
Planning for Complex Tasks: Replay and Merging of Multiple Plans

Manuela M. Veloso *
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213
veloso@cs.cmu.edu

Abstract

This paper discusses the analogical/case-based
planning approach developed in PRODIGY-
/ANALOGY. The technique involves planning for
complex problems by the multi-case reuse of sim-
pler past plans that are conjunctively similar to a
new planning situation. The paper demonstrates
this effective incremental planning strategy by
providing empirical results on the performance
of PRODIGY/ANALOGY solving 1000 problems in
a complex logistics transportation domain.

1 Introduction

Planning for complex tasks is a well-recognized difficult
problem due to the size of the search space which in gen-
eral increases exponentially with the problem complexity.
On the opposite planning for simple problems is a rather
tractable task. The interesting question is: How can a plan-
ning system solve efficiently complex problems given the
fact that it can solve efficiently simple problems?

An answer to this question is to elaborately refine the knowl-
edge available to the planner in such a way that the search
is drastically reduced. On one hand, the developer may
laboriously handcode and refine the domain representation
until the planner is able to produce the desired plans for
the complex problems. Another approach is to automate
the learning process from the planning experience in sim-
ple problems and compile the acquired knowledge to reuse
in future complex problems. In this paper we discuss the
planning aspect of an analogical/case-based reasoning vari-
ation of this general learning strategy that we developed in

*This research was sponsored by the Avionics Laboratory,
Wright Research and Development Center, Aeronautical Systems
Division (AFSC), U. S. Air Force, Wright-Patterson AFB, 
45433-6543 under Contract F33615-90-C-1465, Arpa Order No.
7597. The views and conclusions contained in this document are
those of the authors and should not be interpreted as represent-
ing the official policies, either expressed or implied, of the U.S.
Government.

PRODIGY/ANALOGY [Veloso, 1992]. The incremental learn-
ing and problem solving process has the following phases:

1. Let the planner solve simple problems.

2. Store the generated plans (annotated with their deriva-
tions) indexed by the goal interactions encountered
and the relevant features of the initial state.

3. Let the planner solve complex problems by reusing
multiple stored plans that are jointly similar to the new
problem. Loop to steps 2 (and also 1, if needed).

The planning and machine learning characteristics of this
strategy are, on one hand, its case-based planning approach
by which past plans are reused to guide the planning process.
Additionally, the past plans are retrieved when similar to the
new situation rather than on an exact-match requirement.
This paper focus on the discussion of the planning algorithm
based on the replay (or reuse) of past plans. The power 
the replay strategy in solving complex problems with a
large number of goal conjuncts is in part due to the ability
to merge the guidance from multiple past cases.

Further details on the replay strategy developed, as well as
complete description of the other aspects of the analogi-
cal reasoning process, namely the generation, storage, and
retrieval of cases, can be found in [Veloso, 1992].

2 Replay of multiple guiding cases

When the planner is given a new problem to solve de-
scribed in terms of the initial state and the conjunctive goal
statement, the system retrieves from the case library a set
of similar past cases that cover the new problem solving
situation.

A case in memory is the derivational trace of the planning
episode of solving a problem. The system automatically
identifies the sets of interacting goals by partially order-
ing the totally ordered solution found [Veloso et al., 1990].
The connected components of the partially ordered plan de-
termine the independent fragments of the case each corre-
sponding to a set of interacting goals. Each case is multiply
indexed by the sets of interacting goals.

146

From: AAAI Technical Report SS-93-03. Compilation copyright © 1993, AAAI (www.aaai.org). All rights reserved. 



The relevant literals of the initial state are foot-printed for
each goal conjunct in the goal statement by goal regressing
through the plan found. Several learning methods share the
explanation provided by the subgoaling chain supplied by
the underlying domain theory. In that sense, foot-printingis
similar to explanation-based indexing techniques [Barletta
and Mark, 1988, Hickman and Larkin, 1990] and chunking
[Laird et al., 1986]. A distinction between the methods
is the level of generalization, abstraction, or scope of the
explanation obtained. Foot-printing explains the episodic
final solution while chunking explains each problem solving
impasse. Explanation-based indexing, as used in [Barletta
and Mark, 1988], uses goal regression to abstract domain
features from the instantiated observables defining a solu-
tion episode. Foot-printing uses goal regression to reduce
the set of instantiated features of the initial state.

Each case is retrieved as a guiding case for a set of inter-
actions goals from the goal statement. Therefore each case
covers a set of goals. At replay time, a case is abandoned
when all the goals it covers are achieved. Until all the cov-
ered goals are achieved, the corresponding guiding case is
always considered as a source of possible guidance and the
problem solver keeps it active. The covered goals may be
achieved by transferring all the steps of the guiding case or
there may be local or global divergences. If a divergence
is found, the guiding case stays active but suspended at the
diverging step. The replay algorithm continues to test for
additional transfer. When a local divergence is resolved
the transfer continues successfully. If the divergence is
global, the case remains suspended and the problem solver
is not able to return back to it until all the covered goals are
achieved by different means. At this point the suspended
case is abandoned as its covered goals are achieved.

Figure 1 sketches the general picture of the replay mech-
anism following guidance from several past cases. The
new planning episode is shown in the center of the figure
with the steps being transferred (shown by arrows) from
the past plans on the sides. The picture shows that: (i) the
past cases can be reused only partially, as some steps are
not transferred to the new situation; (ii) the cases can be
merged in different orders; and (iii) the replay mechanism
has the ability to replan for parts of the problem that are not
covered by past cases (as shown by the unguided steps of
the new plan).

The general replay mechanism involves a complete inter-
pretation of the justification structures annotated in the past
cases in the context of the new problem to be solved, and the
development of adequate actions to be taken when trans-
formed justifications are no longer valid.

We followed a satisficing paradigm in which the system is
fully guided by its past experience. The syntactic applica-
bility of an operator is always checked by simply testing
whether its left hand side matches the current state. Se-
mantic applicability is checked by determining whether the
justifications hold (e.g., whether there is still a reason to
apply this operator). For all the choice points, the problem
solver tests the validity of the justifications (its semantic ap-

Figure 1: Replaying multiple cases

plicability, or rather its "desirability" in the new situation).
In case the choice remains valid in the current problem state,
it is merely copied, and in case it is not valid the system
can replan at the particular failed choice or re-establish the
failed condition.

These two situations can be described in terms of their effect
in how the cases are followed. When the justifications hold,
the past choices are transferred to the new context. The
cases are advanced to propose to the next potentially useful
steps. When the justifications are not valid, then any of
the two alternatives described above may correspond to the
following actions in the guiding cases:

1. Suspend the guiding case if some extra planning work
is needed. For example, this corresponds to the situ-
ation where an operator was applied in the past case,
and now in the new problem, it cannot be applied yet,
as one of its preconditions is not true in the state yet.
The replay procedure diverges from the guiding case
and replans for these new goals (it can recursively try
to find another case that can guide the reachievement
of the particular preconditions).

2. Advance the guiding case when some of the past plan-
ning work is not necessary. For example, this corre-
sponds to the situation where the past case subgoals
in a literal that is now already true in the state. The
replay procedure tries to advance the case to the next
step that can be replayed.

Deviations theoretically could lead to total divergence from
the set of guiding cases. This does not occur however when
the adequate foot-print similarity metric is used. The foot-
printed initial state which is compared to the new situation
captures the relevant features of the initial state in terms of
the goals to be achieved and as a function of the solution to
be replayed. While the case library is not rich enough in a
diversity of cases, the retrieval procedure generally returns
a smaller set of guiding cases rather than a larger set of not
suitable ones.

147



Justification structures also encompass the record of past
failures in addition to just the subgoaling links [Bhansali,
1991, Kambhampati, 1989, Mostow, 1989]. This allows
both the early pruning of current alternatives that were ex-
perienced to have failed in the past, and the exploration
of alternatives for which the past reason of failure does
not exist in the current situation. Furthermore, the replay
mechanism in the context of casual commitment as opposed
to least commitment allows naturally to combine guidance
from several past problem solving episodes. Replicated
adapted decisions can be interleaved and backtracked upon
within the totally ordered reasoning plan.

2.1 Advantages of replay

The replay functionality transforms the planner, from a
module that costly generates possible operators to achieve
the goals and searches through the space of alternatives gen-
erated, into a module that tests the validity of the choices
proposed by the past experience and follows equivalent
search directions.

In a nutshell and informally, the replay procedure provides
the following benefits to the problem solving procedure:

¯ Proposal and validation of choices versus generation
and search of possible alternatives.

¯ Reduction of the branching factor - past failed alter-
natives are pruned up front by validating the failures
recorded in the past cases.

¯ Subgoaling links identify the subparts of the case to
replay - the steps that are not in the subgoaling chain
of active goals are skipped.

2.2 Merging strategies

The replay procedure works its reconstruction mechanism
from a set of guiding cases as opposed to necessarily a sin-
gle past case. Each guiding case suggests a guiding plan
to a learned set of interacting goals. This enhancement
constitutes a powerful technique to get guidance from com-
plementary individual past cases. The replay of multiple
cases proves to be highly useful for complex problems that
may be solved by resolving minor interactions among sim-
pler past cases. Following several cases however poses an
additional decision making step of choosing which case to
pursue. Resolving at this level of decision making may
be seen as an instance of meta-level reasoning in a higher
level of abstraction than the domain level decisions, such
as which operator to apply, or which goal to pursue next
in order to solve a user given problem situation. Although
developing a learning method for meta-level decision mak-
ing is beyond the immediate focus of this work, we discuss
a few different merging strategies to merge the guidance
from the several cases from the set of similar cases:

Serial: The cases are merged serially one after the other.
The particular initial merging ordering of cases is ran-
domly chosen. When all the steps of a case are reused

or the case is abandoned then the next case in the serial
order is returned and followed.

Round-robin: This is an opposite strategy to the serial
one. The cases are maximally interleaved by follow-
ing a step of each case at a time. The particular initial
merging ordering of the cases is also randomly chosen.
The system returns the next case in the merging order-
ing after the case that is linked to the current active
search node or after the last guided search node, if the
current node is unguided.

Exploratory: Finally this strategy merges the cases in a
random order. The procedure returns a case arbitrarily
chosen from the set of guiding cases.

It is interesting to briefly discuss these different merging
strategies. The question to be addressed is twofold: Which
of the merging strategies is more advantageous to help re-
duce the problem solving base search effort? And which
of the merging strategies allows the learner to accumulate
richer cases in terms of the interactions among goals? The
learning question is of central relevance to our work as the
purpose of our method is exactly to learn, e.g. new goal
interactions, from planning experience. It is beyond the fo-
cus of this work to develop merging techniques to optimize
the quality of the resulting plan [Nau et al., 1990].

To debate the trade-offs raised by the two questions above,
consider the two extreme situations in terms of goal inter-
actions, namely:

A, where the set of goals covered by the different guiding
cases are all independent from each other, and

B, where there are strong interactions among the goals cov-
ered by the different cases.

In terms of the expected reduction of the problem solving
search effort, for situation A all the merging strategies are
equivalent as the goals do not interact. On the other hand,
for situation B, the merging strategy used produces fun-
damentally different results in search reduction. A serial
strategy delays to an extreme the detection of goal inter-
actions. A round-robin strategy may be able to spot the
goal interactions rather early and contribute to avoid long
undesirable serial search paths. This strategy provides the
maximum benefits but only if the correct initial case or-
dering is selected. The exploratory strategy balances these
two strategies by allowing cases to both be serialized or
interleaved.

In terms of the accumulation of a wide variety of cases,
the learner masters from a rich problem solving experi-
ence. Ideally the learner benefits most from an integral
understanding of the complete search space as a result of
its entire exploration by the problem solver identifying all
the failing and succeeding paths. This situation however is
not desirable in terms of problem solving efficiency. For
both situations A and B, the problem solver ends up finding
the correct solution after the necessary search. The learner
captures and compiles the existing goal interactions. The
issue is which of the strategies allows a richer exploration

148



of the search space to learn from success and failures. The
serial merging strategy is indifferent for situation A for both
search reduction and learning usefulness. For situation B
both the serial and the round-robin strategies are equally
useful from the learning perspective, as they depend heav-
ily on the initial case ordering. In a nutshell this discussion
leads into the conclusion that the exploratory strategy se-
cures the trade-off between handling situations A and B
successfully both from the search reduction and learning
utility point of views.

3 Empirical Results

The thesis reports extensive empirical results along a vari-
ety of dimensions. In this paper we focus on showing the
cumulative planning times and the comparisons between
the solution length of the plans for the system without anal-
ogy and with analogy. In particular, details about how the
experiments were conducted and the cost of retrieval can
also be found in the thesis. In the experiments reported, the
merging strategy is fixed to be the exploratory one. The
choices are picked up randomly from the set of available
alternatives, if no additional guidance can be applied.

The problem solver in both configurations runs within a
time limit. We ran a set of 1000 problems in a logistics
transportation domain with 1-20 goals in the goal statement
and more than 100 literals in the initial state.

The overall result of this planning and learning approach
is that the analogical reasoner increased the solvability
horizon of the base-level problem solver considerably.
PRODIGY/ANALOGY Can solve the complete set of 1000 prob-
lems with up to a running time limit of 350 seconds. Without
analogy, i.e., by base search, the planner, NOLIMIT [Veloso
et al., 1990], solves only 458 problems out of the 1000
problems even when the search time limit is increased up
to 350 seconds.

Previous comparisons between the performance of a prob-
lem solver before and after learning control knowledge
[Minton, 1988, Knoblock, 1991, Etzioni, 1990] were done
by graphing the cumulative running times of the two sys-
tems over a set of problems,z To follow this precedent we
also graph the cumulative performance of the two systems.

Figure 2 (a) shows the cumulative running time for the set 
problems (458) that were both solved by base search and 
analogy. The curves are monotonically increasing because
of the cumulative effect, and they are smooth because the
problems are sorted according to their running time.

The graph shows a final factor of 3.6 cumulative speed up
of the analogical problem solver over the base NOLIMIT.
The maximum individual speed up is of a factor of approx-
imately 38. The graph compares the running times for the
solved problems. To make this comparison more similar to
the ones performed previously in PRODIGY [Minton, 1988],
we compute the cumulative running times accounting also

1The next sections consider the retrieval times in addition to
the running time for the analogical runs.

for the problems not solved by the base level problem solver
within the time bound of 350 seconds. Therefore for each
unsolved problem, we add the running time until the time
bound limit is reached, in the same way as it is done in
[Minton, 1988]. Figure 2 (b) shows the curves obtained.

Figure 2: (a)Cumulative running time for the 458 problems
from a set of 1000 problems solved both by base-level
search (without analogy) and by derivational analogy (with
analogy); (b) Cumulative running time for the complete 
of 1000 problems. Ifa problem is not solved it is accounted
for with the CPU time limit used of 350 seconds.

The 1000 problems solved by analogy correspond to a total
of 39,479.11 seconds, while the total running time effort
of the base level problem solver corresponds to 210,985.87
seconds. This represents a speed-up of a factor of approx-
imately 5.3, and also means that the cumulative savings in
running time for analogy is approximately 81.3%.

No direct comparison between earlier PRODIGY/EBL and
current PRODIGY/ANALOGY is possible because the former
used a linear problem solver whereas the latter used a non-
linear one. Moreover the complexity of the problems was
substantially greater for PRODIGY/ANALOGY. These fac-
tors mitigate towards a larger overall search space for the
current work and therefore more room for learning, as ob-
served with respect to improved average running time and
solvability boundary.

Another interesting issue is to compare the quality of the
solutions produced by analogy and the ones returned by
the base NOLIMIT. This study uses a measure of quality of
plans which is based simply on the length of the solution.9

The study is done by finding the difference between the
length in the solutions found by NOLIMIT and by analogy
for each problem¯ Figure 3 shows a table summarizing the
results found.

The immediate result from this table is that in 82.75%
(36.68% + 46.07%) of the solved problems the analogical
reasoner produces plans of no worst quality than the ones
produced by base-level search. In terms of the total 1000
solved problems by analogy, in only 7.9% of the problems
(79/1000) does analogy produce longer plans.

2In [P&ez, 1992] P6rez proposes to research in acquiring con-
trol knowledge from an expert to guide the problem solver to
achieve plans of higher quality according to several dimensions.

149



Difference in solution length: Number of Percentage
ANALOGY versus NoLimit Problems of problems

Longer 1-6 steps 79 17.25%
Equal 168 36.68%

Shorter 1-13 steps 211 46.07%

Figure 3: Comparison in solution length between the ana-
logical and the base-level problem solvers

Before we ran this comparison, we had not a clear feeling of
what the outcome of this study would be. In fact we feared
an eventually more balanced or even disadvantageous re-
sult for analogy. The reason for this expectation (which
turned out to be ungrounded) is the exploratory strategy
that we follow to merge the guidance from several cases at
replay time. We chose to follow the principle that a learner
benefits more from random exploration of its choices, if
no preferences are available, than from following always a
fixed exploration order. In particular this principle applies
to the replay of multiple cases in the random interleave of
the several guiding cases when no other preferred choice
is known. Hence the exploratory merging strategy leads to
novel explorations of the search space allowing the problem
solver to encounter "surprising" successes or failures from
which it can learn by enriching its library of problem solving
experience. Though supported by this learning argument,
it was not clear to us what were the effects of the approach
in the quality of the specific final solution delivered by the
analogical problem solver. The results in Figure 3 show the
rewarding fact that the overall replay algorithm of multiple
guiding cases produces solutions of equal or better quality
in a large majority of the situations.

4 Conclusion

The paper advocates a strategy for efficiently planning in
complex tasks. The technique is based on the reuse and
merging of multiple past simple plans that are similar as a
whole to the new problem solving situation. The method
is implemented in PRODIGY/ANALOGY and the paper shows
results that empirically validate the method.

Acknowledgements

The author would like to thank Jaime Carbonell for many
helpful discussions and suggestions, and the anonymous
reviewers for their comments.

References

[Barletta and Mark, 1988] Ralph Barletta and William
Mark. Explanation-based indexing of cases. In Pro-
ceedings of the First Workshop on Case-Based Reason-
ing, pages 50--60, Tampa, FL, May 1988. Morgan Kauf-
mann.

[Bhansali, 1991] Sanjay Bhansali. Domain-based pro-
gram synthesis using planning and derivational analogy.

PhD thesis, Department of Computer Science, Univer-
sity of Illinois at Urbana-Champaign, 1991.

[Etzioni, 1990] Oren Etzioni. A Structural Theory of
Explanation-Based Learning. PhD thesis, School of
Computer Science, Carnegie Mellon University, 1990.
Available as technical report CMU-CS-90-185.

[Hickman and Larkin, 1990] Angela K. Hickman and
Jill H. Larkin. Internal analogy: A model of transfer
within problems. In The 12th Annual Conference of
The Cognitive Science Society. Lawrence Erlbaum As-
sociates, 1990.

[Kambhampati, 1989] Subbarao Kambhampati. Flexible
Reuse and Modification in Hierarchical Planning: A
Validation Structure Based Approach. PhD thesis, Com-
puter Vision Laboratory, Center for Automation Re-
search, University of Maryland, 1989.

[Knoblock, 1991] CraigA. Knoblock. AutomaticallyGen-
erating Abstractions for Problem Solving. PhD thesis,
School of Computer Science, Carnegie Mellon Univer-
sity, Pittsburgh, PA, 1991. Available as technical report
CMU-CS-91-120.

[Laird etal., 1986] John E. Laird, Paul S. Rosenbloom,
and Allen Newell. Chunking in SOAR: The anatomy
of a general learning mechanism. Machine Learning,
1:11-46, 1986.

[Minton, 1988] Steven Minton. Learning Effective Search
Control Knowledge: An Explanation-Based Approach.
PhD thesis, Computer Science Department, Carnegie
Mellon University, 1988.

[Mostow, 1989] Jack Mostow. Automated replay of design
plans: Some issues in derivational analogy. Artificial
Intelligence, 40(1-3), 1989.

[Nan et al., 1990] Dana S. Nau, Qiang Yang, and James
Hendler. Optimization of multiple-goal plans with lim-
ited interaction. In Proceedings of the DARPA Work-
shop on Innovative Approaches to Planning, Scheduling,
and Control, pages 160-165, San Diego, CA, November
1990. Morgan Kaufmann.

[P6rez, 1992] M. Alicia P6rez. Learning from experts
knowledge to improve the quality of plans. Thesis pro-
posal, School of Computer Science, Carnegie Mellon
University, 1992.

[Veloso et al., 1990] Manuela M. Veloso, M. Alicia P6rez,
and Jaime G. CarboneU. Nonlinear planning with parallel
resource allocation. In Proceedings of the DARPA Work-
shop on Innovative Approaches to Planning, Scheduling,
and Control, pages 207-212, San Diego, CA, November
1990. Morgan Kaufmann.

[Veloso, 1992] Manuela M. Veloso. Learning by Analogi-
cal Reasoning in General Problem Solving. PhD thesis,
School of Computer Science, Carnegie Mellon Univer-
sity, Pittsburgh, PA, August 1992. Available as technical
report CMU-CS-92-174.

150




