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Abstract 
Reverse engineering the brain will require a deep 
understanding of how information is represented and how 
computation is performed in the brain.  What are the 
functional operations?  What are the knowledge data 
structures?  How are messages encoded?  How are 
relationships established and broken?  How are images 
processed?  How does the brain transform signals into 
symbols?  How does the brain generate the incredibly 
complex colorful, dynamic internal representation that we 
consciously perceive as external reality? 
 The model presented here hypothesizes that each cortical 
hypercolumn together with its underlying thalamic nuclei 
performs as a Cortical Computational Unit (CCU) 
consisting of a frame-like data structure (containing 
attributes, state, and pointers) plus the computational 
processes and mechanisms required to build and maintain it.  
 In sensory-processing areas of the brain, CCUs enable 
segmentation, grouping, and classification.  Pointers stored 
in CCUframes link pixels and signals to objects and events 
in situations and episodes that are overlaid with meaning 
and emotional values.  In behavior-generating areas of the 
brain, CCUs make decisions, set goals and priorities, 
generate plans, and control behavior.  Pointers are used to 
define rules, grammars, procedures, plans, and behaviors.   
 It is suggested that it may be possible to reverse engineer 
the human brain at the CCU level of fidelity using next-
generation massively parallel computer hardware and 
software. 

Introduction   
It is often said that the mind is what the brain does.  The 
question is – “What exactly does the brain do?”  How does 
it compute?  How does it represent information?  How 
does it process data from its sensors into a percept of the 
world as a 4D space-time reality filled with objects, events, 
and relationships?  How does it represent experiences and 
understand situations?  How does it reason about the past, 
plan for the future, and react to unexpected events? 

Reverse engineering implies that you understand the 
way something works, and you have the technology to 
duplicate its functional properties, if not its physical 
embodiment.  Reverse engineering the brain implies 
building computational machines that are functionally 
                                                 
* This paper was prepared by a U.S. government worker as part of his 
official duties. It is therefore not subject to copyright. 

equivalent to the brain1 in their ability to perceive, think, 
decide, and act in a purposeful way to achieve goals in 
complex, uncertain, dynamic, and possibly hostile 
environments, despite unexpected events and unanticipated 
obstacles, while guided by internal values and rules of 
conduct.  

To reverse engineer the brain, we need to understand the 
functional processes in the brain at many levels:  
• overall system level (central nervous system – an 

integrated percept of reality) 
• arrays of macro-computational units (e.g., prefrontal, 

premotor, motor, occipital, posterior parietal, and 
inferior temporal cortices –  representations of egospace, 
situations, episodes, goals, plans, priorities) 

• individual macro-computational units (e.g., cortical 
columns and cortico-thalamic loops –  representations of 
entities, events, and relationships) 

• individual micro-computational units (e.g., cortical 
microcolumns – representations of attributes, state, and 
pointers) 

• neural clusters (e.g., spinal and midbrain sensory-motor 
nuclei – representation of goal-selectable stimulus- 
response coordination of muscles and joints)  

• neurons (elemental computational units – representation 
of input/output functions) 

• synapses (electronic gates, memory elements – 
representation of long-term memory) 

• membrane mechanics (ion channel activity – 
representation of molecular interactions) 

 
Computational modeling at each of these levels can be, and 
to some extent is being, addressed – some more than 
others.  What so far is missing is a theoretical framework 
that integrates all these levels into a reference model 
architecture that specifies input/output functionality of the 
computational modules, data structures for the 
representation of knowledge, and message formats for 
communication of information.  In the remainder of this 

                                                 
1 Functional equivalence can be defined as producing the same 
input/output behavior.  Given the same input stimulus, the 
engineered system should produce statistically the same output 
behavior as the biological system. 



paper, I will suggest some elements for constructing such a 
theoretical framework.   

Computation in the Brain 
The Neuron. The basic computational module in the brain 
is the neuron.  We can model the neuron as a 
computational device that operates on a time varying 
vector of input variables and produces a time varying 
scalar output variable.   

The computational function performed by a single 
neuron can be written as: 

pk(t) = Hk(S(j, t)) 

where k = identifier (i.e., name or address) of the neuron, 
pk(t) = time varying output variable from the k-th neuron, 
Hk = computational function performed by the k-th neuron, 
S(j, t) = time-varying vector of input variables,  j = index 
of input variable in the input vector. 

Groups of Neurons.  In the brain, neurons typically are 
clustered into groups (i.e., nuclei.)  For a group of neurons, 
both input and output can be represented as time-dependent 
vectors.  This can be written as 

Pm(k, t) = Hm(S(j, t)), 

where, m = identifier (i.e., name or address) of the group, 
Pm(k, t) = time-varying output vector from m-th nuclei, 
Hm = functional transformation performed by the m-th 
nuclei, S(j, t) = time-varying input vector, j = index of 
input variable in input vector, k = index of output variable 
in output vector. A temporal sequence of vectors enables a 
representation of motion and temporal continuity.   

Groups of neurons effectively compute by table look-up.  
For every input, there is an output.  The input vector is 
functionally equivalent to an address, and the output vector 
is functionally equivalent to the contents of the address.  A 
good example of how a group of neurons can compute 
arithmetic and logical functions by table look-up can be 
found in the cerebellar cortex.  (Marr 1969; Albus 1971, 
1975a, 1975b, 1981). 

Arrays of neurons.  Often neurons are arranged in 2D 
arrays.  For example, the neocortex consists of a 2D array 
of columns of neurons.  Input to, and output from, an array 
of neurons can be represented as a time-dependent array of 
vectors.   This can be written as: 

Pa(r, s, k, t) = Ha(S(u, v, j, t)) 

where u and r = horizontal indices in the input and output 
arrays respectively, v and s = vertical indices in the input 
and output arrays respectively, j and k = indices in the 
vectors at the respective array elements, a = identifier of 
the computational array. 

An array of neurons can perform an image operation 
such as edge detection, region growing, connected 

components analysis, stereo correlation, range imaging, 
and registration and comparison of one image with 
another.  An array of neurons can transform an image from 
image coordinates to world coordinates, and vice-versa.  
These types of computations can typically be accomplished 
in a two-layer array of neurons such as exists in the 
cerebellar cortex with time delay less than 10 ms.   This 
could partly explain how we perceive the external world to 
be stable even though the retinal image bounces wildly as 
our eyes saccade quickly over the egosphere, and the head 
in which the eyes are located bobs and weaves through the 
environment. 

Arrays of neurons are often layered in hierarchies.  This 
can be written as: 

Pa(n, r, s, k, t) = Ha(S(i, u, v, j, t)) 

where i = index of the hierarchical level from which the 
input array originates, n = index of the hierarchical level in 
which the computational array reside. It should be noted 
that the (r, s) address pointer at level (n) need only specify 
the location of the level (i) input vector variable within the 
receptive field of the level (n) neuron. 

Loops.  The existence of loops in the nervous system is 
widely acknowledged, but seldom appreciated.  It is well 
known from sequential machine theory that when there 
exists a loop from the output back to the input, a 
computational module acquires a whole new level of 
capabilities, and inherits a new set of problems.  New 
problems include the risk of oscillation and instability.  
New capabilities include the ability to perform temporal 
analysis, such as temporal differentiation and/or integration 
operations on vectors and arrays.  This enables groups of 
neurons such as reside in the cerebellum and basal ganglia 
to generate real-time control solutions to body-
environment dynamics.   

Loops also provide feedback paths for state variables.  
This enables computational modules to act as finite-state 
automata (fsa).  Fsa can generate sequential strings, lists, 
graphs, and grammars.  Fsa can perform algorithms, store 
and execute rules, generate plans, and execute programs.  
Groups of fsa can provide short-term memory in the form 
of delay lines, stacks, or queues. 

A hierarchy of fsa can generate goal-seeking sensory-
interactive behaviors.  Many robot control systems use fsa 
as computational mechanisms. (Albus 2001, 1981, Brooks 
1999, Albus and Barbera 2005, Madhaven et al 2007)    

It seems likely that hierarchies of arrays of neural 
computational modules acting as fsa enable the frontal 
brain to generate complex goal-directed sensory-interactive 
behaviors such as hunting, foraging, telling stories, playing 
musical instruments, and performing routine daily tasks of 
going to work or school, avoiding danger, and interacting 
with others in social situations.   Hierarchies neural fsa 
may enable the posterior brain to perform recursive 



estimation on attributes and state of objects, events, 
situations, and episodes.   

Communications within the Brain 
Communications within and between regions in the brain 
take place via two fundamentally different types of 
neurons:  drivers and modulators. (Sherman and Guillery 
2001) 

Drivers  
Axons from driver neurons convey data in the form of 
attribute values that are topologically organized in the form 
of vectors, arrays, or matrices (e.g., signals and images or 
maps.)  In the visual and somatosensory systems, these are 
sensory maps of egospace.  Driver neurons are often called 
relay neurons because they receive topologically organized 
arrays from input drivers and transmit topologically 
organized arrays to target drivers.  Driver inputs are 
characterized by relatively small receptive fields, and their 
output axons cover small fields of influence.  Axons from 
driver neurons typically terminate in dense proximal 
synaptic connections on a few target neurons in a limited 
neighborhood.  Driver neurons in both the thalamus and 
cortex define maps of egospace, and these maps are 
repeated many times, both at the same and at different 
levels in the sensory hierarchy.  For example, receptive 
fields of rods and cones in the retinal image are 
topologically mapped with great precision to the lateral 
geniculate nucleus (LGN), and from there to cortical 
columns in the primary visual cortex V1.  Inputs from the 
right and left retina are precisely registered in the LGN 
before being relayed to V1.  Van Essen and colleagues 
have identified at least 32 separate representations of the 
visual field in the cortex.  (Felleman & Van Essen 1991) 
Connections between these representations suggest that 
they are arranged in 12 hierarchical levels with many two-
way communication pathways both within and between 
levels.2 

Preservation of topology and registration with the 
sensory egosphere exists not only in the visual cortex, but 
in the somatosensory and auditory cortices as well.  
Receptive fields of somatosensory sensors in the skin, 
muscles, and joints are topologically mapped onto the 
ventral posterior nucleus of the thalamus before being 
                                                 
2 It should be mentioned that most, if not all, of the direct 
connections between cortical regions in posterior cortex are 
modulators.  Driver outputs from the cortex rarely flow directly to 
another cortical region in the same hierarchy.  Driver outputs 
from the cortex also do not loop back to the region of the 
thalamus from which their driver inputs originated.  Driver 
outputs from the cortex typically travel either to: a) a higher-level 
thalamic relay center that sends it on to a higher-level cortical 
region, or b) to a comparable or lower level in the behavior 
generating hierarchy.   

relayed to the primary somatosensory cortex.  Inputs from 
auditory sensors in the cochlea are tonotopically mapped in 
the medial geniculate nucleus of the thalamus before being 
relayed to the auditory cortex as spectrograms. 

Topology and registration is obviously important to the 
computational processes in the brain because the neural 
circuitry goes to considerable lengths to preserve them, 
even though in many cases this requires that the maps be 
inverted or reflected between levels in the hierarchy in 
order to preserve the topological relationships. 

Modulators 
Modulator signals control the computational processes that 
operate on driver signals.  Modulator neurons have 
relatively large receptive fields and their axons typically 
cover large fields of influence with low density and distal 
synaptic connections on driver neurons.  Modulator 
neurons typically do not preserve topological order, or at 
best do so only generally. 

Modulator inputs were traditionally thought to simply 
suppress or enhance general levels of activity of drivers in 
various regions of the brain.  This traditional view of 
modulators is undoubtedly correct for those modulator 
inputs that are concerned with general levels of alertness, 
e.g., those originating in midbrain activating centers. 
However, it seems likely that modulator inputs originating 
in the cortex play a more sophisticated role.   

It is well established that the number of modulator axons 
flowing from neocortex back to the thalamus typically 
exceeds the number of driver neurons carrying sensory 
images from thalamus to cortex by a ratio of 20:1 or more. 
(Granger 2005, Sherman and Guillery 2001)  This suggests 
that while driver axons convey data in the form of vectors 
or arrays of attribute values, modulator axons convey 
vectors that can be decoded into addresses of locations 
where information is stored.   

Hypothesis # 1.  We hypothesize that modulators access 
or activate locations where the following types of 
information are stored: 

a) arrays of parameters that filter, enhance, or mask 
regions in the driver data arrays – this enables focus of 
attention and segmentation. 

b) filtered estimates of pixel, entity, or event attributes – 
this enables the storage and retrieval of an internal 
model of the external world. 

c) predicted values of pixel, entity, or event attributes – 
this enables recursive estimation and predictive 
filtering of the internal world model.  It also enables 
planning. 

d) attributes of entity or event class prototypes – this 
enables classification based on similarities between 
observed entity or event attributes and class prototype 
attributes. 



e) procedures that operate on driver arrays – this enables 
modulators to select procedures for processing of 
sensory information. 

f) parameters that set decision criteria or modulate 
functional operations – this enables modulators to 
manipulate algorithms that generate and control 
behavior. 

g) pointers that define relationships between entities and 
events – this enables modulators to make and break 
relationships that define situations, episodes, plans, 
and behaviors. 

 
Modulator vectors that address these various types of 
information can be modified within a few milliseconds.   
Pointers between locations in the cortex and locations in 
the thalamus can be established within a single cortical-
thalamic loop cycle.   

Loops between sets of modulator neurons in 
computational modules at two different locations in the 
brain, enable the establishment of forward and backward 
pointers between those two locations.  Time variable arrays 
of back-pointers enable moving sensory images to be 
projected onto a stable representation of the world.   

The ability of modulators to access pointers, and to act 
as pointers, enables the apparent location of data to be 
modified without moving its physical location.  Arrays of 
pointers enable the perceived position and orientation of 
attribute images to be shifted and rotated without actually 
scrolling the images.  This may be another factor in the 
explanation of how the brain perceives the external world 
as stable despite rapid motion of the image of the world on 
the retina. 

The ability of modulator neurons to set and access 
pointers suggests how relationships can be established, 
maintained, and broken between data structures in 
computational units at higher, lower, and the same 
hierarchical levels, both locally and in distant regions of 
the brain.  has-part and belongs-to pointers define 
relationships between entities and events at higher and 
lower levels of the segmentation and grouping hierarchy.  
Ultimately they link pixels to objects and signals to events, 
and vice versa.  is-a-member-of pointers link entity and 
event frames to class prototypes.  Other types of pointers 
can link entities and events in graph structures that 
describe situations and episodes.  In general, pointers set 
by modulators are able to represent many forms of 
symbolic knowledge, including strings, graphs, semantic 
nets, belief nets, grammars, rules, programs, procedures, 
scripts, tasks, skills, plans, and behaviors. 

In summary, drivers communicate specific data (e.g., 
attributes) that are topologically organized as images or 
maps, while modulators communicate addresses (e.g. 
pointers) that control computational processes and define 
relationships.   

In posterior brain, drivers convey data flowing up the 
sensory processing hierarchy in the form of attributes and 
states of pixels, signals, entities, or events.  Modulators 
select parameters (e.g., coefficients, priorities, masks, 
gestalt grouping criteria) that control functional processes 
that operate on driver data.  Modulators also set pointers 
that establish relationships (e.g., belongs-to, is-a-member-
of, has-part, is-caused-by, is-prevented-by, geometric, 
temporal, procedural, and semantic relationships.) 

In frontal brain, drivers convey commands, goals, and 
priorities flowing down the behavior generating hierarchy 
to control behavior.  Modulators select parameters (e.g., 
priorities, modes of operation, rules, grammars) that 
control functional processes that make decisions, generate 
plans, and sequence actions. 

Representation of Information 
Information has two components:  address and content.  
Address is where the information is located.  Content is the 
information contained at the address location.   

In a computer, addresses are carried on one set of wires 
and data is carried on a different set of wires.  The 
appearance of an address vector on a set of address wires 
will access a memory location, either to read data from the 
address location, or to write data into the address location.  
The command whether to read or to write is carried on a 
r/w command wire. 

In the brain, the input to any neuron or set of neurons is 
effectively an address.  The output is the contents of that 
address.   Both inputs and outputs can be drivers, or 
modulators, or both.  Driver inputs have local sign and 
represent attributes or state of entities or events.  
Modulator inputs lack local sign and represent parameters 
that focus attention, select grouping criteria, and establish 
relationships.  Driver outputs represent data in the form of 
attributes or state of entities or events.  Modulator outputs 
represent pointers that index into arrays, define 
relationships, or modify processes. 

Iconic Representations 
Visual, somatosensory, and audio sensors are arranged in 
2D arrays (i.e., images or maps) on the surface of the 
retina, the skin, and the cochlea.  These sensory images can 
be tessellated into pixels.  A pixel is a patch of real estate 
on the sensory surface.  Within each pixel, there typically 
are several types of sensor.   For example, pixels on the 
retina include rods and three kinds of cones that are 
distributed unevenly over the retina.  The pixels on the skin 
contains arrays of sensors that are sensitive to touch, 
pressure, temperature, vibration, and pain.  The pixels on 
the cochlea contains arrays of hair cells that differentially 
respond to frequency.  Processing layers in the visual, 
somatosensory, and audio hierarchies prior to the 



neocortex compute spatial and temporal derivatives of 
these different types of sensory excitation.   

Thus, each pixel arriving at the thalamus can be 
represented as a vector of attributes (both sensed and 
computed), and the sensory image can be represented as a 
2D array of pixel attribute vectors.  Visual pixel attribute 
vectors may consist of intensity and color (r-g-b), plus 
spatial and temporal gradients of intensity and color.  
Tactile pixel attribute vectors may consist of pressure, 
temperature, vibration, and pain variables; plus spatial and 
temporal derivatives of these variables.  Audio pixel 
attribute vectors may consist of frequency, amplitude, and 
impulse magnitude variables. 

Each pixel attribute varies with time.  If we sample the 
attributes along the time axis we get a string of attribute 
values for each pixel.  A 2D array of pixels, each with an 
attribute vector sampled in time results in a 3D matrix of 
attribute vectors, or a 4D matrix of attribute values of the 
form:  

pixel(u, v, j, t) 

where u = horizontal row index of the pixel in the sensory 
array, v = vertical column index of the pixel in the sensory 
array, j = index of attributes and pointers within the pixel, 
t = time. We can then represent the entire body surface, or 
the entire retinal image, as a two-dimensional array of time 
dependent attribute vectors A(u, v, j, t).  We can, in fact, 
represent any driver image in the periphery, thalamus, or 
cortex as an array of attribute vectors.3 

Cortical Columns 
The cortex is a massively parallel structure.  The human 
neocortex is a thin sheet of computational units about 2000 
cm2 (2.2 ft2) in area and about 3 mm thick.  The cortex is 
remarkably uniform throughout its extent.  It consists of six 
layers of neurons axons, dendrites, and synapses that are 
specialized in form and function. 

The surface of the cortex is tessellated into an array of 
columns of neurons. (Montcastle 1997, Asanuma 1975)  
There are two types of cortical columns:   

1) microcolumns contain 100 – 250 neurons.  These are 
only 30 - 50 μ in diameter (scarcely more than one 
neuron wide) and about 3000 μ long (i.e., the full 
thickness of the cortex from layer 6 to layer 1)   

2) hypercolumns (a.k.a. columns)  contain 100 + 
microcolumns in a bundle. These are on the order of 
500 μ in diameter and also about 3000 μ long.     

 

                                                 
3 The size of the pixels is defined by the spacing of sensors.  Pixel 
size may vary within the array. For example in the retina, the size 
of the pixels is small in the fovea, and large in the periphery.  For 
tactile sensors, pixel size is small in the lips, tongue, and finger 
tips, and larger elsewhere. 

A typical hypercolumn occupies about .2 mm2 of cortical 
real estate.  Thus, there are about a million hypercolumns 
in the cortex, and more than 100 million microcolumns.   
It has long been suspected that these cortical columns 
perform some kind of computational function in the cortex. 
(Montcastle 1997) 

Cortical Computational Units (CCUs)  
Each of the hypercolumns in the cortex is serviced by 
underlying thalamic nuclei that are connected to the cortex 
through looping communication pathways.  The uniformity 
of structure in the cortex and the cortico-thalamic loops 
suggests that similar computational mechanisms may be 
used throughout the cortex despite the differences in 
functional processes that are performed in different 
regions. 

Hypothesis # 2.  We hypothesize that each cortical 
hypercolumn, together with its underlying thalamic and 
other subcortical nuclei, plus the looping circuitry that 
connect them together, are functionally equivalent to a 
Cortical Computational Unit (CCU.)   

Hypothesis #3.  Each CCU represents an entity or event.  
This implies that each cortical hypercolumns in the brain 
represents a spatial or temporal pattern (i.e., an entity or 
event.)  Herein lies the foundation for symbol grounding. 

Hypothesis #4.  Each CCU has three parts: 

1) an abstract data structure in the form of an entity or 
event CCUframe that: 

a) has a name (i.e., an address where it is 
located in the array of CCUs) 

b) has slots for attributes and state 
c) has slots for pointers that define relationships 
d) has grouping criteria (that may be variable) 

2) a set of computational processes that are able to: 
a) within a spatial receptive field, segment 

spatial patterns that satisfy spatial grouping 
criteria into entities, and 

b) within a temporal receptive field, segment 
temporal patterns that satisfy temporal 
grouping criteria into events 

c) set belongs-to and has-part pointers between 
spatial pattern components and entities, and 
between temporal pattern components and 
events 

d) compute entity or event attributes and state 
and store them in CCUframe slots 

e) use computed attributes to generate 
predictions for recursive estimation and 
planning 



f) compare entity or event attributes with class 
prototypes, and when a match occurs, set is-
a-member-of pointers to classes 

3) a set of computational processors (e.g., synapses, 
neurons, and circuits in microcolumns and 
hypercolumns) that implement the above processes 
and data structures.   

 
A sketch of the internal structure of our proposed CCU is 
shown in Figure 1.   
 

 
 
Figure 1.  Internal structure of a Cortical Computational Unit 
(CCU) consisting of a CCUframe, a library of procedures that 
maintain the frame, and a set of processors that implement the 
procedures.   
 
 
The data structure for entity frames in CCUs in posterior 
cortex can be represented as a matrix 

CCUframe(i, u, v, j, t) 

where i = level index in the sensory processing hierarchy, 
u = row index of the CCU in the cortical array at level(i), 
v = column index of the CCU in the cortical array at 
level(i), j =  index of slots containing attributes and 
pointers in the CCUframe, t = time. 

An input/output diagram of a typical posterior CCU is 
shown in Figure 2. 

Driver inputs convey attributes of entity or event frames 
from lower-level CCUs in the input receptive field. 

Driver outputs convey attributes of the entity or event 
frame in the local CCU to higher-level CCUs in the output 
field of influence.  

Modulator inputs from above convey commands, 
priorities, and pointers from above that select processing 
algorithms, generate masks and windows, provide 

prioritized list of entities of attention, suggest gestalt 
grouping hypotheses, and set belongs-to pointers in the 
local CCU. 

Modulator outputs to above convey status of processing 
results to higher-level CCUs, set alerts regarding regions of 
the field of view that require attention, and set has-part 
pointers in level above. 

Modulator inputs from below convey status of 
processing results from lower-level CCUs, set alerts 
regarding regions of the field of view that require attention, 
and set has-part pointers in the local CCU. 
 

 
 

Figure 2.  Inputs and outputs of a Cortical Computational Unit 
(CCU) in posterior cortex. 

 
 

Modulator outputs to below convey commands and 
priorities to lower-level CCUs that select processing 
algorithms, generate masks and windows, provide 
prioritized list of entities of attention, suggest gestalt 
grouping hypotheses, and set belongs-to pointers in the 
level below. 

Modulator inputs and outputs to and from the same 
level provide lateral inhibition for winner take all 
segmentation and grouping. 

Modulator signals between the cortex and thalamus 
within CCUs provide information for windowing, 
segmentation, and comparing of model-based predictions 
with observations. 



Segmentation and Classification 
Our model assumes that CCUs at all levels in the sensory 
processing hierarchy contain CCUframe data structures 
with slots for attributes, state, pointers, and grouping 
criteria.  Within each receptive field at every sensory level, 
lower level CCUs are segmented into groups (or patterns) 
that are linked to higher level CCUs.  At each level, 
CCUframes have belongs-to pointers to higher level 
CCUframes, has-part pointers to lower level entity (or 
event) frames, and is-a-member-of pointers to class frames.  
CCUframes may also be linked together by relationship 
pointers that define situations, episodes, rules, procedures, 
strings, lists, graphs, and grammars.   

Our model assumes that segmentation and grouping 
processes are embedded in CCUs at each level in the 
receptive field hierarchy.  This is illustrated in Figure 3.  

     

 
 
 
Figure 3.   Segmentation and grouping processes in posterior 
cortex compare lower level CCU attributes against upper level 
CCU grouping criteria.  When attributes of lower level CCUs 
meet higher level grouping criteria, has-part pointers are set in 
the higher level CCUframe, and belongs-to pointers are set in the 
lower level CCUframes. 

For each CCU at level(i), there are segmentation processes 
that group level(i-1) CCUs into level(i) CCUs based 
whether or not their attributes satisfy the level(i) CCU 
grouping criteria. Group attribute criteria may define 
gestalt properties such as similarity, symmetry, or spatial 
or temporal proximity or continuity.    For example, 
level(i-1) pixels with similar attributes of color, range, and 
range gradient, may be grouped into level(i) surface patch 
entities.  Level(i-1) pixels with similar intensity, color, or 
range gradients may be grouped into level(i) edge-entities.    

Once level(i-1) entities (or events) have been grouped 
into level(i) entities (or events), level(i) computational 
processes in the CCU compute level(i) entity (or event) 
attributes and store them in the appropriate CCUframe 
slots.  Recursive estimation processes can then compare 
model-based predictions with sensory observations.  
Finally, classification processes compare entity (or event) 
attributes against class prototypes.  This establishes is-a-
member-of pointers that define class membership and 
enable observed entities and events to inherit class 
attributes. 

The result of segmentation and grouping is a set of 
belongs-to and has-part pointers that link level(i-1) entities 
(or events) to level(i) entities (or events.)  The set of has-
part pointers define a membership list for each level(i) 
entity (or event) that includes all the level(i-1) entities or 
events that belong to it.   This is illustrated in Figure 4. 
 

 

Figure 4.  The result of segmentation and grouping.  A group of 
CCUs at level(i-1) are linked by belongs-to pointers to an CCU at 
level(i).  A list of pointers in the level(i) CCU points back to the 
CCUs at level(i-1). 

Hierarchies of Entities and Events  
Each level of the sensory processing hierarchy consists of 
an array of cortical hypercolumns.  Each hypercolumn and 
its underlying subcortical nuclei are modeled by a single 
CCU.  An example of a two level entity hierarchy resulting 
from two levels in the sensory processing hierarchy is 
shown in Figure 5. 

A similar hierarchy of events can be generated for CCUs 
that segment events based on time and frequency criteria.  



Thus, for both spatial entities and temporal events, there 
are CCU processes that maintain pointers that define 
spatial and temporal relationships in situations and 
episodes, and provide the basis for grammar, scripts, plans, 
and patterns of locomotion, manipulation, and language 
behavior.  At all levels, in all of the CCUs in both sensory 
processing and behavior generating hierarchies, all of these 
processes execute in parallel simultaneously.   
 

 
 
Figure 5.  Two levels of segmentation and grouping of entity 
frames. 
 
 

In frontal cortex, CCUframes contain slots for goals, 
priorities, mode, rules, task state, and pointers to plans and 
behaviors.  Driver information flows down the hierarchy in 
the form of commands and task parameters.  CCU 
computational processes make decisions, select goals, 
decompose tasks, make plans, and sequence behaviors. 

Reverse Engineering 

Computational Modeling  
There are about a million hypercolumns in the human 
neocortex. Thus, it would take about a million CCUs to 
build a full-scale computational model of the human 
cortex.  Because each of these computational units has a 
similar internal structure, this model is well suited to the 
massively parallel architecture of modern supercomputers.   

A modern supercomputer has hundreds of thousands of 
computational cores that provide computational capacity 
on the order of 300 teraflop (3 x 1014 floating operations 
per second).  If we divide that up between a million CCUs, 
we get 3 x 108 flops per CCU.  For real-time operation at 
200 compute cycles per second, we obtain about 1.5 x 106 
flops per CCU per compute cycle.  This seems adequate to 
perform the operations we envision taking place in our 
CCUs.  For some types of CCU functions, special purpose 

hardware may enable significant increase in computational 
speed.   

Communications modeling 
 Of course, modeling the computational units is only part 
of the problem.  The CCUs need to be connected such that 
outputs from CCUs in one compute cycle become inputs to 
other CCUs in the next compute cycle.  While it seems 
probable that a modern supercomputer has sufficient 
computational power to emulate the functionality of the 
CCUs, communication between CCUs may turn out to be 
the bigger technical challenge.  

Communications may, in fact, be the limiting factor in 
engineering a computational model of the brain.  This 
needs much more study.  And it needs more information 
from the neuroscience community.  How many CCUs 
communicate with each other?  How often?  How much 
information is communicated?  How is it routed?  And 
most importantly, “What is the syntax (i.e., format) and 
semantics (i.e., meaning) of the messages?” 

The new technique of diffusion spectrum imaging 
promised to provide a detailed map of the major 
communications pathways in the brain. (Wiegell et al 
2001)  This may generate the level of detail needed to 
model communications in the brain. 

The modeling of mouse cortex achieved recently at the 
IBM Almaden Research Center provides some insight into 
how to model communications in the brain.  
(Ananthanarayanan)  In this project, a simulator called C2 
was designed to operate on a Blue-Gene/L supercomputer 
with 32,768 processors.  Neurons were simulated on a 1 ms 
clock rate, and synapses were simulated on an event-driven 
basis.  There are about 55 million neurons and 440 billion 
synapses in the rat brain.  The IBM team was able to 
simulate the entire rat brain including communications 
between neurons and synapses in 1/9 real time (i.e., 1 s of 
model time in 9 s real time.) 

One approach to specification of the messages in a CCU 
level simulation might be to adopt the Neutral Messaging 
Language (NML)4 developed at NIST for communications 
between modules in real-time control systems (Gazi) and 
extend it to become a Neural Messaging Language (NML).  
NML is a publish-subscribe communication architecture 
that uses a configuration file to define the connectivity 
between modules.  The connectivity specified in a NML 
configuration file needs to be informed by neuro-
anatomical data.  Receptive fields and fields of influence of 
both drivers and modulators should be reflected in the 
publish/subscribe structure of the NML configuration files.   

At the end of each computational cycle, drivers and 
modulators in each CCU must write into their NML output 

                                                 
4 NML is only one among many similar message passing systems 
that have been developed in the robotics community.  NML is 
mature, widely used, and in the public domain. 



buffers.  At the beginning of the next cycle, each CCU 
must read from its NML input buffers both driver and 
modulator inputs.   In the period between compute cycles, 
NML must move messages from publishers’ output buffers 
to subscribers’ input buffers.   To mimic real-time 
performance, the combined computation-communication 
cycle should repeat at least every 5 ms.  

Learning and Memory 
The basic architecture and circuitry of the brain is not 
learned.  It is genetically determined just as is the basic 
architecture and connectivity of body parts.  The body does 
not learn to have ten fingers and two eyes.  Neither does 
the brain learn to organize itself into an architecture.  
Learning occurs within the anatomical architecture of the 
brain, and makes only microscopic modifications in the 
synaptic connections at a relatively few select locations in 
that architecture. 

There are many types of learning, and a wide variety of 
processes and mechanisms that produce learning.  Learning 
processes include reinforcement learning based on pain, 
pleasure, and perceived success or failure; error correction 
learning from a teacher (e.g., an external instructor or an 
internal critic); and Hebbian learning based on the timing 
of pre- and post-synaptic activity.  Learning mechanisms 
involve a variety of complex biochemical and biological 
processes that are specific to particular synaptic junctions. 

Most research on learning is based on mimicry of 
synaptic modifications.  Contents of long-term memories 
are stored in synaptic strengths.  These are relatively 
permanent, but storage typically requires many repetitions 
or rehearsals.  However, this is only one form of learning.  
Contents of short-term memories are stored in fsa formed 
by loops that are linked into lists, graphs, and queues.  
These memories are volatile and transient, but storage 
occurs in milliseconds.  The transfer of memory from 
short-term to long-term storage requires the involvement of 
the hippocampus.  Among other things, the hippocampus 
apparently determines whether what is temporarily stored 
in short-term memory is important enough to be transferred 
to long-term memory. 

To understand learning in the brain, it is necessary to 
understand where in the brain the learning takes place, 
what mechanisms are involved in each location, and what 
the storage media are.  Where are the inputs arriving from, 
and where are the outputs destined to go?  In short, we 
need to understand how the brain is confugured to do what 
it does before we can understand how it learns to do what 
it does.  Until we understand what the functional 
architecture of the brain is – what the various 
computational modules do, and how they are linked 
together in a cognitive architecture – we are unlikely to 
understand how skills are learned, how knowledge is 
acquired and structured, or how relationships between 

entities, events, and classes in situations and episodes are 
established and broken. 

Finally, a word about what is stored in memory.  The 
behaviorist hypothesis that there is no internal model is 
simply wrong.  The internal model is all we consciously 
perceive.  The cortex has no direct connection with the 
periphery.  Our conscious self does not perceive the 
external world at all.  We only perceive our internal model, 
which is inferred from patterns of spikes on sensory 
pathways.  The remarkable thing about our internal model 
is that it is far richer and more meaningful than the sensory 
input. (Albus 2001) 

Summary 
Reverse engineering the brain implies building machines 
that are functionally equivalent to the brain in their ability 
to perceive, think, decide, and act in a purposeful way to 
achieve goals in complex, dynamic, and possibly hostile 
environments, despite unexpected events and unanticipated 
obstacles, while guided by internal values and rules of 
conduct.   

Our fundamental hypothesis is that neocortical 
hypercolumns and their associated thalamic and other 
subcortical support nuclei are functionally equivalent to 
Cortical Computational Units (CCUs), each of which 
contains a CCUframe data structure, plus the 
computational procedures and mechanisms that populate 
and maintain it.  Each CCUframe has slots for attributes, 
state variables, and pointers. 

In the posterior cortex, CCUframes have slots that 
define entity or event attributes and pointers that define 
relationships.  Relationships include belongs-to and has-
part links to higher and lower level frames, relationships 
that characterize situations and episodes, as well as 
relationships that define class membership, cause and 
effect, and more general relationships such as strings, 
graphs, rules, and grammars, procedures, and scripts.   

Arrays of CCUs enable windowing, segmentation, 
recursive estimation, and classification of images from 
visual, somatosensory, and auditory sensors.  Hierarchies 
of arrays of CCUs enable the transformation of sensory 
images into an internal representation of the external 
reality that is both richer and more meaningful than the 
sensory input.  At each level in the sensory processing 
hierarchies, image elements are windowed, segmented, and 
grouped into patterns, and those patterns are labeled, 
characterized, and classified.  At the bottom are pixels.  At 
the top are rich dynamic representations of space and time, 
objects and events, situations and episodes.  And the entire 
structure is linked from top to bottom by pointers defined 
by modulator neurons.  Top-level abstract data structures 
are linked by has-part pointers all the way down to the 
pixels of immediate experience.  Bottom-level pixels are 



linked all the way up to situations and episodes by belongs-
to pointers.   

In frontal cortex, CCUframes have slots that define 
goals, priorities, tasks, objects, and agents.  Pointers define 
plans, skills, and behaviors.  CCU corticothalamic loops 
include the striatium, pallidum, and in some cases the 
cerebellum – where models of body dynamics and 
kinematics are stored. At the top are high-level goals and 
priorities.  At the bottom are individual motor neurons that 
send commands to control muscles.  At all levels, links to 
the limbic system provide evaluation of cost, risk, and 
benefit of goals, plans, and actions.  At every level, 
decisions are made, goals are selected, plans are generated 
and evaluated, tasks are decomposed, and behavior is 
controlled so that millions of individual muscles work 
together to accomplish high level goals despite unexpected 
disturbances and obstacles. 

The massively parallel nature of this architecture enables 
networks of pointers to be established quickly and updated 
rapidly.  For real-time behavior, our model requires that 
pointers be established or updated between any two 
hierarchical levels within about 10 ms, and all the way 
from bottom to top of the unimodal hierarchies in less than 
100 ms.   With each saccade of the eyes or motion of the 
fingers, low-level pixels and list entities are re-linked to 
high-level objects and situations that have spatial and 
temporal continuity in a fixed world coordinate frame.   

Finally, we have suggested that reverse engineering the 
brain at the CCU level of fidelity might be feasible in the 
near term with high performance sensors and super 
computer processing capabilities.  With continued progress 
in neuroscience, computer science, and electronics 
engineering, it may eventually be possible to build a laptop 
equivalent to the human brain. 
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