From: AAAI Technical Report FS-93-02. Compilation copyright © 1993, AAAI (www.aaai.org). All rights reserved.

Learning Models of Opponent’s Strategy in
Game Playing

David Carmel
Computer Science Department
Technion, Haifa 32000
Israel

carmel@cs.technion.ac.il

Abstract

Most of the activity in the area of game playing pro-
grainsis concerned with efficient ways of searching game
trees. There is substantial evidence that game playing
involves additional types of intelligent processes. One
such process performed by human experts is the acqui-
sition and usage of a model of their opponent’s strategy.

This work studies the problem of opponent mod-
clling in game playing. A simplified version of a model
is defined as a pair of search depth and evaluation func-
tion. M*. a generalization of the minimax algorithm
that can handle an opponent model, is described. The
benefit of using opponent models is demonstrated by
comparing the performance of M* with that of the tra-
ditional minimax algorithm. An algorithm for learn-
ing the opponent’s strategy using its moves as examples
was developed. Experiments demonstrated its ability
to acquire very accurate models. Finally, a full model-
learning game-playing system was developed and ex-
perimentally demonstrated to have advantage over non-
learning player.

1 Introduction

“At the press conference, it quickly be-
caane clear that Kasparov had done his home-
work. He admitted that he had reviewed
about fifty of DEEP THOUGHT's games
and felt confident he understood the ma-
chine.™ (8]

One of the most notable challenges that the Arti-
ficial Intelligence research community has been trying
to face during the last five decades is the creation of a

*This rescarch was partially supported by the Fund for the
Promotion of Research at the Technion

Shaul Markovitch *

Computer Science Department
Technion, Haifa 32000
Israel

shaulm@cs.technion.ac.il

computer program that can beat the world chess cham-
pion. Most of the activity in the area of game play-
ing programs has been concerned with efficient ways
of searching large game trees. However, good playing
performance involves additional types of intelligent pro-
cesses. The quote above hilights one type of such a
process that is performed by expert human players: ac-
quiring a model of their opponent’s strategy.

Several researchers have pointed out the importance
of modelling the opponent’s strategy, [10, 2. 6, 7, 1. 11].
but the acquisition and use of an opponent’s model have
not received much attention in the computational games
research community.

Human players take advantage of their modelling
ability when playing against game playing programs.
International Master David Levy [8] testified that he
had specialized in beating stronger chess programs (with
higher ELO rating), by learning their expected reac-
tions. Samuel [10] also described a situation where hu-
man experts who had learned the expected behavior of
his famous checkers program, succeeded better against
it than those who did not. Jansen [5] studied the impli-
cations of speculative play. He paid special attention to
swindle and trap positions and showed the usefulness of
considering such positions during the game.

The work described in this paper makes one step
into the understanding of opponent modelling by game
playing programs. In order to do so, we will make an
attempt to find answers to the following questions:

I. What is a model of opponent’s strategy?

2. Assuming that we possess such a model, how can
we utilize it?

3. What are the potential benefits of using opponent
models?

4. How does the accuracy of the model effect its ben-
efit?

5. How can a program acquire a model of its oppo-

nent?

From: AAAI Technical Report FS-93-02. Compilation copyright © 1993, AAAI (www.aaai.org). All rights reserved.

We will start by defining a simplified framework for
opponent’s strategy. Assuming a minimax search proce-
dure, a strategy consists of the depth of the search and
the static evaluation function used to evaluate the leaves
of the search tree. The traditional minimax procedure
assumes that the opponent uses the same strategy as
the player. In order to be able to use a different model
we have come up with a new algorithm, M*, that is a
generalization of minimax.

The potential benefits of using an opponent’s model
is not obvious. If the opponent has a better strategy
than the player, and the player possesses a perfect model
of its opponent, then the player should adapt his oppo-
nent’s strategy. If the player has a better strategy than
the opponent’s, then playing regular minimax is a good
cautious method, but not necessarily the best. Setting
traps. for example, would be excluded most of the time.
In the case where the two strategies are different but nei-
ther is better than the other, the minimax assumptions
about the opponent’s moves may be plainly wrong.

In order to measure the potential benefits of using
opponent modelling, we have conducted a set of experi-
ments comparing the performance of the M* algorithim
with the performance of the standard minimax algo-
vithm. Finally, we have studied the problem of the
modelling process itself. We have tested some learn-
ing algorithms that use opponent’s moves as examples,
and learn its depth of search and its evaluation function.

Section 2 deals with the first two questions: Defining
a model and developing an algorithm for using a model.
Section 3 deals with the third and the fourth questions:
Measuring the potential benefits of modelling and test-
ing the effects of modelling accuracy on its benefits. Sec-
tion 4 discusses the fifth question: Learning opponent’s
models. Section 5 concludes.

2 Using opponent models

In this section we answer the first two questions raised
in the introduction: what is an opponent model, and
how can we use such a model.

2.1 Definitions and assumptions

Our basic assumption is that the opponent employs a
hasic minimax search and evaluates the leaves of the
search tree by a static evaluation function. The oppo-
nent may use pruning methods, such as ag [6], that
select the same moves as minimax. We assume that
the opponent searches to a fixed and uniform depth: no
selective decpening methods, such as quiescence search
or singular extensions are used. We shall also assume
that the opponent does not use any explicit model of
the player.

Under the above assumptions we can define a playing
strategy:

Definition 1 A playing strategy s a pair (f,d) where
f s a static evaluation funclion, and d is the depth of
the minimazr search.

Definition 2 An opponent model is a playing stral-
egy. We will denote an opponent model by Spioder =
(fmodels dmodet) while the actual strategy used by the op-
ponent will be denoted by S,p = (fop,dop). The stralegy
used by the player will be denoled by Spiayer=
(fplayer) dplayer)-

Definition 3 A player is a pair of sirategies.
(Spfayer 3 Smodel)-

2.2 The M* algorithm

Assuming that Spiayer and Smoder are given, how do we
incorporate them into the search for the right move?
The M* algorithm, listed in figure 1, is a generalization
of minimax that considers both the player and iis oppo-
nent strategies. The algorithm takes Spjayer and Spoaer
as input. It develops the game tree in the same manner
as minimax does. but the values are propagated back in
a different way.

M~ (pos, depth, Spiayer , Smodel)
if depth =0
return (fplayer (1703)7 fmodel(pos))
else SUCC «— MoveGen(pos)
for each succe SUCC
v «— M*(succ,depth — 1, Spiayer, Smodet) *
if (dinoder + depth = dpiayer — 1)
Umodel “— fnmdel(‘g“('(’)

if MAX turn:
bEStplayer — Ina:\'(bef"tplayer; l"player)
bestmoder «— min(bestyodet s Vmodet)

if MIN turn:
if bestrodet < Umodel
bestmodel “— Vmodel
beStplayer “— Uplayer
else
if (beimodel = l"nmdrtl)
bestpiayer — Min(bestprayer Uplayer)
return (bestpiayer , bestmodet)

Figure 1: A simplified version of the M* algorithm

Since according to our assumptions, the opponent
will use a regular minimax search with S,,,,4e1, the op-
ponent’s reactions to each of our moves is decided ac-
cording to Spoder- However, the value that we attach to
each node should be according to our strategy, Spiayer-
Therefore, we propagate back two values: vno4er. the
value computed by friodet and vpiayer, the value com-
puted by fpiayer. At the leaves level, we compute both

From: AAAI Technical Report FS-93-02. Compilation copyright © 1993, AAAI (www.aaai.org). All rights reserved.

Sptayer and fioder for each board. At a MAX level,
U'model Tecelves the value of the minimal vy, 0461 value
of all the successors, while vpiqycr receives the maximal
Uplayer value of the successors. At a MIN level, vodet
gets the value of the maximal vy,o4e1 value of all the
SUCCESSOTS. Uplayer gets the vpiayer value of the node se-
lected by MIN (the one with the highest vp,4.1 value).
If there is more than one node with maximal vodel
value, then M* passes up the minimal vylayer value in
that set of nodes with maximal v;04¢1- That is because
MIN may select any of those. If an interior node in
the search tree is found on the search frontier of MIN,
Umoder 15 adapted by calling finodet on that node. Figure
2 shows an example where minimax and M* recommend
different moves.

R MAX
3
i 5 N
(3) (n
o $ 02 too 502) MAX
)) (1)) ©)

Figure 2: The tree spanned by M*. Syayer =
(Sotayer-2), Smodet = (fmodet. 1). Left values are node
evaluations by Spiayer. Right values are node evalua-
tions by Spoder. Minimax values are in brackets. M*
chooses the right move while minimax chooses the left.

Korf [7] proposes a similar algorithm for using a
model of the opponent evaluation function. The algo-
rithm evaluates cach leafl twice - using the opponent’s
function and the player’s function. A pair of values is
then propagated up, selecting the pair with the high-
est playver’s component in MAX level, and taking the
pair with the lowest opponent’s component in MIN level.
There 15 a major difference between M* and Korf’s al-
gorithm. While M* uses one level of modelling, i.e., it
assumes that the opponent does not use a model of the
player. Korf's algorithm assumes maximal level of mod-
clling. It assuines that the player possesses a model of
the opponent’s function, and a model of the opponent’s
model of its function, and a model of the opponent’s
model of that model etc.

It is possible to add a3 pruning to M* by trans-
ferring two pairs of values, apiayer, ptayer and amodel,
Fmeder- Pruning will take place only if both A/ A.X and
M N agree that it is useless to continue developing that
part of the tree. Therefore. M* will have fewer cut-
offs than regular Minimax, costing more search tine.

142

The payoff in search time depends on the similarity be-
tween fpiayer and fuioder. When the two functions al-
ways agree on the relative ordering between positions,
M™ will prune the same branches as minimax does.
When the two functions always disagree, A{™ will never
prune. We did not include aff pruning in figure 1 for
sake of clarity.

2.3 Properties of M*

It is easy to show that M* is a generalization of the
minimax algorithm.

Lemma 1 Assume that M* and Minimaz use the same
Splayer Strategy.

By using Smodel = (_fplayer‘dplayer - 1),
identical to minimaz. !

M* becomes

Minimaz(position,depth) =
M*(position, depth, Sprayer . Smodet)-

It 1s also easy to show by induction on the depth of
search that M* always selects a move with a value greater
or equal to the one selected by minimax.

Lemma 2 Assume that M* and Minimaz use the same
Splayer Strategy. Then

Minimaz(position,depth) <
M~ (position, depth, Spiayer, Smodet)

fOT‘ any Smodel-

The intuition behind the above lemma is, that if
the opponent is weaker than the player, and the player
knows this, then the player can make less conservative
assumptions about the opponent’s reactions, increasing
the value returned by the procedure. The fact that M*
returns a higher value does not mean that it always se-
lects better moves. If it underestimates the opponent.
then the higher value will not be materialized.

The risk taken by using M* depends on the quality
of the model. However, when using M* to play against
a weaker opponent, there is a higher risk in trusting
its static evaluation function as a predictor. Therefore.
for the experiments described in the next section. we
have used a modified version of M*. The reactions of
the opponent for each of the alternative following moves
is computed using Spmoedet as before. However, in deeper
MIN levels of the tree, M* passes up the minimal vpiay.y
instead of the value of the board selected by MIN. This
method reduces the risk, especially in the case of weaker
opponent’s model.

IAI* can not handle d,,,4-1 greater than dplayer — 1. Also.
we can consider an evaluation function that receives the active
player as an additional parameter and returns the value accord-
ingly. Therefore, from now on, we can say that the standard
minimax algorithm uses Sy, ode1 = Sprayer = (fplayer-Qptay-r)

From: AAAI Technical Report FS-93-02. Compilation copyright © 1993, AAAI (www.aaai.org). All rights reserved.

3 The potential benefits of using
opponent models

Now that we have an algorithm for using an oppo-
nent’s model, we would like to evaluate the potential
henefit of using this algorithm. In order to do so, we
have conducted a set of experiments comparing the M*
algorithm that has a perfect model of its opponent (i.e.,
Sinoder = Sop) to the regular Minimax algorithm.

3.1 Experimentation methodology

The experiments described in the following subsections
involve the following players:

MAM = (-qplayfrySplayer)

M= (Splnyem Smedet). (Smodel = Sop)

or = (.5‘(,,., Sop)

A basic test consists of a set of 100 games played be-
tween M* and OP, and another set of 100 games played
between MM and OP. Both competitors, M* and MM,
were allotted the same scarch resources. The benefit of
the M* algorithm over MM is measured by the differ-
ence hetween the mean points per game (2 points for a
win. 1 point for a draw).

The experiments were conducted for two different
games: Tic-tac-toe on an 3 x 3 board with the well
known “open lines advantage” evaluation function, and
checkers with an evaluation function based on the one
used for Samuel’s checkers player[9].

3.2 The effect of the level difference on
the benefit of modelling

For the first experiment described here, we have fixed
Jptay.r and [and varied values of the depth compo-
nents of the strategies. For the second experiment, the
depth parameters of all strategies were kept constant.
The function fuiayrr was set to be Samuel’s evaluation
function while fiyeqer = fop was formed by destroying
[ptay. » values that reside outside the range —a...a.

f:‘ylxmifl('l)) = { é"’lny‘r(ll‘)

As a becomes smaller, fuiayer — fop becomes larger and
the funcltion quality drops.

if |(fptayer(z)| < @

otherwise

The experiments can be interpreted in two ways:

e lesting the effect of level difference between the
two players on the benefit of using a perfect model
over standard ninnmax.

o Testing the eflect of the distance between the model
and the actual strategy on its benefit, or. in dif-
ferent. words. testing the importance of modelling

accuracy.

Checkers (1-f2)
points/game

200} ' T1MM vs_ OP

< M= Vs, OP
1.95

1.90

1.85}

1.80

T

1.75+
1.70
165}
1.60 -
1.55F
1.50f -'.

— depth diff.
2.00 4.00 6.00

1454

T

Figure 3: The performance of M* vs. the performance of
Minimax as a function of search depth difference. Mea-
sured by mean polnts per game.

Figure 3 exhibits the full results of one checkers tour-
nament. We can see that M* always performs better
then Minimax.

Figures 4,5 summarize the results of the experiments.
In these graphs we plot the difference in performance
between the two algorithms. All graphs exhibit similar
behavior: The benefit of opponent modelling increases
with the difference in level up to a certain point where
the benefit starts to decline. The increase in the ben-
efit can be explained by the observation that Minimax
is being too careful in predicting its opponent’s moves.
while M* utilizes its model and exploits the weaknesses
of its opponent to its advantage. Alternatively, we can
say that harm is caused by incorrect modelling, and is
increased with the difference between the model and the
actual strategy. Overestimating the opponent will usu-
ally cause too defensive strategy. When the level differ-
ence becomes larger, Minimax wins in almost all games.
In such a case there is little place for improvement by
modelling.

4 Learning a model of the
opponent’s strategy

The last section demonstrated the potential benefit
of using an opponent’s model. In this section we will
discuss methods for acquiring such a model. We as-
sume the framework of learning from examples. A set
of boards with the opponent’s decisions is given as in-
put, and the learning procedure produces a model as
output. This framework is similar to the scenario used
by Kasparov as described in the opening quote.

From: AAAI Technical Report FS-93-02. Compilation copyright © 1993, AAAI (www.aaai.org). All rights reserved.

Tic tac toe
benefit (points/game diff.) x 103

— - — T

500.00

450.00}-

400.00

350.00

300.00

250.001-

200.00¢-

150.00

100.00

50.00;- ¢

0.00

. depth diff
0.00 2.00 4.00 6.00
Checkers
benefit (points/game diff.) x 103
Pt s e e T
200.00! “““

{
180,00

16000
i

140.00 !

120.00;
!

A T (Y BV W
0.00 2.00 4.00 6.00

depth diff.

Figure 4: The benefit of using M* over minimax as a
function of the scarch depth difference. Measured by
mean points per game.

According to our assumptions, the opponent searches
to a fixed depth, therefore learning dyuo4e0 involves se-
lecting a depth from a small set of plausible values. The
space of possible functions is nevertheless infinite. and
the task of learning fi04-1 18 therefore much harder.

4.1 Learning the depth of search

Giiven a set of examples. cach consists of a board to-
gether with the move selected by the opponent, it is
relatively casy to learn the depth. Since there is only a
small set of plausible values for d,,, we can check which
of them agrees best with the opponent decisions. The
algorithim for learning the depth is listed in figure 6.

When fooacr = fop. the above algorithm needs few
examples to infer d,,. 1t can be proven that d,, will

Checkers
benefit(points/game diff.) x 10°3
S I {

500.00 - 4

450.00} .
400.00}]
350.00 -]
300.00 .
250.00-]
20000 .

150.00+ =

T

100.00 .

50.00 -

T

0.00+ -
[

0.00 10.00 20.00

functions diff.

Figure 5: The benefit of using M* over minimax as a
function of the function difference. Measured by mean
points per game.

LearnDepth(ezamples)
for each (board, move) e examples
boards — successors(board)
for d from 1 to M axDepth
M — minimaz(move(board), d)
count[d] — count[d]
+ | {beboards | minimaz(b, d)
— | {beboards | minimaxz(b.d)
return d with maximal count[d]

<M
> M

Figure 6: An algorithm for learning a model of the op-
ponent’s depth (dpoder)

always be in the set of depth counters with maximal
values. However, in the case that fp,,q. differs from
Jop the algorithm can make an error. Figure 7 shows
the counters of all depths after searching 100 examples.
The algorithim succeeds to predict dyoder in the pres-
ence of imperfect function model. Figure 8 shows the
accumulative error rate of the algorithm as a function of
the distance between f,54e1 and f,p. The accumulative
error rate is the portion of the learning session where the
learner has a wrong model of its opponent’s depth. The
experiment shows that indeed when the function model
is perfect, the algorithm succeeds m learning the oppo-
nent’s depth after a few examples. However, when the
opponent’s function is even slightly different than the
model, the algorithm’s error rate increases significantly.

From: AAAI Technical Report FS-93-02. Compilation copyright © 1993, AAAI (www.aaai.org). All rights reserved.

Learnting the op. depth
No. of moves

260.00 f~
240.00
220.00
200.00

180.00
160.00
140.00

120.00 -
100.00
80.00
60.00
40.00
20.00

0.00

1SS : ’ depth
1.00 2.00 3.00 4.00 5.00

Figure 7: Learning the depth of search by 100 examples,
d.,. =3 fop return a random value with probability 0.25

Depth Learning: Accumulative error rate
<eror

[RECE] - o e
0.90]]

|

i
0.80} -
0.70} -

i
0.60} 4
050, 4

;
040} _
0.0} 1
0.20: 4

i
0.101 .

nouk- B
1 I

0.00 0.50 1.00

function diff.

Figure 8: The error rate of the algorithm as a function
ol the functions difference

4.2 Learning the opponent’s strategy

In order to learn the opponent’s strategy, will imake the
following assumptions:

. The opponent’s function is a linear combination
of features. f(b) = @- h(b) = > wihi(b) where
b is the evaluated board and h;(b) returns the 7th
feature of that board.

2. The feature set of the opponent is known to the

learner.

145

3. The opponent does not change its function while
playing.

Under these assumptions the learning task is reduced to
finding the pair (Wmodels dmodet). The learning proce-
dure listed in figure 9 computes for each possible depth
d a weight vector Wy, such that the strategy (wq - h,d)
most agrees with the opponent’s decisions. The adapted
model is the best pair found for all depths.

LearnStrategy(examples)

Wo =1

for d from 1 to MaxDepth
Wy — Wd-1
Repeat

Weurrent +— Wq
Wq — FindSolution(examples, Weyrrent. d)
progress — |score(@q, d) — score(Weyrrent- d)| > €
Until no progress
return (wq. d) with the maximal score.

FindSolution(examples, @oyrrent, d)
Constraints — ¢
for each (board.chosen_mouve) e examples
SUCC — MoveGen(board)
for each succe SUCC
dominant .. —
Minimaz(suce, Weyrrent.d — 1)
Constraints — ConstraintsU
{w(h(dominant poscn _move)
—h(dominant sye.)) > 0}
return I that satisfy Constraints

Figure 9: An algorithm for learning a model of the op-
ponent’s strategy (Wmodel, dmodet)

For each depth, the algorithm performs a hill-climbing
search, improving the weight vector until no further sig-
nificant improvement can be achieved. Assume that
Weurrent 15 the best vector found so far for the current
depth. For each of the examples, the algorithm builds
a set of constraints that express the superiority of the
selected move over its alternatives. The algorithm per-
forms minimax search using (Weurrent -1, d—1). starting
from cach of the successors of the example board. At the
end of this stage each of the alternative moves can be
associated with the "dominant™ board that determine
its minimax value. Assume that b.posen 1s the dominant
board of the chosen move, and by,...,b, are the dom-
inant boards for the alternative moves. The algorithm
adds the n constraints {w - (E(b,:ho“,,)—ﬁ(b,-)) >0]i=
1.....n} to its accumulated set of constraints.

The next stage consists of solving the inequalitics
svstem, i.e.. finding & that satisfies the system. The
method we used is a variation of the linear program-

From: AAAI Technical Report FS-93-02. Compilation copyright © 1993, AAAI (www.aaai.org). All rights reserved.

ming method used by Duda and Hart [3] for pattern
recognition.

Before the algorithm starts its iterations, it sets aside
a portion of its examples for progress monitoring. This
set is not available to the procedure that builds the con-
straints. After solving the constraints system, the algo-
rithin tests the solution vector by measuring its accuracy
in predicting the opponent’s moves for the test exam-
ples. The performance of the new vector is compared
with that of the current vector. If there is no significant
improvement, we assume that the current vector is the
best that can be found for the current depth, and the
algorithm repeats the process for the next depth, using
the current vector for its initial strategy.

The inner loop of our algorithm, that searches for the
hest Tunction for a given depth, is similar to the method
used by DEEP THOUGHT [4] and by Chinook [11] for
tuning their evaluation function from book moves. How-
ever, these prograims assume a fixed small depth for their
search. Meulen [12] used a set of inequalities for book
learning. but his program assumes only one level depth

of search.

4.3 Strategy learning experiments

The strategy learning algorithm was tested by two ex-
periments. The first experiment tests the prediction ac-
curacy of models acquired by the algorithm. Three fixed
strategies (f1,.8), (f2.8) and (f1.6), were used as oppo-
nents. where f1 and f2 are two variations of Samuel’s
function. Each strategy was used to play games until
1600 examples were generated and given to the learning
algorithm. The algorithm was also given a set of ten
features. including the six features actually used by the

strategles.

The algorithim was run with a depth limitof 11. The
examples were divided by the algorithm to a training
=el and a testing set of size 800. For each of the eleven
depth values, the program performed 2-3 iterations be-
fore moving to the next depth. Each iteration included
using the linear programing method for a set of several

. 2
thousands constraints~.

The results of the experiment for the three strate-
gies is shown in figure 10. The algorithun succeeded for
the three cases. achieving an accuracy of 100% for two
strategies and 93%. for the third. Furthermore, the high-
est aceuracy was achieved for the actual depth used by
the strategies.

The second experiient tested the usage of the model
learning algorithm by a playing program. A model-
learning playing system was built by using the model
learning algorithi for acquiring opponent’s model. and

2We have used the very efficient Ip_solve program, written by
NLRL.C AL Berkelaar, for solving the constraints system

Strategy learning
success/guesses

1.00

0.95

0.90

0.85
0.80

0.75

0.70

0.65

0.55

0.50

0.45

depth
5.00 10.00

Figure 10: Learning opponent’s strategy

Learning system
performance(points/game)

1.36F7T : T i "=} Opponent 1

1.34 _|'Opponent 3

1.32
1.30
1.28
1.26
1.24

to
(%)

Y S (S SN R S —— ii
0.00 50.00 10000 150.00 200.00

examples

Figure 11: The performance of learning program as a
function of the number of learning games. Measured by
mean points per gaie.

the M* for using it. The system accumulates the op-
ponents moves during the game. After each alternating
game, the model learning procedure is called with the
total accumulated set of opponent moves. The learned
model is then adapted for use by the M* algorithm.

The system was tested in a realistic situation by let-
ting it play a sequence of gaines against regular minimax
players that use different strategies with roughly equiv-
alent playing ability. After each model modification
by the learning program, a tournament of 100 games.
between the competitors, was conducted for measur-
ing their relative performance. Obviously, the learming
mechanisms, including move-recording, were turned off

From: AAAI Technical Report FS-93-02. Compilation copyright © 1993, AAAI (www.aaai.org). All rights reserved.

for the whole duration of the testing phase.

Figure 11 shows the results of this experiment. The
players start of with almost equivalent ability. However,
after several games, the learning program becomes sig-
nificantly stronger than its non-learning opponents.

5 Conclusions

This work takes one step into understanding the process
of opponent’s modelling in game playing. We have de-
fined a simplified notion of opponent’s model — a pair of
an evaluation function and a depth of search. We have
also developed M*, a generalization of the minimax al-
gorithm that is able to use an opponent model. The
potential benefits of the algorithm over standard min-
imax were studied experimentally. It was shown that
as the opponent becomes weaker, the potential bene-
fit over minimax increases. ‘The sanie experiments also
demonstrate the potential harm of overestimating the

opponent.

After establishing the benefit of using accurate model.
we proceeded witl tackling the problem of learning op-
ponent’s model using its moves as examples. We have
come out with an algorithm that quickly learns the depth
of the opponent search in the presence of imperfect model
of the opponent function.

Next, we have developed an algorithm for learning an
opponent model (both depth and evaluation function),
using its moves as examples. The algorithm works by
iteratively increasing the model depth and learning a
function that best predicts the opponents moves for that
depth.

Finally, a full playing system was built, that is able
to model its opponent while playing with it. Experi-
ments demonstrated that the learning-player advantage
over non-learning player, increases with the number of

ganies.

One of the simplified assumptions that we have made.
ix a fixed-depth search by the opponent. Obviously, this
1< nol a realistic assumption. We intend to examine

what are the consequences of removing this assumption.

The algorithm developed for learning opponent model
proved to be extremely efficient in acquiring an accu-
rate model of the opponent. It would be interesting to
test whether it can achieve sinilar results when used for
book lv;\rning.

6 Acknowledgements

We would like to thank David Lorenz and Yaron Sella
for letting us use their efficient checker playing code as
a basis for our system. We would also like to thank Arie

147

Ben-Ephraim for helping us in early stages of this work.
Finally, we thank M.R.C.M. Berkelaar from Eindhoven
University of Technology, The Netherlands for making
his extremely efficient Ip_solver program available to the
public.

References

[1] Bruce Abramson. Expected outcome: A general
model of static evaluation. IEEE Trans. on Pat-
tern Analysis and Machine Intelligence 12,182-193.
1990.

[2] Hans Berliner. Search and knowledge. In Proceed-
ing of the International Joint Conference on Artif-
tcal Intelligence (IJCAI 77), pages 975-979, 1977.

[3] R. O. Duda and P.E. Hart. Pattern Classification
and Scene Analysis. New York: Wilev and Sons.
1973.

[4] F-H. Hsu, T.S. Ananthraman, M.S. Campbell, and
A. Nowatzyk. Deep thought. In T.A. Marsland and
J. Schaeffer, editors. Computers, Chess and Cogni-
lion, pages 55—78. Springer New York, 1990.

[5] P. Jansen. Problematic positions and speculative
play. In T.A. Marsland and J. Schaeffer. editors.
Computers, Chess and Cognition, pages 169-182.
Springer New York, 1990.

(6] D.E. Knuth and R.W. Moore. An analysis of alpha-
beta pruning. Ariifical Intelligence 6, no.4. 293-
326, 1975.

[7] Richard E. Korf. Generalized game trees. In Pro-
ceeding of the International Joint Conference on
Artifical Intelligence (IJCAI 89), pages 328-333.
Detroit, MI, August 1989.

[8] D.N.L. Levy and M. Newborn.
Play Chess. W.H. Freeman, 1991.

How Computers

[9] A.L. Samuel. Some studies in machine learning us-
ing the game of checkers. IBM Journal. 3, 211-229.
1959.

[10] A.L. Samuel. Some studies in machine learning us-
ing the game of checkers li-recent progress. [B1/
Journal, 11. 601-617, 1967.

[11] J. Schaeffer, J. Culberson, N. Treloar, B. Knight.
P. Lu, and D. Szafron. A world championship
caliber checkers program. Artifical Infelegence 35.3.
273-289, 1992.

[12] M. van der AMeulen. Weight assessment in evalua-
tion functions. In D.F. Beal. editor, Advanccs in
Computer Chess 3, pages 81-89. Elsevier Science
Publishers, Amsterdam, 1989.

