
Compositionality in a Knowledge-based Constructive Learner

François Rivest

Département d’Informatique et de Recherche Opérationnelle
Université de Montréal

CP 6128 succursale Centre Ville, Montréal, QC H3C 3J7, Canada
francois.rivest@mail.mcgill.ca

Thomas R. Shultz

Department of Psychology and School of Computer Science
McGill University

1205 Penfield Avenue, Montreal, QC H3A 1B1, Canada
thomas.shultz@mcgill.ca

Abstract
A knowledge-based constructive learning algorithm,
KBCC, simplifies and accelerates the learning of parity and
chessboard problems. Previously learned knowledge of
simpler versions of these problems is recruited in the
service of learning more complex versions. A learned
solution can be viewed as a composition in which the
components are not altered, showing that concatenative
compositionality can be achieved in neural terms.

The Nature of Compositionality
The idea of compositionality is that mental representations
are built out of parts and possess a meaning that is derived
from the meanings of the parts and how the parts are
combined. A symbolic expression can exhibit what is
called concatenative compositionality, which means that
the expression incorporates its constituents without
changing them. This kind of compositionality makes it
possible for symbolic propositions to express the
hierarchical, tree-like structure of sentences in a natural
language. It has been argued that compositionality exists in
a wide variety of psychological processing, not just in
language (Bregman, 1977). Because neural networks
supposedly cannot express compositionality, it is claimed
that they cannot simulate comprehension and production of
language, nor other forms of thought, at least some of
which are considered to be language like (Fodor &
Pylyshyn, 1988; Pinker, 1997).
 In response, some connectionists have argued that
current neural networks exhibit a unique functional form
of compositionality that may be able to model the
compositional character of cognition even if the
constituents are altered when composed into a complex
expression (van Gelder, 1990). Here the original
constituents are retrievable from the complex expression
by natural connectionist means. For example, an encoder
network can learn to encode simple syntactic trees on

distributed hidden unit representations and then decode
them back into the same syntactic trees at the outputs
(Pollack, 1990).
 In this paper, we apply a knowledge-based neural
algorithm to the problem of learning compositional
structures.

Knowledge-based Cascade-correlation
A relatively new algorithm called knowledge-based
cascade-correlation (KBCC) recruits previously learned
source networks as well as single hidden units (Shultz &
Rivest, 2001). This algorithm arguably implements a new
kind of neural compositionality in which recruited
components are preserved intact as they are combined into
an overall solution of the target task, as in classical
concatenative compositionality.
 KBCC is a variant of cascade-correlation (CC), a
feedforward constructive algorithm that grows a network
while learning, essentially by recruiting new hidden units
as needed (Fahlman & Lebiere, 1990). The innovation in
KBCC is the potential to recruit previously learned
networks, in competition with single sigmoid hidden units.
The computational device that gets recruited is the one
whose output correlates best with existing network error,
just as in classical CC.
 At the start of training, a KBCC network has only a bias
unit and input units fully connected to output units with
small randomized weights. During the first phase, called
the output phase, weights entering the output units are
trained to minimize the sum of squared error, which is
defined as follows:

()∑∑ −=
o p

popo TVE 2
,, (1)

where V is the activation of output o in response to training
pattern p, and T is the corresponding target activation
value that the network is learning to produce.

 If reduction of error E stagnates or a maximum number
of epochs is reached without the problem being learned,
then the algorithm shifts to what is called input phase.
Here a pool of candidate units and previously trained
source networks is collected, and small random weights
are used to connect every non-output unit of the target
network to each input of each candidate recruit. Those
weights are then trained to maximize a scaled covariance
between each candidate’s outputs and the residual error in
the target network. This scaled covariance for each
candidate is defined as follows:

()
∑∑

=

o p
po

F
c

c E

EVCov
G

,
2

, (2)

where poE , is the error at output unit o for pattern p, cV is
the matrix of candidate output activations for all patterns,
E is the matrix of target network error for all patterns, and

FC is the Frobenius norm of the covariance matrix,
defined as:

∑=
ji

ji
F CC

,
,

2 (3)

 This input phase training continues until a maximum
number of epochs is reached or until the increases in
correlations stagnate. When the input phase is over, the
candidate with the highest G value is retained and
installed in the network with new connection weights from
the outputs of the recruit to the target network’s output
units. These new weights are initialized with small random
values having the negative of the sign of the correlation.

 The algorithm then shifts back to output phase to adjust
all target-network output weights in order to use the new
recruit effectively. KBCC continues to cycle back and
forth between output and input phases until learning is
complete, or the maximum number of epochs expires. A
hypothetical KBCC target network with three recruits is
illustrated in Figure 1.
 KBCC has so far been applied to learning about
geometric shapes under various transformations such as
translation, rotation, and size changes (Shultz & Rivest,
2001), learning to recognize vowels (Rivest & Shultz,
2002), and learning to identify splice junctions in a genetic
database (Thivierge & Shultz, 2002).
 An illustration of KBCC compositionality from past
work is presented in Figure 2. To learn a cross shape, this
network recruited previously-learned vertical and
horizontal rectangles, greatly shortening learning time and
lessening the number of recruits and connection weights
(Shultz & Rivest, 2001). Here the target and source
networks had to distinguish points inside a shape from
those outside the shape.
 It is worth noting that the recruited components of the
cross in Figure 2 are very similar to their original sources
and the original sources remain unaltered by the
composition. All of this is characteristic of concatenative
compositionality.
 Additional details of both CC and KBCC can be found
elsewhere (Shultz & Rivest, 2001; Shultz, 2003). In this
paper, we apply KBCC to two well-known problems in the
machine-learning literature for which post-learning
generalization has been difficult – parity and chessboards.

Figure 1. Hypothetical KBCC target network that has recruited two source networks and a sigmoid unit. The dashed line
represents a single connection weight, solid thin lines represent weight vectors, and solid thick lines represent weight
matrices. The arrow indicates direction of activation flow.

inputsbias

outputs

source 1

source 2

unit

a. b. c.

Figure 2. Output activation diagrams for a network that learned a cross target (c) by recruiting its two components (a and b).
Dark dots represent training points inside a shape; light dots training points outside a shape. A white background indicates
generalization to test points inside a shape, black background indicates generalization to test points outside a shape, and gray
background indicates intermediate values.

Parity
The parity problem has a fixed number of binary inputs.
A parity-learning network learns to turn on its binary
output unit if an odd number of inputs are on, and
otherwise turn off this output unit. Our experiment
involved training 30 KBCC networks to learn a standard
parity-8 problem under four different knowledge-source
conditions, each of which had 12 different computational
devices for possible recruitment.
 Condition a, with 12 sigmoid units, was essentially a
control condition without prior knowledge of parity or
anything else. One-half of the recruitment candidates in
condition b were networks trained on parity-2 problems,
while the other half were sigmoid units. In condition c,
one-half of the candidates were networks trained on
parity-4 problems; the other half were sigmoid units. In
condition d, there were 4 sigmoid candidates, 4 networks
trained on parity-2, and 4 networks trained on parity-4.
 Results are shown in Table 1 in terms of mean recruits
and mean number of epochs needed to master the parity-8
target problem. In each condition, sigmoid units were
heavily recruited. Parity-2 networks were rarely recruited,
but parity-4 networks were often recruited when
available.
 A factorial ANOVA of the total number of recruits was
significant, F(3, 116) = 6.6, p < .001. Multiple
comparison of means revealed that conditions c and d,
with parity-4 candidates, needed fewer recruits than did
conditions a and b, p < .05.
 A factorial ANOVA of the number of epochs to learn
yielded similar results, F(3, 116) = 11, p < .001. Multiple
comparisons indicated that learning was faster in
conditions c and d, where parity-4 sources were available,
than in conditions a and b, p < .05.

Chessboards
The chessboard problem is a generalized version of the
exclusive-or problem which, in turn, can be viewed as a
two-unit parity problem. There are two inputs which
represent the coordinates of the squares in a chessboard.
For one color of squares, the output is to be turned off;
for the other color, the output is to be turned on.
 We trained 30 KBCC networks to learn an 8x8
chessboard problem under four different knowledge
source conditions, each of which once again had 12
different possible recruits. Condition a, with 12 sigmoid
units, was again a control condition without prior
knowledge of the problem. Six of the recruitment
candidates in condition b were networks trained on 2x2
chessboard problems, while the other six candidates were
sigmoid units. In condition c, six of the candidates were
networks trained on 4x4 chessboard problems, while the
other six candidates were once again sigmoid units. In
condition d, there were 4 sigmoid candidates, 4 networks
trained on 2x2 chessboard problems, and 4 networks
trained on 4x4 chessboard problems. Figure 3 shows
training patterns and some generalization results for 4x4
(2a) and 8x8 (2b and 2c) chessboards.
 Results are shown in Table 2 in terms of mean recruits
and training epochs needed to master the 8x8 target
problem. In each condition, sigmoid units were heavily
recruited. Both 2x2 and 4x4 chessboard networks were
recruited, and 4x4 networks were preferred when
available. A factorial ANOVA of the total number of
recruits was significant, F(3, 116) = 41, p < .001.
Multiple comparison of means revealed that conditions c
and d, with 4x4 source candidates, needed fewer recruits
than did conditions a and b, p < .05. Condition b, with
2x2 source candidates, needed fewer recruits than control
condition a with only sigmoid hidden units, p < .05.

 An analogous ANOVA of epochs to learn was also
significant, F(3, 116) = 51, p < .001. Multiple comparison
of means revealed that conditions c and d, with 4x4
candidates, learned faster than did conditions a and b, p <
.05. Condition b, with 2x2 source candidates, learned
faster than control condition a, p < .05.
 Output activation plots for three representative
networks are shown in Figure 3. The network in Figure
3a learning the 4x4 chessboard could recruit only sigmoid
hidden units, the network in Figure 3b learning the 8x8
chessboard could recruit either sigmoid units or 4x4
chessboard source networks, and the network in Figure 3c
could recruit sigmoid units or chessboard sources of
either 2x2 or 4x4 size.
 The striped patterns in Figures 3a and 3b indicate that
these two networks learned alternating hyperplanes

demarcating positive or negative output regions. These
hyperplanes can have positive (b) or negative (a) slopes.
Mesh-like representations can arise when recruited
hyperplanes are oriented differently than in the target
network (c). Such orientation differences can even occur
when the source and target hyperplanes are initially
oriented in the same direction, if the source hyperplanes
happen to get rotated during input-phase training while
inputs to the source are adjusted. In general, mesh-like
solutions were more common with more complex
recruited sources.
 The 4x4 hyperplanes are particularly useful to recruit
in learning about an 8x8 chessboard, but they need to be
made more numerous and refined to deal with the 8x8
case.

Table 1. Mean recruits and epochs to learn a parity-8 problem in four different source conditions.
Sources to recruit Mean recruits Epochs
 Sigmoid Parity-2 Parity-4 Total
a. 12 sigmoids 6.5 n/a n/a 6.5 971
b. 6 sigmoids, 6 parity-2 networks 5.7 0.9 n/a 6.6 992
c. 6 sigmoids, 6 parity-4 networks 2.6 n/a 2.1 4.7 702
d. 4 sigmoids, 4 parity-2, 4 parity-4 2.6 0.3 2.3 5.2 737

Table 2. Mean recruits and epochs to learn an 8x8 chessboard in four different source conditions.
Sources to recruit Mean recruits Epochs
 Sigmoid 2x2 4x4 Total
a. 12 sigmoids 10.9 n/a n/a 10.9 1523
b. 6 sigmoids, 6 2x2 networks 6.0 2.9 n/a 8.9 1222
c. 6 sigmoids, 6 4x4 networks 1.4 n/a 5.5 6.8 927
d. 4 sigmoids, 4 2x2, 4 4x4 2.1 0.6 4.3 7.0 942

a. b. c.

Figure 3. Output activation plots for three different networks learning a 4x4 chessboard (a) or an 8x8 chessboard (b and c).
The training patterns are marked with + for positive output and x for negative output. A white background represents
positive generalizations, black background represents negative generalizations, and gray background represents intermediate
values.

Discussion
Both experiments show that KBCC recruits simpler
previous knowledge to compose a solution to a similar,
but more complex problem. Knowing about parity-4
problems helped networks to learn more complex parity-8
problems.
 It makes sense that parity-2 sources were less effective
and less likely to be recruited than parity-4 sources
because only a single hidden unit is recruited for a parity-
2 problem. A parity-2 source network is thus no more
powerful than a single sigmoid unit. The solutions to
parity-8 learning were a composition of parity-4 source
networks and sigmoid units.
 Similarly, knowing about smaller chessboard problems
helped networks to learn more complex chessboards. As
with parity problems, the solutions to 8x8 chessboards
were a composition of simpler source chessboard
networks and sigmoid units.
 In all of these source-network recruitments, the simpler
source networks retain their original representational and
computational abilities. This is because KBCC does not
alter the internal structure of either recruits or their
original source networks. The connection weights
entering and leaving a recruit inside of a target network
are altered to tweak the source knowledge and integrate it
into the newly learned solution, respectively. But
importantly, connection weights internal to the recruited
source network are not changed.
 Our evidence shows that compositional learning can be
implemented in neural terms and that it can simplify and
accelerate learning. The essential characteristics of
concatenative compositionality are preserved in these
cases because the components are not altered as the
composition is formed.
 This is not the on-the-spot compositionality involved
in, say, creating a novel sentence, but rather a knowledge-
based-learning sort of compositionality in which both the
learning and the representations are computationally
specified. Our results suggest that connectionist accounts
of compositionality may be worth pursuing despite the
criticisms that such attempts have garnered.
 It will be interesting to apply these techniques to a
wider range of compositional problems and to simulations
of human participants in compositional learning
experiments.

Acknowledgment
This research was supported by a grant to T. R. S. from
the Natural Sciences and Engineering Research Council
of Canada.

References

Bregman, A. S. 1977. Perception and behavior as
compositions of ideals. Cognitive Psychology, 9, 250-
292.

Fahlman, S. E., and Lebiere, C. 1990. The cascade-
correlation learning architecture. In D. S. Touretzky ed.,
Advances in Neural Information Processing Systems 2,
pp. 524-532. Los Altos, CA: Morgan Kaufmann.

Fodor, J. A., and Pylyshyn, Z. W. 1988. Connectionism
and cognitive architecture: A critical analysis. Cognition,
28, 3-71.

Pinker, S. 1997. How the Mind Works. New York:
Norton.

Pollack, J. 1990. Recursive distributed representations.
Artificial Intelligence, 46, 77-105.

Rivest, F., and Shultz, T. R. 2002. Application of
knowledge-based cascade-correlation to vowel
recognition. IEEE International Joint Conference on
Neural Networks 2002 (pp. 53-58).

Shultz, T. R. 2003. Computational Developmental
Psychology. Cambridge, MA: MIT Press.

Shultz, T. R., and Rivest, F. 2001. Knowledge-based
cascade-correlation: Using knowledge to speed learning.
Connection Science, 13, 1-30.

Thivierge, J.-P., and Shultz, T. R. 2002. Finding relevant
knowledge: KBCC applied to splice-junction
determination. IEEE International Joint Conference on
Neural Networks 2002 (pp. 1401-1405).

van Gelder, T. 1990. Compositionality: A connectionist
variation on a classical theme. Cognitive Science, 14,
355-364.

