
Learning Models of Opponent’s Strategy
Game Playing

David Cannel
Computer Science Department

Teclmion, Haifa 32000

Israel

carmel@cs.techniou.ac.il

Shaul Markovitch *
Computer Science Department

Teclmion, Haifa 32000

Israel

shaulm@cs.technion.ae.il

in

Abstract

Most of tile aclivity ill tile area of game playing pro-
gran,s is concerued wit h efficient ways of searching game
troos. There is substantial evidence that game playing
involves additiolml types of intelligent processes. One
such pl-OCoss porformed by human experts is the acqui-
sil ion and usage of a model of their opponent’s strategy.

This work studies the problem of opponent mod-
,.lling in game playing. A simplified version of a model
is d,’tim’d as a pair of search depth and evaluation func-
lion. M*. a generalization of the minimax algorithm
thai can handle an opponent model, is described. The
Iwm’tiI of using opllouent models is demonstrated by
comparing the performance of hi* with that of the tra-
ditional miuimax algoritlml. An algorithm for learn-
ing lho opponent’s strategy using its moves as examples
was developed. Experiments demonstrated its ability
Io acquire very accurate models. Finally, a full model-
h’arniug game-playing system was developed and ex-
p,,rimontally demonstrated to have advantage over nou-
h,arning player.

1 Introduction

"...AI the press confi,rence, it quickly be-
c:m,,, oh,at lhal l~asparov had done his IIom,>
work. lh" a(huilted that lie had reviewed
about fifty of I)I’:EP "I’tlOUGIIT’s games
and fell conlident he understood the ma-
chine.’" [8]

()no of the most notable challenges that the Arti-
licial Intelligence research comnmuity has been trying
io faco during the last live decades is the creation of a

*’lhis research was partially supported by the Fund for the
Pr,,m.licm of liesearch at the Technion

computer program that can beat the world chess cham-
pion. Most of the activity in the area of game play-
ing programs has been concerned with efficient ways
of searching large game trees. However, good playing
performance involves additional types of intelligent pro-
cesses. The quote above hilights one type of such a
process that is performed by expert human players: ac-
quiring a model of their opponenCs strategy.

Several researchers have pointed out the importance
of modelling the opponent’s strategy, [10, 2, 6, 7, 1. 11].
but the acquisition and use of an opponent’s model have
not received much attention in the computational games
research COiIIlllU nity.

Human players take advantage of their modelling
ability when playing against game playing progralns.
International Master David Levy [8] testified that lie
had specialized in beating stronger chess programs (with
higher ELO rating), by learning their expected reac-
tions. Sainuel [10] also described a situation where hu-
man experts who had learned the expected behavior of
his famous checkers program, succeeded better against
it than those who did not. Jansen [5] studied the impli-
cations of speculative play. He paid special attention to
swindle and trap positions and showed the usefulness of
considering such positions during the game.

The work described in this paper makes one step
into the understanding of opponent inodelling by gaine
playing programs. In order to do so, we will make an
attempt to find answers to the following questions:

1. l, Vhal. is a uiodo] of oppononl ’s stralogy’.>

2. ASSUllliUg thai. we possess such a ulodel, how c~til
we utilize it’?

3.

4.

What are the potential benefits of using opponent
models?

ttow does the accuracy of the model effect its ben-
eflt?

5. How can a program acquire a model of its oppo-
uent?

140

From: AAAI Technical Report FS-93-02. Compilation copyright © 1993, AAAI (www.aaai.org). All rights reserved.

We will start by defining a simplified framework for
opponent’s strategy. Assuming a minimax search proce-
dure. a strategy consists of the depth of the search and
the static evaluation function used to evaluate the leaves
of the search tree. The traditional minimax procedure
assumes that the opponent uses the same strategy as
Ihe player. In order to be able to use a different model
we have come up with a new algorithm, M*, that is a
generalization of minimax.

The potential benefits of using an opponent’s model
is not obvious. If the opponent has a better strategy
than the player, and the player possesses a perfect model
of its oppone,d., t.he,l the player should adapt his oppo-
nent’s strategy. If the player has a better strategy than
the opponent’s, then playing regular minimax is a good
cautious method, but not necessarily the best.. Setting
traps, for example, would be excluded most of the time.
In the case where the two strategies are different but. nei-
lh,,r is In’tler than the other, the minimax assumptions
about Ihe Ol)Imneut.’s .loves may be plainly wrong.

In order to measure the potential benefits of using
oplmnent modelling, we have conducted a set of experi-
mouts comparing the performance of the M* algorithm
with the performa,we of the standard minimax algo-
rithm. Finally, we have studied the problem of the
,,odolliug process itself. We have tested some learn-
ing algorithms lhat use opponent’s moves as examples,
and learn its depth of search and its evaluation function.

Section 2 deals with the frst two questions: Defining
a model and developing an algorithm for using a model.
Section 3 deals with the third and the fourth questions:
Measuring the potential benefits of modelling and test-
iug the o[t’ects of modelling accuracy on its benefits. See-
t ion ,1 discusses the fifth question: Learning opponent’s
models. Section 5 conch, des.

2 Using opponent nmdels

[n this section we answer the first, two questions raised
in the introduction: what is an opponent, model, and
how Jail we use such a nlodel.

2.1 Definitions and assumptions

()ur basic assumption is that the opponent employs
basic minimax search aml evaluates the leaves of the
s,,arch tree by a static evaluation function. The oppo-
m’nt may use pruning methods, such as a8 [6], that
select tile same inoves as nlillimax. We assume that
the opponent searches to a fixed and uniform depth: no
se]eclive deepening methods, sueb as quiescence search
or singular extensions are used. We shall also assuine
that the opponent does not use an,,’ explicit model of
the player.

Under the abow" assumptions we can define a playing
strategy:

Definition 1 A playing strategy is a pair (f, d) where
f is a static evaluation fanction, and d is the depth of
the minimax search.

Definition 2 An opponent model is a playing strat-
egy. We will denote an opponent model by S,,,oa~l =
(fmodel, dmodet) while the actual strategy used by the op-
ponent will be denoted by Sop = (fop, dop). The strategy
used by the player will be denoted by Sptau~,.=

Definition 3 A player is a pair of strategies,

2.2 The M* algorithm

Assuming that Spl~v~_, and Smod~t are given, how do we
incorporate them into the search for the right move?
The M* algorithm, listed in figure 1, is a generalizal,ion
of minimax that considers both the player and it.s oppo-
nent strategies. The algorithm takes Spt,v~.,- and S,,,,,d,t
as input. It develops the game tree in the same naanner
as miuilnax does. but. the values are propagated back in
a different way.

aJ’(pos, depth, copt,~ver, S, nodet
if depth = 0

return (fp’~v~ (pos), f,,,od~t (pos))
else SUCC ~ MoveGen(pos)

for each succ ~ SUCC
v ~- M*(suec, depth - 1, Sprayer, S,,oa~t)
if (d,,,od~t + depth = dpt~v~.,. - 1

~model ~ fmodel(SaeC)

if AJAX turn:
bestvl.v~ :--- max(bestpt~,j~ , Vrl~,j~.~)
beStmodel ~- min(bestmodet, Vmodel)

if MIN turn:
if bestmodet < Omodel

bestmodel +--- 1)model
beStplayer +-- Oplager

else
if (best,nodal = v,,,od~t

bestptaver -- Inin(bestrt.,j~,. . Vptav~,.
return (bestpt~v~ , bestmod~t)

Figure 1: A simplified version of the M* algorithm

Since according to our assumptions, the opponent
will use a regular minimax search with S,,,od,t, the op-
ponent’s reaction8 to each of our moves is decided ac-
cording to S,,,o&t. However, the vahte that we attach to
each node should be according to our strategy, Svt,,a~.
Therefore, we propagate back two values: t,,,,o&t, the
value computed by fmodel and vt, t~v~, the value com-
puted by fpt,,v~,-. At. the leaves level, we compute both

141

From: AAAI Technical Report FS-93-02. Compilation copyright © 1993, AAAI (www.aaai.org). All rights reserved.

fpt,,,j,r and f,,,od~q for each board. At a MAX level,
v,,,odd receives the value of the mininlal v,,,oaet value
of all the successors, while vet~v,r receives the maxinml
vpt~w,- value of the successors. At. a MIN level, v,,,odel
gets tile value of the nlaximal v,nodet value of all the
successors, vpl~w~ gets the q, low~ value of the node se-
lected by MIN (the one with the highest Vmod,l value).
If there is more than one node with maximal v,,~o&z
value, then M* passes up the minimal vvt~w~ value in
that set of nodes with maximal V,aodet. That is because
MIN may select any of those. If an interior node in
the search tree is found on the search frontier of MIN,
v,,,od,l is adapted by calling f,,,odd on that node. Figure
2 shows an example where minimax and hi* recommend
dilforent moves.

l:igt,re 2: The tree spanned by M*. S,,tave~ =

(fvt,,,l-’. 2), S,,,oa~t = (f,,,oatt, 1). Left. values are node
ovaluations by .gpl~ve,’. Right values are node evalua-
tions I)y .",,,odor. Minimax values are in bracket.s. M*
(-hoosos the right move while minimax chooses the left..

Korf [7] proposes a similar algorithm for using a
m,)(h.I o1" t.ho Ol)l)onent evaluation function. The Mgo-
rill,n (,valuafes each leaf twice - using the opponent’s
fimclion and the player’s fimction. A pair of values is
then I)ropagat.ed up, selecting the pair with tim high-
,’st player’s component in MAX level, and taking the
l)ai, with the lowest ol)ponent’s component in MIN level.
Thero is a major difference between M* and Korf’s al-
gorifh,n. While M* uses one level of modelling, i.e., it
assumes that the opl)onent does not use a model of the
player. Korf’s algorithm assumes maximal level of mod-
elling. It assumes that the player possesses a model of
t lw ol)ponel~t.’s flmction, and a model of t.he opponent’s
modol of its fimction, and a model of tim opponent’s
mo(h’l of that model etc.

It is I)Ossible to add off pruning to M* by trans-
f(,rring two pairs of values, Oplayer, /~player aim Omodel,

3,,,od~l. Pruning will take place only if both MAX and
.1/I.V agree that it. is useless to continue developing that
part of the tree. Therefore, M* will have fewer cut-
o11~ lha, regular Minimax. costing more search time.

The payoff in search time depends on the similarity be-
tween fpz,w~,- aim f,,,od~t. When the two functions al-

ways agree on the relative ordering between positions,
M* will prune tim same branches as minimax does.
When the two functions always disagree, k,/* will never
prune. We did not include a-/5’ pruning in figure 1 for
sake of clarity.

2.3 Properties of M*

It is easy to show that M* is a generalization of the
nfinimax Mgorithm.

Lemma 1 Assume that M* and Minimax use the same
Splayer strategy.
By using S,.oa~t = (-fpt~v~r. dpt.v~,- - 1), M* becomes
identical to minimax. 1

Minimax(position, depth)
.,~I* (position, depth, Set.w,., S,,,odO).

It is also easy to show by induction on the depth of
search that M* always selects a move with a value greater
or equal to the one selected by minimax.

Lemma 2 Assume that M* and Minimaa: use the same
Spl.v~ slrategy. Then

Minimax(position, depth)
M* (position, depth, Svt.w~, S,,,od~_t)

for any Smode1.

The intuition behind the above lemma is, that if
the opponent is weaker than the player, and the player
knows this, then the player can make less conservative
assumptions about the opponent’s reactions, increasing
the vah,e returned by tim procedure. The fact. l.hal .,’vl*
returns a higher value does not lnean that it, always s(--
lects better moves. If it underestimates the opponent.
then the higher value will not be materialized.

The risk taken by using M* depends on the quality
of the model. However, when using M* to play against
a weaker opponent, there is a higher risk in trusting
its static evahxation function as a predictor. Therefore.
for the experiments described in the next section, we
have used a modified version of M*. The reactions of
tim opponent for each of the alternative following moves
is computed using S,,,o&l as before, ttowever, in deeper
MIN levels of the tree, M* passes up the nfinimal v#o,j~,.
instead of the value of the board selected by MIN. This
method reduces the risk, especially in the case of weaker
opponent’s model.

1M* can not handle dmode! greater than dplayer -- 1. Also.
we can consider an evaluation function that receives the active
player as an addit.iona| parameter and returns the value accord-
ingly. Therefore, from now on, we can say that the stan¢|ald

minianax algorit.hm uses .gmodeI = Splay~,- = (f l~layer, dlalay. ,.

142

From: AAAI Technical Report FS-93-02. Compilation copyright © 1993, AAAI (www.aaai.org). All rights reserved.

3 The potential benefits of using
opponent models

Now that we have an algoritlun for using all oppo-
uent’s model, we would like to evaluate the potential
benefit of using this Mgoritlun. In order to do so, we
have conducted a set of experiments comparing the M*
algorithnl that has a perfect model of its opponent (i.e.,
¯ <:,,,:,+t = £’,,r) to the regular Minimax algorithm.

3.1 Experimentation methodology

The experiments described in the following subsections
involve the following players:
.~I M = (,’:,’pl~y.., ,%,t.,j.-)
M" = (,’:,;,~,j~,., S,,,o~t). (,5",,,o,m &,,,)
01’ = (,%r, &r)
A hasic lest. consists of a set of 100 games played be-
lWCell M* all(] OP, and another set of 100 games played
between MM and OP. Both competitors, M* and MM,
w,’re allotted the same search resources. The benefit of
the M* algorithm over MM is measured by the differ-
,,no,, between the mean points per game (2 points for
win. I point for a draw).

The exl)erimenis were couducted for two different
games: Tic-tac-toe on an 3 × 3 board with the well
known "ol)en lines advantage" evaluation function, and
,’lwckers with aa evaluation ft,lction based on the one
us,’(I for Salnuel’s checkers player[9].

3.2 The effect of the level difference on
the benefit of modelling

I.or Ihe Firs! exl)eriment described here, we have fixed
frl,,,., and fi’r aim varied values of the depth compo-
i.,.ts of the strategies. For the second experimeut, the
deplh parameters of all strategies were kept. constant.
The function frl.,j~ was set to be Samuel’s evaluation

fun,’lion whih" .f,,.,d~l = J’op was formed by destroying

./rt,,~,,,- values that reside outside the range -a... a.

{ frt,w~,.(x)if I(f,.,~,,¢d~)l
-f,~,,,,t, t(’) = otherwise

:\s , I)ecomes smaller, fl,lay,-," -- fop I)ecomes larger and
th,’ fulwlion quality drops.

Ilw (’Xl-’rime.fs can i)e inierpret.ed in two ways:

¯ Testing the elfect of level difference between the
two players on t he benefit of using a perfect, model
owq" siandard minimax.

¯ Test ing the effect of the distance between the model
and the actual strategy on its benefit, or. in dif-
foront words, t~.sf.ing the imlmrt, ance of modelling
,~1 (’C II racy,

points/game
Checkers (fl-f2)

2.00 ~
¯

1.95~ ///I

sl /~ /i

1.8-[- // /I

/ /i
1~51- / ,.-’ 4¯ I,.70~ / ~~

1-65t- /

,+// tl"l- /
l’50t /Y i

2.00 4,00 6.00
(Icpth diff.

Figure 3: The performance of M* vs. the performance of
Minimax as a function of search depth difference. Mea-
sured by mean points per game.

Figure 3 exhibits the fifll results ofo,w checkers tour-
nament. !3% can see that M* always t)erforms better
then Miniinax.

Figures 4,5 suminarize the results of the experiments.
hi these graphs we plot the difference in performance
between the two algorithms. All graphs exhibit similar
behavior: The benefit of opponent modelling increases
with the difference in level up to a certain point where
the benefit starts to decline. The increase in the ben-
efit can be explained by the observation that Miifimax
is being too careful in predicting its opponent’s moves.
while M* utilizes its model and exploits the weaknesses
of its opponent to its advantage. Alternatively, we can
say that harln is caused by incorrect modelling, and is
increased with the difference between the lnodel and the
actual strategy. Overestilnating the opponent will usu-
ally cause too defensive strategy. When the level differ-
ence becoxnes larger, Minimax wins in ahnost all games.
hi such a case there is little place for improvement by
lnodelling.

4 Learning a model of the
opponent’s strategy

The last section demonstrated the potential belmtii.
of using an opponent’s model. In this section we will
discuss lnethods for acquiring such a model. We as-
sume the framework of learning from examples. A set
of boards with the opponent’s decisions is given as in-
put, and the learning procedure produces a model as
o,l,l)ut. This framework is siulilar to the scenario used
by Kasparov as described in the opening quote.

143

From: AAAI Technical Report FS-93-02. Compilation copyright © 1993, AAAI (www.aaai.org). All rights reserved.

Tic lac foe
benefit (point~/game dif£) x -3

_’00.00[’
, ,:"

~._...~.
~’fe - fl~ --~---

450.00].
:/"

/

"((---i3

400.001- ,
¯

/

,,o~L : /\ ¯ i : / \I

,oooo[

:
/

/,..

2ooooI ,/ / \
,,oooi: / ~’,,,

,00001.j ~ \
,oooli:
0.00 -

~! J J__ I depth diff
0.00 2.00 4.00 6.00

Checkers
benefit {points/game diff.) x 10-3

! ," - - 1 ~ i fl - fl
200.0o :~.._ /~ j t] - f2

I ~0 0!1 :
/ -. - i

!160 Ol!i

I 2° 001

1 oo.oo i

/

\!80 O01

60 00 !

41).00

20.00

00oi
! . . ~ L~ ! depth difL

0.00 2.00 4.00 6.00

Figure ’1: The benefit of using M* over minimax as a
fimclion of the search depth difference. Measured by
moan points per ganle.

According t.o our assuml)tions, the opponent searches
l,, a fixed depth, therefore learning d,,,odd involves se-
h’(’ling a dopth froln a small sot. of plausible vahles. The
spa,’,, of possilde functions is nevertheless infinite, and
ll!,’ task of Ioarning f,,,.d.I is therefore much harder.

4.1 Learning the depth of search

(;Non a sol of oxanlples, each consists of a board to-
golher with t}le move selected by the opponent, it. is
rolativ,qy easy to learn the depth. Since there is only a
small set of plausible vahles for dot,, we can check which
of them agrees best with the opponellt decisions. The
algorithm for h-arning the depth is listed in figure 6.

Wh,’n f,,,od,t = for, Ihe ahove algorithm needs few
examph’s to infer doj,. II can be proven that dop will

Checkers
benefittpoints/game diff.) x 10-3

Fr , ,
[

500.00
A

q

 ,ooo /\ t400.00 l\ ~’
A/XAA !

,oo. ul 1 5o.oo’ / 1 I _0o00 / \ I1,0.04 /
’0000t/ t

0.00 10.00 20.00
functions dif£

Figure 5: The benefit of using M* over nlinimax as a
function of the time!ion difference¯ Measured by lnean
points per game.

LearnDeplh(examples)
for each (board, move) e examples

boards ~ successors(board)
for d from 1 to MaxDepth

M ~ minimaz(move(board),
~o,,.t[d] - eo,,,,t[d]

+ l {beboards I ,ninimaz(b, d) <_ M} I
-[{beboards I minilnaz(b,d) > M}I

return d with maximal count[d]

Figure 6: An algorithm for learning a model of the op-
ponent’s depth (d,,odn)

always be in the set of depth counters with nmximal
values. However, in the case that f,,,o&l differs from
foe the algorithm can make an error. Figure 7 shows
the counters of all depths after searching 100 examples.
The algorithm succeeds to predict d,,o&t in the pros-
ence of imperfect function nmdel. Figure 8 shows th;
accumulative error rate of the algorithm as a function of
the distance between f,,~o&l and fol,. The accumulative
error rate is the portion of the learning session where the
learner has a wrong model of its opponent’s depth. The
experiment shows that indeed when the function model
is perfect, the algorithm succeeds in learning the ohm-
nent’s depth after a few examples. However, when the
opponent’s function is even slightly different than tho
model, the algorithm’s error rate increases significantly.

144

From: AAAI Technical Report FS-93-02. Compilation copyright © 1993, AAAI (www.aaai.org). All rights reserved.

~0. O~ IIlOVC5

260.00 ~=

240.00 --

220.00 --

200.00

180.00 ---

160.00 --

140.00 --,

120.00 -

100.00 -

Learning the op. depth

i\-!
J

t__’
80.00 t

4o00f-i!
20.00~i --0.00~ [I

1.00 2.00 3.00 4.00
depth

5.00

I"i~uro T: l,oarning the depth of search by 100 examples,
d,, r = 3 ./"’1’ roturll a randoln vahle with probability 0.25

,.,iTor

1.00 f l

090

0.8(I

(I.70

0 60

050i

O. "~0 !

0.20;

0 101

I
000

I)eplh l,earnlng: Accnmulallve error rate

,]

/
0.50 1.00

function difE

l"iguf,’ 8: The error rate of the algorithm as a function
,’d" lh," fllnCliolls differ,r,nco

4.2 Learning the opponent’s strategy

hi ,’)id,,r Io br:’arll tile OpllOllelll "s strategy, ’,’,’ill inake the

fi:’,llov:i ug ,;issu lU ill.ions:

I. The opponc’ni’s function is a linear confl)inai.,ion
of f(!a|tlr¯’s, f(b) = 7. h(b) = lb’ ihi(b) where
b is the evahlated board and hi(b) returns the ith
[oal ilro of lhal board.

7. Tile foalUlO set of the opl)ouent is kuov:u to ll,he
Ioal’llor.

3. The opponent does not change its function while
playing.

Under these assuinptions the learning task is reduced to
finding the pair (W,,,od¢t,d,,,oaet). The learning proce-
dure listed in figure 9 computes for each possible depth
d a weight vector 7gd, such that the strategy (TFd - h, d)
most agrees with the opponent’s decisions. The adapted
model is the best pair found for all depths.

LearnStrategy(examples)

for d from 1 to kfaxDeplh

~Td "--- ~d- 1
Repeat,

II~curren t s--- ~d

t~a "-- FindSolution(examples, 7F~u,.~,,t, d)
progress ~ [score(~d, d) - score(gg¢,,,.,.~,,,, d)l _> (

Until no progress
return (Wd, d) with the maximal score.

F indSol ution (e:ramples, ~ -¢.t, d)
Constraints ~ O
for each (board, chosen_move} e examples

SUCC ~ MoveGen(board)
for each succ ¯ SUCC

dominanlsucc +-
Minimax(succ, -i6~,,,. t, d - 1)

Constraints ~ C’onstraints O
{~(h(domhmnt~_h)

-h(dominant)) _>
return 7F that satis~’ Constraints

Figure 9: An algoritlun for learning a Inodel of the op-
ponent’s strategy (-~’model, dmodet)

For each depth, the algoritlun performs a hill-clinibing
search, improving the weight vector until no filrther sig-
nificant improvement can be achieved. Assume thal
W~_n,’~e,,t is the best. vector found so far for the curl’en|
depth. For each of the examples, the algorithm builds
a set of constraints that express the superiority of the
selected move over its alternatives. The algorithm per-
forms minimax search using (~ e,,t" h, d- 1). starting

front each of the successors of the exalnl)h" board. AI the
end of this stage each of the alternative moves can In,
associated with the "dominant" board that detel’miue
its minimax value. Assume that b~-ho~,, is the dominant
board of the chosen move, and bl,..., b,, are the don>
inant boards for the alternative moves. The algorithm
adds the n constraints {N-(b(b,_-h)-h(bl)) > 0
1 , n} to its accumulated set. of constraints.

The next stage consists of solving the inequalities
system, i.e.. finding ~F that satisfies the system_ The
method we used is a variation of the linear prograln-

145

From: AAAI Technical Report FS-93-02. Compilation copyright © 1993, AAAI (www.aaai.org). All rights reserved.

miilg method used by I)uda and Hart [3] for pattern
recognilion.

Before the algoritlun starts its iterations, it, sets aside
a portion of its examples for progress monitoring. This
s(’l is not available to the procedure that builds the con-
straints. Afl, er solving the constraints system, the algo-
rithm tests the solution vector by measuring its accuracy
in predicting the opponent’s moves for the test exam-
pies. The performance of the new vector is compared
with that of tile current vector. If there is no significant
iml)rovement, we assume that the current vector is the
Iwst that can be found for the current depth, and the
algorithm repeats the process for the next depth, using
the currenl w~ctor for its initial strategy.

The imwr loop of our algorithm, that searches for the
I.,st I’mwtion for a given depth, is similar t.o the method
us,.d 1,5 1)EI"I> TIIOUGIIT [4] and by Chinook [11] for
l,mi.g their evaluation function from book moves. How-
,’vcr. I liese programs assm.e a fixed small depth for their
scar(’h. Meulen [12] used a set of inequalities for book
Darning. hut his program assumes only one level depth
of search.

4.3 Strategy learning experiments

The slralegy learning algorithm was tested by two ex-
l.,riments. The first experiment tests the prediction ac-
,’.racy of models acquired by the algorithm. Three fixed
st rategics (fl, 8), (f2, 8) (fl, 6), were used as oppo-
twins, wl..re fl and f2 are two variations of Sanluel’s
[mu’lion. Each strategy was used to play gaines until

l{;[l[I cxanlph’s were generated and given to the learning
algorithm. The algorithnt was also given a set of ten
feat urcs. including the six features actually used by the
sl rat,,gies.

Th,’ algorithm was run with a depth liniit of 11. The
~,xami,Ds wcu’ divi&’d by the algorithm to a training
s~,l aud a lesli,g set of size 800. For each of the eleven
dcpl h wdm,s, the program performed 2-3 iterations be-
h~r." movingto the next depth. Each iteration included
.sing Ihe linear l)rograming method for a set. of several
I]lOllSalldS COILS| railllS2.

’l’hc results of the experiment for tile three strate-
gi,,s is shown in ligure 10. The algorithm succeeded for
th," lhl’eC cases, achieving an accuracy of 100% for two
st rai(’gi(’s and 93(Z(, for the third. Furthermore, the high-
cs/ accuracy was achieved for the actual depth used by
lh," slral,’gios.

l’l," second eXl)eriuient tested the usage of the model
Iraruing algorithm by a playing program. A model-
I,’arnilig playing sysieni was Imilt I)y using the model
learning algorilhni for acqiihing Ol)poneilt’s inodel, aud

2 ~\-<. h;ivc used I lie vl"r~." efficient Ip_~olve progranl, written by

M.II.(’.M. I~,.rkcla;.’. fl,r s,,Iving the conslr<’iinls syslein

Strategy learning
success/guesses

,00[i-~ ~ ~
00 i
090f : / --" "

_......~ -~I

5;77,/ ,
::t// !-i

depfll
5.00 10.00

Figure 10: Learning opponent’s sl, rategy

Learning system

1.34 i- J

1.32"

1.30~ [

1 ~sL

1.24 I-

1--i ., i
l "~OL-i _1 i
1.18i_

1.14[-
1.12t-

1.10~ 9

0.00 50.00 100.00 150.00 200.00

peffomiance(points/gain e)

1.36 F i

/--_.
’ 1"Opponent 1

Opponent 2

exanipk’s

Figure 11: The performance of learning prograin as a
function of the nulnber of learning games. Measured by
mean points per game.

the M* for using it. The system aecunnilates the op-
ponents inoves during the game. After each alternating
gatne, the lnodel learning procedure is called with the
total accumulated set of opponent moves. The learned
lnodel is then adapted for use by the M* algorithm.

The system was tested in a realistic sittmt.ion I) 5 let-
ting it. play a sequence of games against regular minimax
players that use different strategies with roughly equiv-
aleut playing ability. After each model modification
by the learning program, a tournament of 100 games.
between the competitors, was conducted for lneastir-
ing their relative performance. Obviously, the learning
lnechanislns, including move-recording, were turned elf

146

From: AAAI Technical Report FS-93-02. Compilation copyright © 1993, AAAI (www.aaai.org). All rights reserved.

for Ihe whoh’ duration of the testing phase.

I:igure 11 shows the results of this experiment. The
players slart of with Mmost equivalent ability. However,
after several games, the learning program becomes sig-
nificantly stronger than its non-learning opponents.

Ben-Ephraim for helping us in early stages of this work.
Finally, we thank M.R.C.M. Berkelaar from Eindhoven
University of Technology, The Netherlands for making
his extremely efficient lp~olver program available to lhe
public.

5 Conclusions References

This work takes one step into understanding the process
of oplmnent’s modelling in game playing. We have de-
lined a simplified notion of opponent’s model - a pair of
an evaluation function and a depth of search. ~,~,% have
also developed M*, a generalization of the iniuimax al-
gorithm tha! is able to use an opponent model. The
potemial Imnetits of the algorithm over standard min-
imax were studied experimentally. It. was shown that
as the oplmnent becomes weaker, the potential beue-
til over minimax increases. The same experiments also
eh,monslrate t.hc potential harm of overestimatillg the
(ll’tpOllell[.

A fl o1’ es[ablishing the benefit of using accurate model,
w,, procced(,d wil.h tackling the I~roblem ot" learning op-
I,-n,’lH’s model using its moves as examples. We have
colucoul wilh an algorithm that quickly learns the depth
,)(’1 he Opl)OiWlll search ill the presence of imperfect model
oflhc Ol)l)Om,nl fmwlion.

x: "xl, we have developed an algorithm for learning an

Olq~Oncnl model (bolh deplh and evaluation flmction),
using its moves as examples. The algorithna works by
ileraliw’ly increasing the model depth and learning a
flmclion thai best predicts the opponents moves for that
d~,lH h.

I:inally, a full playing sysleln was built, that is able
Io model its oppolml~t while playing with it. Experi-
m(,nls den|onstraled thal the learning-player advantage
ow,r non-learning player, increases with the number of
~Hlllf’S.

()he of the simplitied assu,nptio,ls that we have made.
is a lix,’d depth search by lhe opl)onenl. Obviously, this
is nol a realistic assumption. We intend to examine
what arc Ihe conseqm’nces of removing this assumption.

The algoril hm dewAoped for learning opl)onen/model
I,mved to be extremely efficient il, acquiring an accu-
ral,, m,)d,’l of the Ol)l)onenl. It would be interesting
Icsl wlu,lher il can achieve similar results when used for
I,o-k h’arning.

6 Acknowledgenlents

V~c would like Io thank l)avid Lorenz and Yaron Sella
fl,r h.lling us use their etlicieut checker playing code as
;, h;,sis for o,,r system. We would also like t.o thank Arie

[1] Bruce Abramson. Expected outcome: A general
lnodel of static evaluation. IEEE Trans. on Pat-
tern Analysis and Machine Intelligence 12,182-193.
1990.

[2] Hans Berliner. Search and knowledge. In Proceed-
ing of lhe Inlernalional Joinl Conference on Arlif-
ical Inlelligence (IJCAI 77), pages 97.’5-979, 1977.

[3] 1%. O. Duda and P.E. Hart. Patlern Classificalion
and Scene Analysis. New York: Wiley and Sons.
1973.

[4] F-It. Hsu, T.S. Ananthraman, M.S. Campbell, and
A. Nowatzyk. Deep thought. In T.A. Marsland and
J. Schaeffer, editors, Compulers, Chess and Cogn~-
lion, pages 55 78. Springer New York, 1990.

[5] P. Jansen. Problematic positions and speculative
play. In T.A. Marsland and J. Schaeffer. editors.
Compulers, Chess and Cognition, pages 169 182.
Springer New York, 1990.

[6] D.E. Knuth and R.W. Moore. An analysis of alpha-
beta pruning. Arliflcal Intelligence 6, no.4. 293-
326, 1975.

[7] Richard E. Korf. Generalized game trees. In Pro-
ceeding of the International Joint Conference on
Adifieal hdelligence (IJCAI 8.9), pages 328 333.
Detroit, MI, August 1989.

[8] D.N.L. Levy and M. Newborn. How Compuler.s
Play (.’hess. W.H. Freeman, 1991.

[9] A.I,. Samuel. Some studies in machine h’arninv; us
ing the game of checkers. IBM Journal. 3, 211-229,
1959.

[10] A.L. Samuel. Some studies in machine learning us-
ing the game of checkers it-recent progress. IBM
Journal, 11. 601-617, 1967.

[11] J. Sehaeffer, J. Culberson, N. Treloar, B. Knight,
P. Lu, and D. Szafron. A world chalnpionshil~
caliber checkers program. Arlifical Inlelegenc¢ 5.].
o7.7-289, 1992.

[12] M. van der Meulen. Weight assessment in evalua-
tion fimctions. In D.F. Beal. editor, Advances w
Compuler Chess 5, pages 81 89. Elsevier Science
Publishers, Amsterdam, 1989_

147

From: AAAI Technical Report FS-93-02. Compilation copyright © 1993, AAAI (www.aaai.org). All rights reserved.

