised, non-deterministic LR parser
(e.g. Tomita 1984, 1987) based on a LALR(1) table.
Unification of the ’residue’ of features not incorporated
into the backbone grammar is performed at parse time
in conjunction with reduce operations. Unification fail-
ure results in the reduce operation being blocked and
the associated derivation being assigned a probability
of zero. Probabilities are assigned to transitions in
the LALR(1) action table via a process of supervised
training based on computing the frequency with which
transitions are traversed in a corpus of parse histories
constructed using a user-driven, interactive version of
the parser. The result is a probabilistic parser which,
unlike a PCFG, is capable of probabilistically discrim-
inating derivations which differ only in terms of order
of application of the same set of CF backbone rules
(within a context defined by the LALR(1) table) 
which remains a stochastic first-order Markov model,
because the LALR(1) table defines a non-deterministic
finite-state machine (FSM) and the total probability 
an analysis is computed from the sequence of transi-
tions taken to construct it.

Preliminary experiments parsing noun definitions
extracted from LDOCE suggest that this system is
able to rank parses in a comparable fashion to sys-
tems based on PCFG (Fujisaki et al. 1989), probabilis-
tic ID/LP CFG (Sharman, Jelinek & Mercer 1990) 
simulated annealing (Sampson, Haigh & Atwetl 1989),
whose grammars are couched in a linguistically less
adequate formalism and in two cases derived directly
from manual analyses of the training and test corpus.
On the basis of a training corpus of 150 analysed noun
definitions, the parser ranked the correct analysis of
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a sample of 89 sentences from the training corpus as
most probable in 76% of cases, and ranked the cor-
rect analysis as most probable in 75% of a further 55
test sentences from the same corpus. These results
were achieved solely on the basis of statistics concern-
ing the conditional probability of syntactic rules in
a syntactically-defined (LR) parse context, therefore
a significant number of errors involved incorrect at-
tachment of PPs, analyses of compounds, coordina-
tions, and so forth, where lexical (semantic) informa-
tion plays a major role. In many of these cases, the cor-
rect analysis was in the three highest ranked analyses.
Both Sharman et al and Fujisaki et al. achieve slightly
better results (about 85% correct parse / sentence),
but their grammars integrate information concerning
the probability of a lexeme occurring as a specific lexi-
cal syntactic category. Using a tree similarity measure,
such as that of Sampson et al., the most probable anal-
yses achieve a better than 96% fit to the correct analy-
ses (as opposed to 80% for Sampson et al.’s simulated
annealing parser).

We intend to extend this system in a number of
ways to integrate the probability of a lexeme occur-
ring with a specific lexical syntactic (sub)category, the
probability of structurally-defined collocational pat-
terns and statistical rule induction techniques to deal
with cases of undergeneration (e.g. Briscoe & Waegner
1992). However, in this paper we address two more
specific and related issues concerning the probabilistic
interpretation of the system: firstly, the appropriate
method of combining the probability of (partial) anal-
yses, and secondly, a method for tractably computing
the n-best analyses from the complete set licensed by
the grammar.

Probabilistic Packed Parse Forests

Ideally, the computation of the most probable analy-
sis or the n-best analyses defined by our probabilistic
LR parser should not involve exhaustive search of the
space of syntactically legitimate analyses defined by
the ANLT grammar for any given input. However, it
is not possible to introduce any Viterbi-style optimi-
sation into the computation of local maximal paths
through the probabilistic non-deterministic FSM de-
fined by the parse table, because at any point in a
derivation a maximal path may receive a probability
of zero through unification failure, rendering a hith-
erto non-maximal local path maximal again. Unfor-
tunately, the effects of feature propagation cannot be
localised with respect to the computation of most prob-
able sub-analyses, whilst any attempt to incorporate
featural information into the probabilistic component
of the grammar would result either in an intractably
large grammar, or a model with too many free param-
eters, or both.

Our parser is based on Kipps’ (1989) LR recogniser
(a re-formulation of Tomita’s (1984, 1987) algorithm),
generalised for the case of unification grammars (AI-

shawi 1992). The parser constructs a packed parse
forest representation of the complete set of analyses li-
censed by the ANLT grammar for a given input. In
this representation identical sub-analyses are shared
between differing superordinate analyses (as in chart
parsing and other tabular parsing techniques) and sub-
analyses covering the same portion of input are packed
if the subsumption relation defined on unification-
based formalisms holds between their root categories.
In a probabilistic packed parse forest the probabilities
of sub-analyses are associated with each node in the
forest and in the case of packed nodes a distinct prob-
ability is maintained for each distinct sub-analysis at
that node. Although this approach can be exponential
in sentence length for some relatively unnatural gram-
mars (Johnson 1989), in practice we have been able
to generate packed parse forests for sentences contain-
ing over 30 words having many thousands of analy-
ses. Schabes (1991) describes a Earley-like context-free
LI~ parsing algorithm that is guaranteed polynomial in
sentence length; however, a unification grammar ver-
sion of this turns out to be exponential for some types
of grammar, since on each reduce action the daughters
of the rule involved in the reduction have to be unified
with every possible alternative sequence of the sub-
analyses that are being consumed by the rule. Our con-
clusion from experiments we have carried out with an
implementation of the algorithm is that for the ANLT
it offers no advantages over a Tomita-style parser.

Although we are able to generate packed parse
forests for relatively long sentences, our previous tech-
nique for unpacking these forests to find the n-best
analyses was not optimal since it involved a frequently
near exhaustive search of the forest and was. there-
fore, exponential in the length of the input. Unsur-
prisingly, this was the major source of computational
intractability in our system and for sentences of over 20
words often led to system failure. It is not straightfor-
ward to optimise this computation because once again
remaining unifications involving the different featural
extensions of packed nodes according to the superor-
dinate and subordinate nodes to which they can be
linked can lead to failure of a derivation encoded in
the parse forest, unlike in the case of unpacking PCFG
packed parse forests (e.g. Wright, Wrigley ~z Sharman
1991) where Viterbi-style optimisation is possible.

In a stochastic model the probability of a (sub-) anal-
ysis should be the product of the probability of the
analyses combined to construct it. There are, however,
problems with using this measure to compare analyses
produced by LR parsers because LP~ parse tables de-
fine FSMs which are not ergodic, and non-deterministic
LR parsers need not be time synchronous (contrary to
conventional practice in (hidden) Markov modelling).
In practice, this means that at any point during pars-
ing it is difficult to evaluate all competing analyses
for the same portion of input because these may not
all be available and may involve differing numbers of
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state transitions in the LR table (corresponding to the
’depth’ of the resultant syntactic tree). In previous
work (Briscoe & Carroll 1991, 1992) we attempted 
avoid this problem by computing the geometric mean
of each (sub-) analysis of a given input and only com-
paring the geometric means for complete analyses, fol-
lowing Magerman & Marcus (1991). Using geomet-
ric means, as opposed to products, achieves a crude
form of norrnalisation with respect to the length of the
derivation. More recently we have been experimenting
with a method of normalisation with a clearer proba-
bilistic interpretation, described below.

Probabilistic Unpacking and

Normalisation
Although no Viterbi-style optimisation is possible dur-
ing the course of parsing (since a hitherto maximal
path may be subject to a unification failure and thus
must be abandoned), the technique can justifiably be
applied to the probabilistic packed parse forest once
parsing is complete. Our approach is first to con-
struct a parse forest representing the full set of analy-
ses licensed by the grammar, and then to identify the
m-best analyses in the forest with a probabilistically-
guided search, simultaneously normalising the scores
for partial analyses of identical portions of the input.
The best m complete analyses that have been identi-
fied are then unpacked from the forest, this process
involving a small number of further unifications. The
analyses for which these unifications all succeed are re-
turned. If the number of analyses returned is less than
the n wanted, the process could be repeated with a
larger value for m.

In practice, this approach leads to a considerable
practical improvement in the time taken to produce
the a-best analyses. Although the algorithm remains
in the worst case exponential in sentence length, in
practice it will never need to search more than a frac-
tion of the packed parse forest to recover the best anal-
yses (except in the case of pathological grammars). 
addition, by separating the probabilistic computation
from the creation of the parse forest, we avoid some of
the problems induced by the non-local nature of fea-
ture propagation.

Identifying the Best Partial Analyses
Our technique for identifying the best analyses in a
probabilistic packed parse forest involves maximising
the (normalised) score at nodes in the parse forest, 
a similar manner to the Viterbi algorithm. The method
starts at the left edge of the forest (at vertex zero), 
each successive step norrnalising (as described below)
the probabilities assigned to all partial analyses from
vertices zero to v which end at the same node in the
forest, and then extending just the m best partial anal-
yses at each node to reach vertex v + I. The process
stops after pruning the lowest scoring analyses when
the vertex v is just after the last word in the input, at

which point all the analyses will be complete and will
end at the root node of the forest. These analyses are
returned as the m-best set.

A partial analysis is taken to end at the highest node
which dominates the lexical node at the right edge of
the analysis but which does not dominate the next lex-
ical node to the right; or alternatively at the root node
if there are no further words in the input. For exam-
ple, the partial analyses from vertex zero to vertex 2
in the packed forest shown in figure 1 end at the boxed
nodes labelled II/COMP and N. Figure 2 shows the two
analyses which are represented in the forest. Since our
parser uses a shift-reduce strategy, it constructs right-
most-first derivations of the input. A partial analysis
thus consists of one or more subtrees whose heights
decrease when looked at from left to right.

Each node in the forest contains the number and the
product of the LR parse table transitions 2 taken up to
that point in the analysis of the subtree dominated by
the node. When extending a partial analysis with a
new subtree, the transition count and product figures
for the new extended analysis depend on the relation-
ship between the heights of nodes at the roots of the
subtrees currently making up the partial analysis and
the height of the new (extending) subtree. If the root
node of the new subtree is closer to the root of the for-
est than some of the current ones, then it dominates
them, and so the figures for the extended analysis are
those of the new node combined as appropriate with
those of nodes in the partial analysis which preceded
the dominated nodes. Otherwise a disjoint subtree is
being added to the right edge of the partial analysis,
and the figures at the new node are combined with
those for all the current nodes. Packed nodes must be
dealt with specially since the figures at a node take no
account of nodes which are packed below it. In fact,
it suffices to keep track of the differences between the
figures at a node and those at the root of a subtree
packed at that point whenever the subtree is incor-
porated into a partial analysis, and to factor in these
differences whenever the figures at a node are subse-
quently required.

In the implementation, the parse tree corresponding
to a partial analysis is represented implicitly by the set
of packed nodes that it contains; when the probabilis-
tic search of the parse forest is finished, the actual tree
is unpacked from the forest in an efficient depth-first
traversal. Nodes at which there is no packing, or at
which none of the packed nodes are in the given set,
are incorporated into the tree. Packed nodes which are
members of the set are incorporated, after performing
the unification required to check that they are consis-
tent with the rest of the analysis built so far, and the
traversal continues inside the packed subtree.

2In fact what is stored is the sum of the logarithms of
the transitions.
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Figure 1: A Packed Parse Forest.

Ellipses enclose packed
nodes.

Boxes mark end nodes
of partial analyses from
vertices 0 to 2.
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Figure 2: Analyses that are Represented in the Forest.

Normalising Partial Analyses
Since partial analyses spanning the same vertices may
well have been derived via differing numbers of LR
state transitions, scores for competing analyses must
be normalised before they can be compared and the
best ones identified. We have experimented with two
alternative normalisation methods.

The first method is to normalise the scores of all the
partial analyses which end at a given node in the for-
est to the length of the longest derivation in any of
those analyses; for each derivation that is shorter by
say d transitions, its score is multiplied by the geomet-
ric mean of the score raised to the power of d. So, for
example, if at one stage the longest derivation was of
length 5, two other derivations of length 3 and 4, with
transition scores

a) 0.9 0.6 0.05
b) 0.5 0.2 0.2 0.08

would be multiphed by factors of 0.09 (= 0.32) for a),
and 0.2 for b) to give normalised scores. This compu-
tation can be performed quickly since transition scores
are held as logarithms.

The second, more complex, normahsation method is
to compute the products of the transitions in all the
alternative sequences of transitions which extend par-
tial analyses ending at a given node, to normalise the
products, as above, to the length of the longest se-
quence, and then to normalise the resulting scores so
that they sum to 1. Next, we assign to each extended
analysis the product of the score for the original par-
tial analysis and the score for the extending transition
sequence. Finally, the scores for all the extended anal-
yses are normalised so they sum to 1. The rationale be-

hind this method is that once the parse forest has been
constructed we know that all sub-analyses that it con-
tains spanning vertices 0 to v contribute to some suc-
cessful, complete analysis (modulo unification failure
in the final unpacking). Therefore, we can normalise
the probabilities of all competing sub-analyses for suc-
cessively increasing portions of the input so that the
sum of their scores is 1. With the additional normal-
isation that is carried out to take account of differing
derivation lengths, it should be the case that we can
take the product of the probabilities for a partial anal-
ysis and one that extends it to obtain the probability
of the extended analysis without introducing unwanted
biases into the resultant ranking.

Empirical Results

We have re-run the experiment parsing LDOCE noun
definitions from Briscoe & Carroll (1992) using the new
approach to probabilistically ranking parses and un-
packing the packed parse forest. Using the first nor-
malisation scheme, the results we have obtained are
marginally better than the original ones. Reparsing
the training corpus and automatically comparing the
most highly ranked analysis with the original parse,
for the 89 definitions between two and ten words in
length inclusive (mean length 6.2), in 69 cases the cor-
rect analysis (as defined by the training corpus) was
also the most highly ranked. Taking correct parse /
sentence as our measure then the result is 78%, as
compared with 76% originally. Reparsing the further
set of 55 LDOCE noun definitions not drawn from the
training corpus, each containing up to ten words (mean
length 5.7), in 41 cases the correct parse was the most

36

From: AAAI Technical Report FS-92-04. Copyright © 1992, AAAI (www.aaai.org). All rights reserved. 



highly ranked, giving a correct parse / sentence mea-
sure of 75%, the same as before. The second normali-
sation scheme unexpectedly produced much worse re-
sults: only 60% of the correct analyses were returned
as the highest ranked when reparsing the training cor-
pus.

Despite the fact that our current implementation of
probabilistic unpacking is quite crude and could be
speeded up significantly, for a sample of ten-word defi-
nitions with up to 150 analyses, the time the implemen-
tation takes to return the three highest ranked analyses
from the parse forests is of the order of a factor of 3
less than in the original near-exhaustive search of the
forest. In the course of searching for the best analyses,
on average only about 20% of the nodes in the forests
were visited. For longer definitions the difference is
even more marked. Our current implementation has
returned analyses for every definition for which the
parser managed to successfully create a parse forest;
the longest such definition is 31 words in length. Previ-
ously, the longest definition that we managed to return
an analysis for was only 22 words long. We have been
unable to compute the full set of analyses for these def-
initions, due to space and time constraints, but have
calculated that they have at least 2000 analyses.

In the experiments that we have carried out so far,
once the forest has been searched for the highest scor-
ing analyses, it appears that the great majority of uni-
fications that take place when unpacking them axe suc-
cessful. In the tests outlined above, setting up pruning
of partial analyses to discard all but the best three at
each stage, the number of final analyses returned for
each definition was only less than the three required in
the few cases where there were actually less than three
analyses in total.

Conclusions and Future Work
In this paper we have presented a technique for proba-
bilistically unpacking a packed parse forest with inter-
leaved normalisation of the scores of partial analyses
covering identical portions of the input. We have suc-
cessfully applied the technique to packed parse forests
created by a unification-based non-deterministic LR
parser, but the technique is generally applicable to
any Tomita-style parse forest created by a shift-reduce
parser in which each node contains sufficient informa-
tion to be able to compute a normalised probability for
the subtree dominated by the node.

The technique allows our system to return the high-
est ranked analyses for sentences that are signifi-
cantly longer than could be coped with using a near-
exhaustive search of parse forests; in fact in our exper-
iments the system has been able to return analyses for
every sentence for which a parse forest could be com-
puted. The normalisation methods described in this
paper are also better-founded than the method that
was used previously. However, we are still attempting
to improve the system in this area.

Choosing a value for m in order to take the m-best
partial analyses at each stage appears to be rather ar-
bitrary. We are currently investigating changing our
control strategy to take the maximum probability par-
tial analysis after normalisation and then include all
others in the set of competing sub-analyses which fall
within a given threshold. Then if several analyses had
very similar, high probabilities they would all be re-
turned, and pruning out partial analyses would be de-
pendent on a function of probability likelihood rather
than an arbitrary number.
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