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Abstract

Goals rarely occur in isolation. Efficient plan-
ning for conjunctive goals is therefore of central
interest. We identify a particular class of con-
junctive goal interactions, which cannot be di-
rectly inferred from the domain knowledge, as
they are not explicitly represented in the precon-
ditions and effects of the domain operators. We
call such goal interactions, quality goal interac-
tions, for they relate to issues on plan quality
rather than to the common plan achievement is-
sues. We illustrate the discussion with examples
and briefly present the method we are develop-
ing for acquiring control knowledge to direct the
planner to consider the quality-goal interactions.

1 What Are Goal Interactions

Planning goals rarely occur in isolation. A planner must be
capable of taking into account the interactions between con-
junctive goals in order to produce a plan to solve the prob-
lem. There have been many research efforts addressing the
issue of planning for conjunctive goals, focusing on a va-
riety of aspects, including analyzing the complexity of this
planning problem [Sussman, 1975, Chapman, 1987], de-
signing appropriate planning algorithms [Sacerdoti, 1977,
Tate, 1977, Drummond and Currie, 19871, categorizing
different types of goal interactions [Wilensky, 1983], and
learning control knowledge to efficiently handie the search
for the interactions [Minton, 1988, Etzioni, 1990]. Our
work, though built upon this previous work, goes beyond
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it as we aim at identifying goal interactions directly related
to the quality of the plans produced.

From a practical implementation point of view we distin-
guish two categories of goal interactions, explicit goal in-
teractions and quality goal interactions.

1.1 Explicit goal interactions

We include in this category the goal interactions that are
explicitly represented as part of the domain knowledge in
terms of preconditions and effects of the operators. A plan
exhibits a goal interaction of this type when there is a goal
in the plan that has been negated by a previous step in the
plan [Minton, 1988, Etzioni, 1990]. These goal interactions
enforce particular goal orderings in order that the planner
may be able to produce a solution to the problem.

In a typical example of a two-goal interaction, after one of
the goals has been achieved, it is deleted by an operator that
works towards achieving the other goal. !

Goal interactions in this category is the well-known Suss-
man’s anomaly in the blocksworld [Sussman, 1975]. Con-
sider also another illustrative example in a transporta-
tion domain. In this domain, packages are to be moved
among different cities. Packages are carried within the
same city in trucks and across cities in airplanes. Trucks
and airplanes may have limited capacity. At each city
there are several locations, e.g. post offices (po) and
airports (ap). A package P1 is at the Pittsburgh air-
port. There is only one airplane, A1, available also at
the Pittsburgh airport. The goal consists of having both
the airplane and the package at the Boston airport, and is
represented by the conjunction (and (at-airplane Al
bos-airport) (at-object P1 bos-airport). If the
goal (at-airplane Al bos-airport)isaddressed first,
and Al flies from Pittsburgh to Boston, there is no way to
achieve the second goal without first flying back A1 to Pitts-

1Other goal interactions in this category may be beneficial to
the planning process, when solving one goal makes a second goal
easier to achieve. This is generally termed goal concord and op-
portunistic planning takes advantage of these situations [Converse
and Hammond, 1992].



burgh. The resulting plan involves flying A1 back and forth
unnecessarily. It is conceivable to design an algorithm that
fixes this kind of plans by removing unnecessary operations
that reachieve the clobbered goals [Rich and Knight, 1991].

In some problems, these interactions are unavoidable and
the planning system must find a solution that minimizes
their effects. When this happens, search time is typically re-
duced and better solutions tend to be found. These solutions
are generally shorter in length, and more direct [Minton,
1988, Ryu and Irani, 1992, Veloso, 1992].

In least-commitment planners the critics take care of
these goal interactions by establishing ordering constraints
among the conflicting goals. In the case of PRODIGY, a
casual-commitment planner, goal preference control knowl-
edge is automatically acquired to deal effectively (in the
sense of problem solving effort) with this kind of goal inter-
actions by different machine learning approaches, namely
explanation-based learning [Minton, 1988], static analy-
sis [Etzioni, 1990], or derivational analogy [Veloso, 1992].

A particular problem may have many different solutions.
These solutions may differ in the set of operators in the
plan. If the ordering constraints between achieving two
goals are explicit in the domain representation, then all the
solutions to a particular problem will have the two goals
interacting. On the other hand the dependencies may be the
result of a particular problem solving path explored. In this
case for some solutions the goals may interact and for some
others they may not.

1.2 Quality goal interactions

To illustrate this difference and to motivate the quality goal
interactions, we further discuss different plans with order-
ing constraints that are or are not explicit in the domain.
In the one-way rocket domain [Veloso, 1989], the goals
of moving two objects to a different location interact, be-
cause the rocket can only move once. This is an interaction
that is represented in the domain definition as the moving
operator explicitly deletes the location of the rocket. The
machine-shop scheduling domain [Minton et al., 1989] also
constraints that holes in parts must be drilled before parts
are polished, as the drilling operator deletes the shining ef-
fect. In this domain, the goals of polishing and making a
hole in a part interact again due to the domain definition.

However, in this same machine-shop scheduling domain,
when two identical machines are available to achieve two
identical goals, these goals may interact, if the problem
solver chooses to use just one machine to achieve both
goals, as it will have to wait for the machine to be idle.
If the problem solver uses the two machines instead of just
one, then the goals do not interact in this particular solution.

There is a variety of equivalent examples in the logistics
transportation domain. In general it is not clear what use of
resources is overall the best. For example, in the logistics
transportation domain, suppose that the problem solver as-
sumes that the same truck (or airplane) must be used when
moving objects from the same location into the same (or

close) destiny. In this case the goals of moving the objects
interact. But if different carriers are chosen, there is not
such interaction. Note that the problem can become quite
complicated as the domain considers other types of con-
straints, such as capacity for the carriers, size of the objects
to be transported, distances between locations that dictate
the type of carrier to use, and so on.

These interactions are related to plan quality as the use of
resources dictates the interaction between the goals. The
control knowledge that guides the planner to solve these
interactions is harder to learn automatically, as the domain
theory does not encode these quality criteria. [Pérez, 1992]
is a current research effort on learning control knowledge to
improve the quality of the plans generated by the problem
solver.

There are a few other planners that analyze the relationship
between goal interactions and plan quality. Wilensky’s
planner [Wilensky, 19831 takes advantage of this relation-
ship. He makes an analysis of the different types of goal
interactions and develops meta-planning mechanisms that
deal with them. When a goal overlap, or positive goal in-
teraction between a planner’s goals, occurs, his planner is
able to carry out an action that is in the service of a number
of goals at once. This mightinvolve executing a single plan
that simultaneously fulfills several goals, achieving a goal
that serves more than one purpose, or employing a plan
that is worthwhile only when a sufficient number of similar
goals is involved. In Wilensky’s system then a goal overlap
situation provides an opportunity to achieve goals more eco-
nomically than they could be achieved otherwise, and the
planner prefers efficient plans over inefficient ones. This
principle would appear to be the underlying justification
for a number of processes incorporated in other planning
systems. For example, several of NOAH’s critics [Sacer-
doti, 1977} including “‘use existing objects,” “eliminate re-
dundant preconditions,” and “optimize disjuncts” are mo-
tivated by this idea and correspond to particular kinds of
goal overlap situations. SteppingStone [Ruby and Kibler,
1990] heuristically decomposes a problem into simpler sub-
problems, and then learns to deal with the interactions that
arise between the subproblems. The system allows hard-
constraints, that must be met and usually outline key aspects
of the problem, and soft constraints that measure the qual-
ity of a solution, and are usually real-valued. The system
learns to optimize soft constraints as well as solve hard
constraints.

Some existing domain-independent planning systems solve
multiple-goal problems by developing separate plans for the
individual goals, combining these plans to form a naive plan
for the conjoined goal, and then performing optimizations
to yield a better combined plan [Nau et al., 1990]. However
they restrict the types of goal interactions that may happen.
In this context, the quality of a plan is only considered
as far as dealing with and taking as much advantage as
possible of goal interactions. A similar mechanism is also
used by some domain-dependent planners [Hayes, 1990,
Nau, 1987].
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In our approach the control knowledge that detects quality
goal interactions and deals with them is created by a semi-
automated knowledge acquisition system. It is extracted
from a domain expert incrementally as the planner sees
new interesting problems in the domain. This knowledge
refers to concrete quality metrics, and is about why a solu-
tion is better than other, and how search can be guided to
improve solution quality. We do not claim that the knowl-
edge acquired will necessarily guide the planner to find
optimal solutions, but that the quality of the plans will in-
crementally improve with experience by interaction with
the domain expert.

2 Example of quality goal interactions

In this section we present a complete planning example
where there are goal interactions not explicitly represented
in the domain knowledge. In the process planning phase
of production manufacturing, plan quality is crucial in or-
der to minimize both resource consumption and execution
time. The goal of process planning is to produce plans
for machining parts given their specifications. Such plan-
ning requires taking into account both technological and
economical considerations, for instance “it may be advan-
tageous to execute several cuts on the same machine with
the same fixing to reduce the time spent setting up the work
on the machines”, or “if a hole H; opens into another hole
H,, then one is recommended machining H, before H,
in order to avoid the risk of damaging the drill” [Descotte
and Latombe, 1985]. Most of these considerations are not
pure constraints but only preferences when compromises
are necessary. They often represent both the experience
and the know-how of engineers, so they may differ from
one company to the other.

Let us look at a concrete example on the relationship be-
tween goal interactions and the quality of plans in this do-
main. The domain concentrates on the machining, joining,
and finishing steps of production manufacturing [Gil, 1991].
The goal is to produce one or more parts according to cer-
tain specifications. In order to perform an operation on a
part, the part has to be secured to the machine table with a
holding device, and in many cases the part has to be clean
and without burrs from preceding operations. The appro-
priate tool has to be selected and installed in the machine
as well,

As an example, Figure 1 shows a machine set up to drill a
hole in a part. Figure 2 sketches graphically the steps to
produce a reamed hole. Before performing each of these
steps, the appropriate tool has to be set in the machine
spindle, namely a spot-drill, a high-helix-drill,and a reamer.
Then some holding device (a vise in the example) has to
be put on the machine, and the part has to be held by the
holding device.

Suppose the planner has to build a plan to have a part with
two reamed holes on one of its sides. If the planner works
on making each hole separately, it will obtain a solution,
sketched in Figure 3(a) (the operators to hold the part are
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Drill-Bit

Figure 1: An Example of Set Up in the Machining Domain
(from [Joseph, 19921). In this example the holding device
is a vise, the machine a drilling machine, and the tool a
drill-bit.

i |

has-spot has~-hole is~-reamed
Figure 2: The Steps to Make a Reamed Hole: first a spot
hole is drilled on the part, then the hole itself is made, and
finally the hole is reamed. For each of these the operations
the appropriate tool (respectively a spot drill, some appro-
priate drill bit, or areamer) has to be installed in the drilling
machine.

omitted). This solution is not the shortest one (and in this
domain a shorter solution may mean a faster and cheaper
way to produce a large number of parts). Some steps may
be eliminated by reordering the operations. Both holes, and
spot holes for that matter, have to be in the same side and
may be made with the same tools. Therefore once we have
set the appropriate tool in the drill spindle and held the part
on the machine table, the operations corresponding to both
holes can be performed consecutively. Figure 3(b) shows
a better solution to the problem. The same tool set up is
used for drilling the two spot holes, then it is changed to
drill both holes, and finally the reamer is set once to ream
both holes.

In this example the planner obtains the better solution by in-
terleaving the problem goals. In PRODIGY this decision may
be encoded in the form of search control rules of Figure 4.

Note that if the goal interactions are not considered the
planner still constructs a valid solution. Itis only because of
quality considerations that the interactions occur as the same
set-up is used for achieving the goals for both holes. These
interactions are not explicitly represented in the domain
specification.

Some of the interactions between goals are due to the use
of a state-space planner, as the operator ordering in the final



( put tool to drill a spot hole put tool to drill a spot hole)
clean the part clean the part
drill spot hole for holel drill spot hole for holel
hole14 change tool to make hole drill spot hole for hole2
drill holel change tool to make hole holel
change tool to ream drill holel d
clean the part drill hole2 hi:)rllez
\ream holel change tool to ream
clean the pan
( change tool to drill a spot hole ream holel
drill spot hole for hole2 clean the part
J change tool to make hole ream hole2 J
hole2{ drill hole2
change tool to ream
clean the part
\ream hole2
(a) ®)

Figure 3: Two Plans of Different Quality to Make Two
Reamed Holes on a Part. Some steps in solution (a) may
be eliminated by reordering the operations, since once the
corresponding tool is set, the operation may be performed
for both holes consecutively. Solution (b) captures such
improvement by interleaving the operations on holel and
hole2.

plan is tied to the goal ordering during problem solving. By
using a plan-space planner, in which actions can be inserted
anywhere in the plan, some of these problems may go away.
However there is still the issue of which is the appropriate
control knowledge, heuristics or critics, to select the best
place to insert actions into the plan.

3 Acquiring Control Knowledge to Cover
Quality Goal Interactions

Most of the work to date on automated control-knowledge
acquisition for planning systems has been aimed to improve
the efficiency of planning; this work has been termed speed-
up learning. These systems have been successful in dealing
effectively (in the sense of problem solving effort) with
the first type of goal interactions by analyzing the domain
knowledge. However they have not taken into account
considerations of plan quality. [Pérez, 1992] proposes to
focus on the acquisition of control knowledge to guide the
planner towards better solutions, i.e. to improve the quality
of plans produced by the planner. We discuss here briefly
this approach.

Human experts gather knowledge for producing better plans
through experience. Here “better” is defined in a context-
sensitive manner as a combination of plan-quality factors
such as those listed extensively in [Pérez, 1992]. It is pre-
cisely this experiential knowledge that we seek to capture
from a combination of system planning experience and in-
teraction with the expert.

We are considering situations where the expert, or a domain-
dependent evaluation function, provides feedback on the
quality of the plans from one or several examples of plans
produced by the planner. This feedback may be localized or
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(control-rule MAKE-ANOTHER-SPOT
;3if the tool and part are in place, make a second spot hole
(if
(and
(candidate-goal (has-spot <part> <hole2> <side> <x2> <y2>))
(known (holding <machine> <holding-~device> <part> <side>))
(known (holding-tool <machine> <tool>))
(type-of-object <tool> SPOT-DRILL)))
(then prefer goal
(has-spot <part> <hole2> <side> <x2> <y2>) <other>))

(control-rule MAKE-ANOTHER-HOLE
;3if the tool and part are in place, make a second hole
(it
(and
(candidate-goal
(has~hole <partd <hole> <side> <depth> <diam> <x> <y>))
(known (holding <machine> <holding-device> <partd <side>))
(known (holding-tool <machine> <tool>))
(type-of-object <toold DRILL-BIT)
(° (type-of-object <tool> SPOT-DRILL))))
(then prefer goal
(has-hole <part> <hole> <side> <depth> <diam> <x> <y>)
<other>))

Figure 4: Search control rules to deal with quality-related
goal interactions.

global. One situation may correspond to the learning of lo-
cal search controlrules and the other may require the storage
of the episodic case corresponding to the good plan. The
planner would then be able to either use a localized search
control rule when the same situation occurs, or replay a past
good plan when a globally similar situation is perceived.

Let us look back to the example of Section 2. The solu-
tion in Figure 3(a) was obtained by PRODIGY without any
knowledge about goal ordering as by default it achieves the
goals in the order in which they were given. As we dis-
cussed this is not the best solution. We have implemented a
prototype to acquire control knowledge to improve solution
quality. It relies on the expert pointing that the planner’s
solution is not good enough, and providing modifications to
that solution, or a complete solution. In this example some
steps may be eliminated by reordering the operations. Then
the system is able to determine the points during search in
which different decisions should have been made in order
to obtain the better solution, and prompts the acquisition of
the relevant control knowledge.

4 Conclusion

We discussed planning goal interactions that are related
to the quality of the plans produced by the planner. We
differentiate these goal interactions from the ones explicitly
represented in the domain specification. We illustrated the
difference between these two categories of goal interactions
with several examples.

We finished the discussion by briefly outlining a method to
interact with an expert on the quality of the plans produced
and to automatically translate the expert’s feedback into
knowledge that the planner can use in subsequent planning
situations. The control knowledge acquired, either in the
form of localized search control rules or episodic global
cases for replay, enables the planner to handle the qual-



ity goal interactions and ultimately produce plans of better
quality.
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