
The Use of Computers for Teaching Artificial Intelligence at Rensselaer

Ellen L. Walker
Computer Science Department

Rensselaer Polytechnic Institute
Troy, NY 12180

walkere@cs.rpi.edu

Abstract

This paper describes the use of computers in the course
Introduction to Artificial Intelligence at Rensselaer.
Polytechnic Institute. In addition to programming projects
completed by groups of students outside of class, in-class
workstations are used for teaching the LISP language and
for demonstrating relevant software. Finally, a class
repository and newsgroup are used for communication
between members of the class.

Introduction
An important component of the course Introduction to

Artificial Intelligence at Rensselaer Polytechnic Institute is
hands-on experience with problem-solving on the
computer, both inside and outside class. This paper
discusses two aspects of computing in the course: outside
programming projects, and the use of in-class computing
for instruction and demonstration.

Introduction to Artificial Intelligence is a 400-level
course taken as an elective by computer science majors
(around 65% over the last two years), computer
engineering majors (around 15%), and students from other
areas including engineering, mathematics, other sciences,
and business. Approximately 75% of the students are
undergraduates; the rest are graduate students, mostly but
not entirely Masters candidates. For many (most?)
students, this is the only course in artificial intelligence that
they will ever take. Thus, it is more important to give them
a broad overview and "literacy" in artificial intelligence in
this course, than it is to give them a strong formal
background upon which future courses can be based.

The topics covered in the course can be loosely grouped
into four segments: LISP programming, problem solving as
search, knowledge representation and its use in problem
solving, and additional techniques and applications. Each
of the four segments has at least one programming project
associated with it. (See Figure 1).

The textbook used is Artificial Intelligence (Rich 
Knight 1991). Textbook material is supplemented with
articles from semi-technical sources such as AI Magazine,
IEEE Expert, and IEEE Computer as appropriate, but we
do not look at the primary research literature in this course.
For LISP, students purchase either of two recommended
textbooks: Common LISP (Hennessey 1989), or Common

LISP the Language (Steele 1990). They are told that the
first is a fairly good (but unavoidably incomplete)
textbook, and that the second is a complete (but sometimes
difficult-to-follow) manual. About half of the students that
buy a LISP book choose each.

At Rensselaer, we are fortunate to have an advanced
computing environment consisting of approximately 500
networked workstations, several of which are in classrooms
with projection facilities. Most introductory courses in
science and engineering make use of these workstations, so
that most students are familiar with the systems by the time
they take Introduction to Artificial Intelligence. All work-

Programming assignment 1: introduction to LISP

Problem solving and search
Problem description
Solution recognition & ranking
Heuristics
Adversary search, game playing
Programming assignment 2: heuristic search

Knowledge representation & problem solving
Forms of representation
Logic, including brief introduction to PROLOG
Rules (forward & backward chaining, RETE)
Programming assignment 3: backward chaining
Expert systems in practice
Semantic nets & frames
Reasoning under uncertainty

Programming assignment 4:frames

Additional techniques & applications
Planning
Symbolic learning
Connectionist systems
Programming assignment 5: neural network
Vision
Natural language understanding

Figure 1: Introduction to AI Topics

47

From: AAAI Technical Report FS-94-05. Compilation copyright © 1994, AAAI (www.aaai.org). All rights reserved. 



stations have a common file system, which includes
department directories as well as user directories. Thus, all
course-related software, sample programs, and usage
examples is collected into a single course directory,
accessible to all students.

Each semester, I attempt to design a set of programming
projects that span the topics of the course, have a design
component, are relatively fun for the students, and provide
a reasonable mix between asking the students to write
custom code for AI algorithms and to use AI tools that they
were given. In teaching Artificial Intelligence, I have
found that the use of existing code is important to get
students to complete a reasonable project in a reasonable
amount of time. From talking with students in my class, it
is clear that they have chosen this particular class as
opposed to courses in artificial intelligence offered by other
departments, including philosophy and electrical
engineering, specifically because they know that this
course is the one where they will get the most program-
ming experience. Some students want the programming
because they enjoy it, while others want projects to add to
their resumes. In any case, the material covered by the
programming projects is invariably the material that the
students learn the best, as measured by exams.

Programming Projects

Although project time is limited, students master the ma-
terial better when given significant design freedom, beyond
what is often thought of as "modifying existing code".
Thus, in this course, students write complete modules to be
integrated with given modules into a larger program.
Students are encouraged to work in groups, and each group
reports who contributed what as part of their project write-
up. In this way, strong programmers contribute more to the
implementation, but even weak programmers contribute
equally to the design. Since design is crucial to the under-
standing of the various topics, this allows weak program-
mers to get more from the projects than they would work-
ing alone, on even an easier project.

The remainder of this section describes the five projects
from the Fall 1993 semester. Except for the first, each
project emphasized a technique and a problem to solve, and
included some code to help the students solve the problem,
but not enough to hamper their design freedom. In projects
2 and 3, the students were given modules to link with their
own to build more interesting systems than they could
otherwise do in the allotted time. For projects 4 and 5, the
provided code was in the form of tools for the students to
use rather than customized modules. In this way, the
students were given experience with the kind of tools that
artificial intelligence professionals might be expected to
use.

Project 1 -- Introduction to LISP
The first project was designed to give each student a

basic understanding of the LISP programming style and the

use of recursion as a programming paradigm. Unlike the
remaining projects, no code was given, and the students
were required to work alone. The students were asked to
recursively determine the complete set of prerequisites for
courses, given the catalog specifications for individual
courses. Essentially, the students had to determine the
transitive closure of a prerequisite graph.

Although the project was short and simple, it introduced
the students to two essential features of LISP: recursive
procedures and property lists (used to store the catalog
information). Additionally, students were encouraged to
use the interactive debugger to understand their programs
so that they would be able to use them to debug more
complex projects later.

Project 2 -- Adversary Search

For the second project, the technique was adversary
search. The students were given the code necessary to play
a game (Dots), exclusive of the control portion to choose
the next move. Using this infrastructure, their job was to
write the control portion for an automatic dots-playing
program. Included in the given code was a "dummy
program" that allowed a human to play against the
machine. Part of the grading process was to run a
tournament among the student programs for extra credit
points.

One of the advantages of this assignment was that it was
clear to the students that their part of the project was to add
"intelligence" to a dumb game-playing program. The
competitive nature of the assignment added to the
enthusiasm with which it was received.

I wrote the code for Dots, and similar code for Klondike
solitaire. In each case, the code included the necessary data
structures to represent the playing field, a function to
perform each type of move, a function to check move
legality, and a top-level function to play the game, calling
the players’ control functions alternately in the case of dots,
repeatedly in the case of solitaire. I would be happy to
make this code available to others who teach AI if they feel
it would be helpful.

Project 3 m Backward Chaining

For the third program, the technique was backward
chaining. Students were given a unification procedure and
a library to handle variables, and were required to write a
backward chainer for deductive retrieval. Rules for a
sample domain (family relationships) were given, but 
part of the assignment, each team had to apply their
reasoner to their own domain and set of rules. Thus, the
students first had to develop an AI tool (the reasoner), and
then use it (by creating their own rules and facts).

The unification procedure and variable library were
adapted from code in an FTP repository provided by Kevin
Knight to accompany the textbook, Artificial Intelligence.
In general, I have found this FTP repository quite useful,
and would highly recommend it to others using the book.



The neural network backpropagation simulator, used in
project 5, also came from this repository.
Project 4 -- Frame Representation

The technique addressed in the fourth program was using
frames as a representational tool. Students implemented a
simplified story-understanding program, using the Framekit
frame system. Students were given the Framekit system
(and manuals), and were required to design frames 
understand stories about going to the movies. Since the
representation was the main point of the project, they were
allowed to translate the stories into frames by hand, but the
answers to the questions had to be extracted automatically
from the frames. Given more time, a natural extension to
this project would be to apply natural language techniques
to automatically translate the stories to frames.

This project was primarily a design project; the students
generally wrote very little code, although their frames were
extensive. Because of the open nature of the assignment (a
frame for "seeing movies" that could encompass several
stories, including one where two people rented a video and
watched the movie at home), there was the greatest variety
of solutions to this project. The students, as users of the
given frame system, were forced to discover its advantages
and limitations, and design their software accordingly.
This experience is probably closer to what many of them
might do after graduation than writing custom code. It also
gave them a chance to use a much more complex tool than
they could have written, and served as a contrast with the
mini-deductive retriever that they wrote for project 3.

The frame system used was FrameKit, version 2.0, from
Carnegie Mellon University (Nyberg 1988). I received
FrameKit as part of the VANTAGE modeling system that I
use for my research. FrameKit is a fairly complete frame
system, but does not have the nice additions (e.g. graphical
specification) that many commercial systems have. On the
other hand, it did not require special hardware to run, and
was already available on the systems used in class. I would
be interested in evaluating other representation systems
based on Common LISP (so that students can add their own
demons to frames).

Project 5 - Neural Nets
The final project was a hands-on experience with neural

networks. The students were given a complete database of
all possible tic-tac-toe games and their outcomes, and the
network was to learn to recognize a game won by X. The
students used a backpropagation simulator, and were asked
to experiment with different network topologies and
training / test sets to see how the learning was affected.
Students were also asked to analyze the activities of the
hidden nodes to try to determine what features were being
learned.

This project was done at the end of the semester, when
most of the students were at their busiest, and there was not
much time for the assignment. Thus, the goal was to give
as much hands-on experience with neural networks as
possible, without overloading the students. By structuring

the project more as a lab exercise than a programming
project (but still with a design component), the goal was
met. The students developed a good sense of how neural
networks learn, and not incidentally, how long it can take!
Like the frame project, this one gave them a sense of how
AI technology is used.

In-Class Computing

For the Fall of 1993, Introduction to Artificial
Intelligence was taught in one of the classrooms at
Rensselaer that has a built-in UNIX workstation and
projector. Although this classroom was one of the first, an
increasing number of classrooms are being equipped in this
manner. The classroom equipment was invaluable,
especially when teaching LISP at the beginning of the
semester, and when introducing each of the programming
projects.

In the Fall of 1994, the class is again scheduled in the
same classroom. This year, we plan to increase the use of
the projection facilities to include in-class demonstrations
of existing AI programs and interactive tools that students
can later use on their own to help understand concepts
presented in the course. An example of an interactive tool
is described in (Vastola & Walker 1994).

In-Class Introduction of LISP
The in-class workstation was a perfect tool for the

introduction of LISP. Instead of using handouts showing
what to type and what would happen, I was able to open a
window on the workstation, start up LISP, and run through
a live sequence of examples. The class sessions basically
followed the sequencing of the recommended LISP
textbook (Hennessey 1989), but was able to vary based 
students’ interaction during class. This format was much
more lively than my traditional overhead slides, and
students were much more involved in the class. Even
typographical errors were chances to introduce facets of
LISP such as the error-handling facilities and the debugger.

A log of each classroom session was saved in the class
directory for students to review at their leisure. Example
files (both those loaded during a session and those created
during a session) were also saved in the class directory.
Thus, students were freed from taking notes during the
demonstrations, so they could more fully participate in
class. To emphasize important points and help to organize
the log, I typed LISP comments.

I spent the same amount of classroom time on LISP as in
previous semesters, but found that with the live
presentation I could cover more material and the students
were able to retain more. This semester there were fewer
comments about the overload of material during the LISP
unit than in past semesters.

Support for Programming Projects
Except for the first programming project, which is a self-

contained practice problem for getting started with LISP,

49



each programming project included significant code, and
the students needed only to write the portion that was most
relevant to the technique being studied, The in-class
workstation was invaluable for introducing the "given"
portions of each problem.

On the day each program was introduced, the relevant
code was presented in-class. When each project was intro-
duced, the relevant software was explained and demon-
strated in class. For the game-playing project, the demon-
strated software included "dummy code" for the controller
so that actual games could be demonstrated. Other soft-
ware, including the unification procedure and Framekit,
was demonstrated using sample data. In all cases, the
sample data or dummy code was made available in the
course directory for students to peruse on their own.

Additional Program Demonstrations
This year, I plan to add two more uses of the in-class

workstation. The first is to include demonstrations of some
of the increasing number of artificial intelligence systems
and tools that are becoming available over the Internet, as
well as demonstrating examples of current research. (One
of my goals in attending this workshop is to learn more
about what software is available for demonstration.) The
second use of the workstation is to incorporate interactive
tools that help students understand concepts presented in
class. The first example of such a tool will be used this
year (Vastola & Walker 1994).

The Course Newsgroup
One feature provided to all courses at Rensselaer is a

newsgroup in the rpi.courses hierarchy. The Introduction
to Artificial Intelligence newsgroup, rpi.courses.ai, was
used by the professor and TA for distributing late-breaking
information on the course such as errors in handouts,
extensions on projects, and changes in office hours. The
newsgroup also provided a forum for students to ask

questions about course topics and for students to contact
each other for course-related purposes, such as setting up
project teams and study groups. At the end of the semester,
the newsgroup archive was a record of these discussions,
allowing for better planning for future semesters.

Conclusions
The students’ experience in the course Introduction to

Artificial Intelligence is enhanced by the use of computers,
both in the classroom and for special projects. By allowing
the students to incorporate existing code in their own
designs, the projects can be both interesting and do-able in
the time allotted. The in-class workstation and class
repository allow programming-oriented instruction in a
more enjoyable and intensive manner, as well as allowing
live demonstrations of existing artificial intelligence
applications and pedagogical tools.

References

Hennessey, W.L. 1989. Common LISP. New York, NY:
McGraw Hill.

Information Technology Services. 1993. ITS Computing:
A guide, Internal Publication, Rensselaer Polytechnic
Institute.
Nyberg, E.H. 1988. The FrameKit User’s Guide Version
2.0. Technical Report, CMU-CMT-88-107, Center for
Machine Translation, Carnegie Mellon University.

Rich, E. and Knight, K. 1989. Artificial Intelligence (2
ed.). New York, NY: McGraw Hill.
Steele, G.L., Jr. 1990. Common LISP the Language.
Bedford, MA: Digital Press.

Vastola, D.A. and Walker, E.L. 1994. Interactive
Learning Tool for Statistical Reasoning with Uncertainty.
In these proceedings.

5O




