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Abstract 
A knowledge-based constructive learning algorithm, 
KBCC, simplifies and accelerates the learning of parity and 
chessboard problems. Previously learned knowledge of 
simpler versions of these problems is recruited in the 
service of learning more complex versions. A learned 
solution can be viewed as a composition in which the 
components are not altered, showing that concatenative 
compositionality can be achieved in neural terms.  

The Nature of Compositionality 
The idea of compositionality is that mental representations 
are built out of parts and possess a meaning that is derived 
from the meanings of the parts and how the parts are 
combined. A symbolic expression can exhibit what is 
called concatenative compositionality, which means that 
the expression incorporates its constituents without 
changing them. This kind of compositionality makes it 
possible for symbolic propositions to express the 
hierarchical, tree-like structure of sentences in a natural 
language. It has been argued that compositionality exists in 
a wide variety of psychological processing, not just in 
language (Bregman, 1977). Because neural networks 
supposedly cannot express compositionality, it is claimed 
that they cannot simulate comprehension and production of 
language, nor other forms of thought, at least some of 
which are considered to be language like (Fodor & 
Pylyshyn, 1988; Pinker, 1997).  
 In response, some connectionists have argued that 
current neural networks exhibit a unique functional form 
of compositionality that may be able to model the 
compositional character of cognition even if the 
constituents are altered when composed into a complex 
expression (van Gelder, 1990). Here the original 
constituents are retrievable from the complex expression 
by natural connectionist means. For example, an encoder 
network can learn to encode simple syntactic trees on 

distributed hidden unit representations and then decode 
them back into the same syntactic trees at the outputs 
(Pollack, 1990).  
 In this paper, we apply a knowledge-based neural 
algorithm to the problem of learning compositional 
structures.  

Knowledge-based Cascade-correlation 
A relatively new algorithm called knowledge-based 
cascade-correlation (KBCC) recruits previously learned 
source networks as well as single hidden units (Shultz & 
Rivest, 2001). This algorithm arguably implements a new 
kind of neural compositionality in which recruited 
components are preserved intact as they are combined into 
an overall solution of the target task, as in classical 
concatenative compositionality. 
 KBCC is a variant of cascade-correlation (CC), a 
feedforward constructive algorithm that grows a network 
while learning, essentially by recruiting new hidden units 
as needed (Fahlman & Lebiere, 1990). The innovation in 
KBCC is the potential to recruit previously learned 
networks, in competition with single sigmoid hidden units. 
The computational device that gets recruited is the one 
whose output correlates best with existing network error, 
just as in classical CC. 
 At the start of training, a KBCC network has only a bias 
unit and input units fully connected to output units with 
small randomized weights. During the first phase, called 
the output phase, weights entering the output units are 
trained to minimize the sum of squared error, which is 
defined as follows: 
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where V is the activation of output o in response to training 
pattern p, and T is the corresponding target activation 
value that the network is learning to produce. 



 If reduction of error E stagnates or a maximum number 
of epochs is reached without the problem being learned, 
then the algorithm shifts to what is called input phase. 
Here a pool of candidate units and previously trained 
source networks is collected, and small random weights 
are used to connect every non-output unit of the target 
network to each input of each candidate recruit. Those 
weights are then trained to maximize a scaled covariance 
between each candidate’s outputs and the residual error in 
the target network. This scaled covariance for each 
candidate is defined as follows:  
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where poE ,  is the error at output unit o for pattern p, cV is 
the matrix of candidate output activations for all patterns, 
E is the matrix of target network error for all patterns, and 

FC  is the Frobenius norm of the covariance matrix, 
defined as: 
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 This input phase training continues until a maximum 
number of epochs is reached or until the increases in 
correlations stagnate. When the input phase is over, the 
candidate with the highest G  value is retained and 
installed in the network with new connection weights from 
the outputs of the recruit to the target network’s output 
units. These new weights are initialized with small random 
values having the negative of the sign of the correlation.  

 The algorithm then shifts back to output phase to adjust 
all target-network output weights in order to use the new 
recruit effectively. KBCC continues to cycle back and 
forth between output and input phases until learning is 
complete, or the maximum number of epochs expires. A 
hypothetical KBCC target network with three recruits is 
illustrated in Figure 1.  
 KBCC has so far been applied to learning about 
geometric shapes under various transformations such as 
translation, rotation, and size changes (Shultz & Rivest, 
2001), learning to recognize vowels (Rivest & Shultz, 
2002), and learning to identify splice junctions in a genetic 
database (Thivierge & Shultz, 2002).  
 An illustration of KBCC compositionality from past 
work is presented in Figure 2. To learn a cross shape, this 
network recruited previously-learned vertical and 
horizontal rectangles, greatly shortening learning time and 
lessening the number of recruits and connection weights 
(Shultz & Rivest, 2001). Here the target and source 
networks had to distinguish points inside a shape from 
those outside the shape.  
 It is worth noting that the recruited components of the 
cross in Figure 2 are very similar to their original sources 
and the original sources remain unaltered by the 
composition. All of this is characteristic of concatenative 
compositionality.  
 Additional details of both CC and KBCC can be found 
elsewhere (Shultz & Rivest, 2001; Shultz, 2003). In this 
paper, we apply KBCC to two well-known problems in the 
machine-learning literature for which post-learning 
generalization has been difficult – parity and chessboards.  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Hypothetical KBCC target network that has recruited two source networks and a sigmoid unit. The dashed line 
represents a single connection weight, solid thin lines represent weight vectors, and solid thick lines represent weight 
matrices. The arrow indicates direction of activation flow.  
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Figure 2. Output activation diagrams for a network that learned a cross target (c) by recruiting its two components (a and b). 
Dark dots represent training points inside a shape; light dots training points outside a shape. A white background indicates 
generalization to test points inside a shape, black background indicates generalization to test points outside a shape, and gray 
background indicates intermediate values. 
 

Parity 
The parity problem has a fixed number of binary inputs. 
A parity-learning network learns to turn on its binary 
output unit if an odd number of inputs are on, and 
otherwise turn off this output unit. Our experiment 
involved training 30 KBCC networks to learn a standard 
parity-8 problem under four different knowledge-source 
conditions, each of which had 12 different computational 
devices for possible recruitment.  
 Condition a, with 12 sigmoid units, was essentially a 
control condition without prior knowledge of parity or 
anything else. One-half of the recruitment candidates in 
condition b were networks trained on parity-2 problems, 
while the other half were sigmoid units. In condition c, 
one-half of the candidates were networks trained on 
parity-4 problems; the other half were sigmoid units. In 
condition d, there were 4 sigmoid candidates, 4 networks 
trained on parity-2, and 4 networks trained on parity-4. 
 Results are shown in Table 1 in terms of mean recruits 
and mean number of epochs needed to master the parity-8 
target problem. In each condition, sigmoid units were 
heavily recruited. Parity-2 networks were rarely recruited, 
but parity-4 networks were often recruited when 
available.  
 A factorial ANOVA of the total number of recruits was 
significant, F(3, 116) = 6.6, p < .001. Multiple 
comparison of means revealed that conditions c and d, 
with parity-4 candidates, needed fewer recruits than did 
conditions a and b, p < .05.  
 A factorial ANOVA of the number of epochs to learn 
yielded similar results, F(3, 116) = 11, p < .001. Multiple 
comparisons indicated that learning was faster in 
conditions c and d, where parity-4 sources were available, 
than in conditions a and b, p < .05.  

Chessboards 
The chessboard problem is a generalized version of the 
exclusive-or problem which, in turn, can be viewed as a 
two-unit parity problem. There are two inputs which 
represent the coordinates of the squares in a chessboard. 
For one color of squares, the output is to be turned off; 
for the other color, the output is to be turned on.  
 We trained 30 KBCC networks to learn an 8x8 
chessboard problem under four different knowledge 
source conditions, each of which once again had 12 
different possible recruits. Condition a, with 12 sigmoid 
units, was again a control condition without prior 
knowledge of the problem. Six of the recruitment 
candidates in condition b were networks trained on 2x2 
chessboard problems, while the other six candidates were 
sigmoid units. In condition c, six of the candidates were 
networks trained on 4x4 chessboard problems, while the 
other six candidates were once again sigmoid units. In 
condition d, there were 4 sigmoid candidates, 4 networks 
trained on 2x2 chessboard problems, and 4 networks 
trained on 4x4 chessboard problems. Figure 3 shows 
training patterns and some generalization results for 4x4 
(2a) and 8x8 (2b and 2c) chessboards.  
 Results are shown in Table 2 in terms of mean recruits 
and training epochs needed to master the 8x8 target 
problem. In each condition, sigmoid units were heavily 
recruited. Both 2x2 and 4x4 chessboard networks were 
recruited, and 4x4 networks were preferred when 
available. A factorial ANOVA of the total number of 
recruits was significant, F(3, 116) = 41, p < .001. 
Multiple comparison of means revealed that conditions c 
and d, with 4x4 source candidates, needed fewer recruits 
than did conditions a and b, p < .05. Condition b, with 
2x2 source candidates, needed fewer recruits than control 
condition a with only sigmoid hidden units, p < .05.  



 An analogous ANOVA of epochs to learn was also 
significant, F(3, 116) = 51, p < .001. Multiple comparison 
of means revealed that conditions c and d, with 4x4 
candidates, learned faster than did conditions a and b, p < 
.05. Condition b, with 2x2 source candidates, learned 
faster than control condition a, p < .05. 
 Output activation plots for three representative 
networks are shown in Figure 3. The network in Figure 
3a learning the 4x4 chessboard could recruit only sigmoid 
hidden units, the network in Figure 3b learning the 8x8 
chessboard could recruit either sigmoid units or 4x4 
chessboard source networks, and the network in Figure 3c 
could recruit sigmoid units or chessboard sources of 
either 2x2 or 4x4 size.  
 The striped patterns in Figures 3a and 3b indicate that 
these two networks learned alternating hyperplanes 

demarcating positive or negative output regions. These 
hyperplanes can have positive (b) or negative (a) slopes. 
Mesh-like representations can arise when recruited 
hyperplanes are oriented differently than in the target 
network (c). Such orientation differences can even occur 
when the source and target hyperplanes are initially 
oriented in the same direction, if the source hyperplanes 
happen to get rotated during input-phase training while 
inputs to the source are adjusted. In general, mesh-like 
solutions were more common with more complex 
recruited sources.  
 The 4x4 hyperplanes are particularly useful to recruit 
in learning about an 8x8 chessboard, but they need to be 
made more numerous and refined to deal with the 8x8 
case. 

 

Table 1. Mean recruits and epochs to learn a parity-8 problem in four different source conditions. 
Sources to recruit Mean recruits Epochs 
 Sigmoid Parity-2 Parity-4 Total  
a. 12 sigmoids 6.5 n/a n/a 6.5 971 
b. 6 sigmoids, 6 parity-2 networks 5.7 0.9 n/a 6.6 992 
c. 6 sigmoids, 6 parity-4 networks 2.6 n/a 2.1 4.7 702 
d. 4 sigmoids, 4 parity-2, 4 parity-4 2.6 0.3 2.3 5.2 737 
 
 
 
Table 2. Mean recruits and epochs to learn an 8x8 chessboard in four different source conditions.  
Sources to recruit Mean recruits Epochs 
 Sigmoid 2x2 4x4 Total  
a. 12 sigmoids 10.9 n/a n/a 10.9 1523 
b. 6 sigmoids, 6 2x2 networks 6.0 2.9 n/a 8.9 1222 
c. 6 sigmoids, 6 4x4 networks 1.4 n/a 5.5 6.8 927 
d. 4 sigmoids, 4 2x2, 4 4x4 2.1 0.6 4.3 7.0 942 
 
 
 
a. b. c. 

   
Figure 3. Output activation plots for three different networks learning a 4x4 chessboard (a) or an 8x8 chessboard (b and c). 
The training patterns are marked with + for positive output and x for negative output. A white background represents 
positive generalizations, black background represents negative generalizations, and gray background represents intermediate 
values.  

 



 

Discussion 
Both experiments show that KBCC recruits simpler 
previous knowledge to compose a solution to a similar, 
but more complex problem. Knowing about parity-4 
problems helped networks to learn more complex parity-8 
problems.  
 It makes sense that parity-2 sources were less effective 
and less likely to be recruited than parity-4 sources 
because only a single hidden unit is recruited for a parity-
2 problem. A parity-2 source network is thus no more 
powerful than a single sigmoid unit. The solutions to 
parity-8 learning were a composition of parity-4 source 
networks and sigmoid units.  
 Similarly, knowing about smaller chessboard problems 
helped networks to learn more complex chessboards. As 
with parity problems, the solutions to 8x8 chessboards 
were a composition of simpler source chessboard 
networks and sigmoid units. 
 In all of these source-network recruitments, the simpler 
source networks retain their original representational and 
computational abilities. This is because KBCC does not 
alter the internal structure of either recruits or their 
original source networks. The connection weights 
entering and leaving a recruit inside of a target network 
are altered to tweak the source knowledge and integrate it 
into the newly learned solution, respectively. But 
importantly, connection weights internal to the recruited 
source network are not changed.  
 Our evidence shows that compositional learning can be 
implemented in neural terms and that it can simplify and 
accelerate learning. The essential characteristics of 
concatenative compositionality are preserved in these 
cases because the components are not altered as the 
composition is formed.  
 This is not the on-the-spot compositionality involved 
in, say, creating a novel sentence, but rather a knowledge-
based-learning sort of compositionality in which both the 
learning and the representations are computationally 
specified. Our results suggest that connectionist accounts 
of compositionality may be worth pursuing despite the 
criticisms that such attempts have garnered.  
 It will be interesting to apply these techniques to a 
wider range of compositional problems and to simulations 
of human participants in compositional learning 
experiments.  
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