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Abstract

This paper studies self-directed learning, a
variant of the on-line (or incremental) learn-
ing model in which the learner selects the pre-
sentation order for the instances. Alterna-
tively, one can view this model as a varia-
tion of learning with membership queries in
which the learner is only “charged” for mem-
bership queries for which it could not predict
the outcome. We give tight bounds on the com-
plexity of self-directed learning for the concept
classes of monomials, monotone DNF formulas,
and axis-parallel rectangles in {0,1, - -+, n—1}4.
These results demonstrate that the number of
mistakes under self-directed learning can be
surprisingly small. We then show that learn-
ing complexity in the model of self-directed
learning is less than that of all other com-
monly studied on-line and query learning mod-
els. Next we explore the relationship between
the complexity of self-directed learning and
the Vapnik-Chervonenkis dimension. We show
that in general, the VC-Dimension and the
self-directed learning complexity are incompa-
rable. However, for some special cases we show
that the VC-dimension gives a lower bound for
the self-directed learning complexity. Finally,
we explore a relationship between Mitchell’s
version space algorithm and the existence of
self-directed learning algorithms that make few
mistakes.
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1 Introduction

This paper studies self-directed learning, a variant of
the on-line (or incremental) learning model in which the
learner selects the presentation order for the instances.
As in the standard on-line model, the learner answers
a sequence of yes/no questions with immediate feed-
back provided after each question. The learner strives
to discover the correct classification rule while making
as few mistakes as possible. Clearly the performance
of the learner depends on the order in which the ques-
tions are presented. Although typically the assumption
made is that an adversary selects the order of the ques-
tions, here we allow the learner to select this order. Al-
ternatively, one can view this model as a variation of
learning with membership queries in which the learner
is only “charged” for membership queries for which it
could not predict the outcome. We apply this variant of
the on-line learning model to problems from the area of
concept learning. That is, when the learner chooses the
instance sequence, how many incorrect predictions are
made before the target concept is uniquely specified?

This paper is organized as follows. In the next section,
we motivate the self-directed learning model. In Sec-
tion 3 we give some preliminary definitions that set the
framework for the self-directed learning model. Then
in Section 4 we formally describe the model of self-
directed learning (as originally defined by Goldman,
Rivest, and Schapire [6]). Next in Section 5, we briefly
discuss some related work. In Section 6 we give tight
bounds on the complexity of self-directed learning for
the concept classes of monomials, monotone DNF for-
mulas, and axis-parallel rectangles in {0,1,---,n—1}9.
These bounds demonstrate that the number of mistakes
can be surprisingly small. Then in Section 7 we prove
that the model of self-directed learning is more powerful
than all other commonly used on-line and query learning
models. In particular, we show that this model is more
powerful than all of the models considered by Maass
and Turan [15). Next in Section 8 we study the rela-
tionship between the optimal mistake bound under self-



Intradermal Epicutaneous
(Under the Skin) (Scratch)
Not Allergic negative negative
Mildly Allergic weak positive negative
Highly Allergic | strong positive | weak positive

Figure 1: Summary of testing reactions for allergy test-
ing example.

directed learning and the Vapnik-Chervonenkis dimen-
sion. We first show that the VC-dimension can be arbi-
trarily larger than the complexity of self-directed learn-
ing. We then give a family of concept classes for which
the complexity of self-directed learning is larger than the
VC-dimension. Next we show that for concept classes of
VC-dimension 1, the self-directed learning complexity is
1. We also show that for any maximum! class the VC-
dimension provides a lower bound for the self-directed
learning complexity. In Section 9 we explore a relation-
ship between Mitchell’s version space algorithm [16] and
the existence of self-directed learning algorithms that
make few mistakes. Finally, in Sections 10 and 11 we
consider some alternative models, summarize the results
of this paper, and suggest some directions for future re-
search, including a succinct combinatorial characteriza-
tion of one of our open problems.

2 Motivation

In this section we explain why we feel the self-directed
learning model is an interesting one to study.

2.1 Example: the allergist

We begin by reviewing the allergist example from the
original paper on self-directed learning [6).

Consider an allergist with a set of patients to be tested
for a given set of allergens. Each patient is either highly
allergic, mildly allergic, or not allergic to any given al-
lergen. The allergist may use either an epicutaneous
(scratch) test in which the patient is given a fairly low
dose of the allergen, or an intradermal (under the skin)
test in which the patient is given a larger dose of the
allergen. The patient’s reaction to the test is classified
as slrong positive, weak posilive or negalive. Figure 1
describes the reaction that occurs for each combination
of allergy level and dosage level. Finally, we assume a

1A concept class of VC-dimension d over a finite instance
space is mazimum (or complete) if its size is maximum
among concept classes of VC-dimension d over the given size
of instance space.

strong positive reaction is extremely uncomfortable to
the patient, but not dangerous.

What options does the allergist have in testing a patient
for a given allergen? He could just perform the intra-
dermal test (option 0). Another option (option 1) is to
perform an epicutaneous test, and if it is not conclusive,
then perform an intradermal test. Which testing option
is best? If the patient has no allergy or a mild allergy to
the given allergen, then testing option 0 is best, since the
patient need not return for the second test. However, if
the patient is highly allergic to the given allergen, then
testing option 1 is best, since the patient does not expe-
rience a bad reaction. Let us assume the inconvenience
of going to the allergist twice is approximately the same
as having a bad reaction. That is, the allergist has no
preference for one sort of error over the other. While
the allergist’s final goal is to determine each patient’s
allergies, we consider the problem of learning the opti-
mal testing option for each combination of patient and
allergen.

The allergist interacts with the environment as follows.
In each “trial” the allergist is asked to predict the best
testing option for a given patient/allergen pair. He is
then told the testing results, thus learning whether the
patient is not allergic, mildly allergic or highly allergic to
the given allergen. In other words, the allergist receives
feedback as to the correct testing option.

Observe that to model this situation, we want an on-
line model. There is no training phase here; the aller-
gist wants to predict the correct testing option for each
patient/allergen pair. How should we judge the perfor-
mance of the learning algorithm? For each wrong pre-
diction made, a patient is inconvenienced with making a
second trip or having a bad reaction. Since the learner
wants to give all patients the best possible service, he
strives to minimize the number of incorrect predictions
made. Thus we want to judge the performance of the
learning algorithm by the number of incorrect predic-
tions made during a learning session in which he must
eventually test each patient for each allergen.

Since the allergist has no control over the target relation
(i.e. the allergies of his patients), it makes sense to view
the feedback as coming from an adversary. However, do
we really want an adversary to select the presentation
order for the instances? It could be that the allergist is
working for a cosmetic company and, due to restrictions
of the Food and Drug Administration and the cosmetic
company, the allergist is essentially told when to test
each person for each allergen. In this case, it is ap-
propriate to have an adversary select the presentation
order. Typically, however, the allergist chooses the or-



der in which to perform the testing so that he can make
the best predictions possible. In this case, we want to
allow the learner to select the presentation order.

Clearly, the model of self-directed learning is also ap-
propriate for other similar testing situations. The im-
portant features are a need to perform a set of tests,
in which the outcome of previously performed tests can
be used to help select the best method for performing
the remaining test. Furthermore, since all tests must
eventually be performed, there is no need to minimize
the total number of queries (or tests) performed, but
rather the goal is to minimize the number of incorrectly
predicted instances.

2.2 Self-directed learning as a variation of
standard models

Another way to view the self-directed learning model
is as a modification of the standard model of learning
with membership queries (as introduced by Angluin [1])
in which the learner aims to achieve exact identifica-
tion using membership queries, except that in our case
the learner is only “charged” for a membership query if
it incorrectly predicts the classification. Thus it is not
at all surprising that the self-directed learning complex-
ity will always be less than or equal to the number of
membership queries needed to obtain exact identifica-
tion. The interesting question is how much less the self-
directed learning complexity can be than the minimum
number of membership queries needed for exact identifi-
cation. While the self-directed learning model provides
a measure of the minimum number of mistakes that the
learner makes (versus a measure of the minimum num-
ber of queries made), it is important to understand how
this new learning model relates to the standard on-line
learning model and the various models of learning with
queries.

We will consider this question right after providing a
crisp formal definition of self-directed learning.

3 Preliminary Definitions

We now formally describe the on-line (or incremental)
learning model. The basic goal of the learner is to ac-
curately predict whether each of a given set of objects
(or instances) is a positive or negative instance of the
target concepi. Let the instance space X denote the set
of instances to be classified, and let the concept class be
C C 2X. (Typically X and C are parameterized accord-
ing to some size measure n. In this case we will write
C = (Cn, X,.) For a concept ¢ € C and instance ¢ € X,
c(z) denotes the classification of ¢ on instance . That
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is, ¢(zx) = 1 if and only if £ € c. We say that z is a
positive instance of ¢ if ¢(z) = 1 and z is a negative
instance of ¢ if ¢(z) = 0. Finally, a hypothesis h for C is
a rule that given any £ € X outputs in polynomial time
a prediction for ¢(z).

We are now ready to define the absolute mistake-bound
variant of the on-line learning model {10, 13]. An on-
line algorithm (or incremental algorithm) for C is an
algorithm that runs under the following scenario.? A
learning session consists of a set of {rials. In each trial,
an adversary® presents the learner with an unlabeled
instance £ € X. The learner uses its current hypothesis
to predict whether z is a positive or negative instance
of the target concept c. € C and then the learner is
told the correct classification of #. If the prediction is
incorrect, the learner has made a mistake. The goal of
the learner is to minimize the number of mistakes made
over the learning session.

We now define the Vapnik-Chervonenkis dimension [20].
Let X be any instance space, and C be a concept class
over X. A finite set Y C X is shaitered by C if {cNY |
¢ € C} = 2Y. In other words, Y C X is shattered by
C if for each subset Y/ C Y, there is a concept ¢ €
C which contains all of Y/, but none of the instances
in Y —Y’. The Vapnik-Chervonenkis dimension of C,
denoted veD(C), is defined to be the smallest d for which
no set of d+1 points is shattered by C. Blumer et al. [2]
have shown that this combinatorial measure of a concept
class characterizes the number of examples required for
learning any concept in the class under the distribution-

free or PAC model of Valiant [19].

Related to the VC-dimension are the notions of mazimal
and mazimum concept classes [5, 21). A concept class
is mazimal if adding any concept to the class increases
the VC dimension of the class. Define

_ [ Tieo(7) form>d
Ba(m) = { 2m form < d.

If C is a concept class of VC-dimension d on a finite set
X with |X| = m, then the cardinality of C is at most
®4(m) {18, 20]. A concept class C over X is mazimum
if for every finite subset Y C X, the class C, when re-
stricted to be a class over Y, contains ®4(|Y|) concepts.

Finally, we describe membership and equivalence queries
as originally defined by Angluin [1}.

e A membership query is a call to an oracle that on

2Such algorithms have also been referred to in the learning
theory literature as prediction algorithms.

3The adversary, who tries to maximize the learner’s mis-
takes, knows the learner’s algorithm and has unlimited com-
puting power.



input z for any r € X classifies z as either a positive
or negative instance according to the target concept
c €C.

e An equivalence query is a call to an oracle that on
input ¢ € C either replies that the target concept
c. is equivalent to ¢ or provides an instance x € X,
such that ¢ and ¢, classify z differently. That is, the
oracle either replies that the conjectured concept is
correct or provides a counterexample to it.

o A generalized equivalence query is just like an equiv-
alence query except that the conjectured hypothesis
can be any element of 2X.

4 The Self-Directed Learning Model

An important contribution of the on-line learning model
is that it applies to problems in which the learner must
predict the classification of unseen instances. Sometimes
this learning model appropriately captures the interac-
tion between the learner and its environment, yet as
indicated by the allergist example, sometimes it does
not. In studying the problem of learning binary rela-
tions, Goldman, Rivest and Schapire [6] introduced the
model of self-directed learning in which the learner se-
lects the order in which the instances are presented to
the learner.

The focus of this paper is studying this learning model
when applied to the standard problems of concept learn-
ing. That is, we shall apply the model of self-directed
learning to some commonly studied concept classes and
compare this learning model to other on-line and query
learning models that have been studied.

The self-directed learning model is defined as follows.
Note that these definitions only apply to finite instance
spaces (and, of course, to countable sequences of finite
instance spaces). We define a query sequence to be a
permutation ¥ = (21, Z2,...,Z)x}) of the instance space
X where z; is the instance the learner will predict at the
1*% trial. The learner may build its query sequence in
an on-line manner. Namely, for the t*? trial, z; may be
selected by any polynomial time algorithm that takes as
input the set of labeled examples obtained in the first
t — 1 trials. Note that by the definition of a query se-
quence, r; must be an instance that the learner has not
yet considered. Furthermore, if, after the completion of
the t* trial, the learner knows with certainty the clas-
sification of all instances from X that have not yet been
queried (i.e. Z¢41,. .., 2| x|), then we say the the learn-
ing session is completed. The mistake bound for learning
concept ¢ with a given self-directed learning algorithm
is the number of incorrect predictions made during the
learning session. In other words, it is the number of

incorrect predictions that are made by the self-directed
learning algorithm until the point at which the target
concept is uniquely specified. For any nonempty con-
cept class C and any self-directed learning algorithm,
we define the mistake bound of the learning algorithm
for C to be the maximum of the mistake bounds for each
concept ¢ € C.

The optimal mistake bound for the self-directed learning
of concept class C, denoted opt(C), is the minimum over
all self-directed learing algorithms for C of the mistake
bound. We define the self-directed learning complexity
of a concept class C, written as sDc(C), as the minimum
over all self-directed learning algorithms of opt(C).

5 Previous Work

We now briefly discuss some relevant previous work. As
we have mentioned, Goldman, Rivest, and Schapire [6]
use the self-directed learning model (described in Sec-
tion 4) to study the problems of learning binary rela-
tions and total orders. In particular for a binary rela-
tion over n objects with m attributes per object, they
describe an efficient self-directed learning algorithm that
makes at most km+(n—k)|lg k| mistakes where & is the
number of distinct objects. Furthermore, this bound is
shown to be asymptotically tight. For the concept class
of a total order over n objects, they give an efficient
self-directed learning algorithm that achieves an opti-
mal mistake bound of n — 1 mistakes.

Maass and Turan’s [15] work comparing the complex-
ity of learning under the commonly studied on-line and
query learning models is quite useful. In addition to
comparing previously defined models, they defined a
new learning model of partial equivalence queries in
which for instance space X the learner can present a
hypothesis h : X — {0, 1, *}, and is either told that all
specified instances are correct or is given an £ € X such
that h(z) € {0,1} and z is misclassified by h. We will
add to their results by showing how the model of self-
directed learning fits into their hierarchy relating various
on-line and query learning models.

6 Self-directed learning complexity for
various concept classes

In this section we compute bounds on the self-directed
learning complexity for the concept classes of monotone
monomials, monomials, monotone DNF formulas, axis-
parallel rectangles in {0,1,---,n—1}¢, and multiples in

*Two objects are distinct if there exists an attribute which
they classify differently.



006 .- 0060 , -
100 .- 000 , —
01 0 0 0o, -
0 0 0 010 , —
0 0 0 001, -
1 1 0 000 , —
1 0 1 000 , —
0 0 0 101, -
0 0 11, -
1 1 1 0 0, -

Figure 2: Learner-selected query sequence for learn-
ing the monotone monomial x;zax3. Note that the last
instance is the first one incorrectly predicted by the
learner.

N. As we shall show, the learner can perform extremely
well for these concept classes.

6.1 Monomials

We first compute the self-directed learning complexity of
monotone monomials and then we generalize our results
to arbitrary monomials.

Theorem 1 sbDc(monotone monomials) = 1.

Proof: The learner uses the following query sequence,
always predicting that the instances are negative, and
stopping when the first mistake occurs. First consider
the instance in which all variables are 0. Next consider
the n instances in which a single variable is 1. Then
consider the ('2') instances in which two variables are 1,
and so on. (See Figure 2.)

Let c. be the target monomial and let ¢ be the monomial
consisting of the variables that are 1 in the incorrectly
predicted instance . We now prove that ¢ = ¢,. Clearly
any variable in ¢, must also be in ¢—if variable v is in
¢. then v must be 1 in any positive example. Suppose
that some irrelevant variable v is 1 in the incorrectly
predicted instance, yet it is not in c.. Consider the
positive instance z’ which is the same as z except that
v is 0. Clearly £’ must precede z in the query sequence
defined above. Since the learner reaches the instance z
it follows that =’ must be a negative instance, giving the
desired contradiction. [ ]

We now modify these ideas to handle the situation in
which some variables in the monomial may be negated.

Theorem 2 spc(monomials) = 2.

Proof: The algorithin used here is a simple modifica-
tion of the algorithm for learning monotone monomials.
Suppose that the learner knew the sign of each vari-
able. Then the learner can use the algorithm for learn-
ing monotone monomials where setting a variable to 0
(respectively 1) is interpreted as setting the variable so
that the corresponding literal is false (respectively true).

We then use a standard trick to learn the sign of each
variable at a cost of only one mistake [13]. For arbitrar-
ily chosen instances, predict that each one is negative
until a mistake is made. Let = be the positive instance
obtained on the first mistake. The sign of each relevant
variable is given by its assignment in z.

Finally, observe that the adversary can force the learner
to make two mistakes—intuitively, one to learn the sign
of the variables and one to determine which variables
are relevant. [ |

6.2 Monotone DNF Formulas

In this section we consider learning monotone DNF for-
mulas under self-directed learning. We obtain our algo-
rithm for learning monotone DNF formulas of m terms
by extending the algorithm of Theorem 1 to handle the
conjunction of m monotone monomials.

Theorem 3 spc(monotone DNF) < m where m is the
number of terms in the target DNF formula.

Proof Sketch: The algorithm used here is a modifi-
cation of that described in Theorem 1. The query se-
quence selected is like the one shown in Figure 2 except
that an instance z is predicted as positive if the mono-
mial corresponding to any incorrectly predicted instance
predicts that z is positive. Using the same technique as
in the proof of Theorem 1, one can show that the target
formula is just the disjunction of the monomials corre-
sponding to the incorrectly predicted instances. |

6.3 Axis-Parallel Rectangles in {0,1,---,n—1}¢

Finally, in this section we consider the concept class
BoXd of axis-parallel rectangles in {0,1,---,n— 1}
(This class has previously been studied by Maass and
Turdn [15] for other learning models.)

Theorem 4 spc(Boxd) = 2.

Proof: We begin by describing a self-directed learning
algorithm for Box? that makes only two mistakes. Se-
lect two opposing corners of the space {0,1,-.-,n—1}9.
Let L be the line through these two opposing corners.
Our query sequence finds each corner of the target box



Learn-boz-corner(corner pt)
While no mistake has occurred

from the corner point.

Query the corner point, predicting it is negative
Choose any unseen point of minimum Manhattan distance (L; norm distance)

Query this unseen point, predicting it is negative.

Figure 3: The algorithm for finding a corner of the box.

- I EX X XN
rOoseone
AR -E X XX ]

....................

Figure 4: The query sequence for learning a concept from Box2. The filled circles in the figure represents correctly
predicted negative instances. The unfilled circles represent the instances on the frontier. Finally, note that in the
last figure the querying stops when a mistake is made predicting that the corner of the box is a negative instance.

by approaching it with a hyperplane perpendicular to
L. That is, for each opposing corner query the following
set of instances, predicting that each is negative. (See
Figure 3.) So dovetailing is used to find each corner.
See Figure 4 for an example of the query sequence for
learning a box in two-dimensional space.

At the first mistake, a corner point of the box has been
found. Since the target box is approached with a hyper-
plane perpendicular to the axis between the two corner
points of the space, the first point of the box queried
must be the corner point. Then, the second corner is
found in the same manner.

Finally, we argue that the adversary can force the
learner to make at least two mistakes. Clearly the
learner cannot exactly determine the target concept un-
til two opposing corners of the target box have been
found. Furthermore, the learner can be forced to make
a mistake in finding each corner. [ ]

6.4 Multiples of integers

As one more example, consider a concept class C =
(Xn,Cn) where the self-directed learning complexity is
1 for each C,, but the VC-dimension dimension grows
monotonically with n. Let the instance space X,, be the

natural numbers less than or equal to n, and let the con-
cept class be all multiples of i for each i € N. This class
has VC-dimension of roughly Inn/Inlnn [12].° Never-
theless, we now show that spc(MULTIPLES) = 1. The
learner predicts the instance z (initially 1) is a negative
instances. If a mistake is made then the target is just all
multiplies of z. Otherwise, increment z and repeat the
above procedure. Clearly this procedure finds the tar-
get concept while making only a single mistake. Thus
we have the following.$

Theorem 5 The concept class of multiples (of natu-
ral numbers bounded by n) has a constant self-directed
learning complezity of 1.

5To see that the VC dimension grows with N, consider
for any d all products of d — 1 of the first d primes. This set
is shattered.

8Note that if we did not restrict the definition of self-
directed learning to finite instance spaces, we would have a
concept class with infinite VC-dimension and self-directed
learning complexity of 1. That choice of definition would
lead to other difficulties, however. See the discussion below
in Section 10.



7 Relation to Other On-line and Query
Learning Models

In this section we build on the results of Maass and
Turan [15] by showing that the model of self-directed
learning is more powerful than all of the on-line and
query learning models which they considered. This re-
sult is not so surprising, since the model of self-directed
learning uses a different system of charging for errors
than all other models. We first informally describe the
models which they studied. (See their paper for formal
definitions.)

LC - The model of learning with standard equiv-
alence queries which must come from the concept
class. (Or equivalently, the standard on-line learn-
ing model in which the adversary selects the in-
stances and the learner predicts according to some
concept in the concept class.)

LC-ARB — The model of learning from generalized
equivalence queries. (Or equivalently, the standard
on-line learning model in which the adversary se-
lects the instances.)

LC-PARTIAL — The model of partial equivalence
queries in which the learner can present a hypoth-
esis h : X — {0,1,+}, and is either told that all
specified instances are correct or is given an z € X
such that h(z) € {0,1} and z is misclassified by h.

MEMB — The model of learning from membership
queries.

Lc-MEMB — The model of learning from membership
queries and equivalence queries which must come
from the concept class.

LC-ARB-MEMB — The model of learning from mem-
bership queries and generalized equivalence queries.

Mass and Turan showed that the LC-PARTIAL learning
model is more powerful than all of the other learning
models. That is, for all concept classes the complex-
ity under LC-PARTIAL is strictly less than the complex-
ity under any of the other models. Furthermore, there
exists a concept class such that the complexity of LC-
PARTIAL is exponentially less than that of any other
model. We now show that the model of self-directed
learning is even more powerful than the model of learn-
ing with partial equivalence queries.

Theorem 6 For any concept class C, spc(C) < Lc-
PARTIAL(C). Furthermore there is a concept class C'
such that spc(C') < LC-PARTIAL(C').

Proof: Let LC-PARTIAL(C) = m, and let Algorithm A
be an algorithm using partial equivalence queries that

Simulate-partial-equivalence-query(h)
For each z € X for which h(z) € {0,1}
Make a prediction (x, h(z))
Until a mistake occurs

Figure 5: Algorithm to simulate a partial equivalence
query under the model of self-directed learning.

achieves this bound. We now use Algorithm A to create
a self-directed learning algorithm A’ which demonstrates
that spc(C) < m. For each partial equivalence query
made by Algorithm A, Algorithm A’ simulates as shown
in the algorithm in Figure 5.

If the answer to the partial equivalence query is “yes”
then no mistakes will be made by A’. However, if there
is a counterexample to the partial equivalence query,
then A’ will find one while only making a single mistake.
Thus, the number of mistakes made by A’ is at most the
number of partial equivalence queries made by A.

Finally, note that we showed that spc(Boxd) = 2,
whereas LC-PARTIAL(BOXS) = O(dlogn) [14]. Com-
bined with the results of Maass and Turan this proves
that the model of self-directed learning is strictly more
powerful than all of the learning models mentioned
above. ]

8 Relation to the Vapnik-Chervonenkis
Dimension

In this section we study the relationship between the
VC-dimension and the self-directed learning complex-
ity. We have already seen three concept classes for
which the VC-dimension can be arbitrarily larger than
the self-directed learning complexity. In particular,
we have seen that sDc(monotone monomials) = 1, yet
vep(monotone monomials) = n where n is the number
of variables, and sDC(B0X3) = 2, whereas vep(Boxd) =
2d for all large enough n, and SDC(MULTIPLES) = 1,
whereas VCD(MULTIPLES) grows logarithmically in n,
where n is the largest integer allowed. Observe that for
all concept classes considers so far, spc(C) < vep(C).
We now describe a concept class for which the opti-
mal mistake bound under self-directed learning is in fact
greater than the VC-dimension.

Theorem 7 There ezists a family of concept classes
C = (Xn,Cy) with spc(Cy) = 3 and vep(Cp) = 2.



Figure 6: The concept class of a 5-gon drawn geomet-
rically.

Proof Sketch: We begin by describing concept classes
induced by simple planar arrangements as defined in
Floyd’s thesis [5]. A simple planar arrangement G is
the dissection of the plane into cells by a finite set of
lines with the property that no two lines may be par-
allel and no three lines can intersect at a single point.
A simple planar arrangement can be seen as a concept
class C with vep(C) = 2. The m lines z1,...,24 In
the arrangement G correspond to the m instances, and
each cell in the arrangement corresponds to a concept
in C. The classification for an instance is obtained as
follows: each line z; defines two halfspaces in the plane
for which all cells on one side of the halfspace classify
z; as positive, and all cells on the other side classify x;
as negative. We now define the concept class C, of an
n-gon. For any odd n > 3, the concept of an n-gon is
defined by taking the linear arrangement obtained by
extending the line segments forming a regular n-gon.
Assume that the halfspaces are oriented so that all in-
stances are negative in the interior of the n-gon. See
Figures 6 and 7 for geometric and tabular representa-
tions of a 5-gon. Observe that the number of cells in the
linear arrangement is ®4(m) and thus C,, is a maximum
class of VC-dimension 2.

We now sketch the proof that for odd n > 35,
spc(n—gon) = 3. First we will describe a self-directed
learning algorithm that makes only three mistakes. The
learner predicts according to the concept corresponding
to the interior of the n-gon (all instances negative) until
the first mistake occurs. Let z; be the instance for which
the first mistake occurs. (So without loss of generality,
assume that a mistake is made on the first prediction.)

C1
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Cy
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C11
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€13
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C1s
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Figure 7: The tabular representation of a 5-gon. Con-
cept ¢; corresponds to region i in Figure 6.

Fori=1,...,(n—-1)/2
Predict (¢;,0)
If (¢; = 0) Then Predict (;,0)

Until a mistake occurs.

Figure 8: The second phase of the self-directed learning
algorithm for learning n-gons.The algorithm for finding
a corner of the box.

We now number the remaining lines according to the
order in which they cross ;. (For ease of exposition,
orient the planar arrangement so that z; lies on the z-
axis and the n-gon lies below the z-axis. Thus after the
first mistake, we can restrict our attention to above the
z-axis.) Let £1,...,£n_1)/2 be the first (n — 1)/2 lines
that cross z; moving right from —oo. Thus ¢, forms the
leftmost crossing. Likewise, let ry,...r,_1)/2 be the
first (n — 1)/2 lines that cross z; moving left from +oco.
The learner now performs the predictions according to
the algorithm given in Figure 8.

Let C' C C be the hypotheses that remain after this
second mistake has occurred. (If the above procedure
makes no mistakes then only a single concept remains.)
Without loss of generality, suppose this mistake oc-
curred when predicting (I;,0). Note that the hypotheses
in C' correspond to the regions in the portion R of the
arrangement between I;_; and /; that are above the z-
axis. (See Figure 9.) The key observation needed here



Figure 9: The shaded region corresponds to the por-
tion of the arrangement that remains after prediction
mistakes are made on (z;,0) and (44, 0).

is that there are no intersections in the interior of R.
There may be lines passing through R (in fact, the lines
passing through R are what define the regions corre-
sponding to the concepts in C’) but these lines do not
intersect in the interior of R. Thus by considering the
concepts in C' according to the order in which they oc-
cur when moving through R starting at the r-axis, the
learner can ensure that a single concept remains after
the next prediction mistake.

Now we must argue that spc(n—gon) > 3. We will show
how an adversary can force the learner to make at least
three mistakes. Assume without loss of generality that
the learner’s first prediction is for x;. Regardless of the
learner’s prediction, the adversary informs the learner
that it has made a mistake.

If the learn.r predicted z; negative, then let ¢; and r; be
as in the part of the proof showing that spc(n—gon) <
3. The adversary selects £; = 0 and r; = 0 for 0 <
Jj < "T‘l — 1 (i.e. the learner is billed for a mistake on
those lines if and only if it predicts positive). This allows
all four possible combinations of the regions defined by
£(n-1)/2 and r(_1)/2, SO whatever the learner predicts
for each of those two lines will be called a mistake by

the adversary.

If the learner predicted that z; was positive, then find
the line z; such that z, is ¢; with respect to z;. Now
the same argument as before holds, with z; serving the
place of z;, and the initial mistake being predicting ¢,
positive. |

While, in general, the VC-dimension and the self-
directed learning complexity are incomparable, there
are two special cases in which VC-dimension is a lower
bound for the self-directed learning complexity. We be-
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gin by considering the special case in which the VC-
dimension is 1.

Theorem 8 For any concept class C over a finite in-
stance space for which ven(C) = 1, spc(C) = 1.

Proof: Since vep(C') = 1, the concept class C' must
have at least two distinct concepts and thus it imme-
diately follows that spc(C) > 1. We now show that
spc(C) < 1. Any class C of VC-dimension 1 can be em-
bedded in a maximum class C’ such that vep(C’) =1 7.
Consider the 1-inclusion graph for C’ that consists of a
node for each concept in C’ and an edge (with label x)
between two nodes whose corresponding concepts differ
only in the classification of . For a maximum concept
class of VC-dimension 1 over a finite instance space, the
1-inclusion graph is a tree and every instance z appears
exactly once as a label on an edge {5, 22]. The learn-
ing algorithm will select the next instance to predict as
follows. Select an example z that is a label to an edge
adjacent to a leaf node. Let [ be the classification of
z by the concept ¢ associated with the leaf node. The
learner makes the prediction (z,1). If this prediction is
wrong then the target concept is ¢. Otherwise, ¢ and its
edge are removed from the tree and this process can be
repeated. ]

We now show that for any maximum class, the VC-
dimension is a lower bound for the self-directed learning
complexity. This result reveals an interesting connection
between the self-directed learning model and Floyd’s
work on space-bounded learning [5]. Before giving this
result, we briefly discuss data compression schemes. A
data compression scheme of size k for concept class C
consists of a compression function f and a reconstruc-
tion function g. The compression function f maps every
set of m > k labeled examples to a subset of at most k
labeled examples. The reconstruction function g maps
every possible subset of at most k labeled examples to
a hypothesis ¢ on X. (This hypothesis is not required
to be in C.) Finally, for a data compression scheme it
is required that for any set Sy, of labeled examples, the
hypothesis g(f(Sn)) must be consistent with Sy,,.

Theorem 9 For any marimum class C' over a finile
instance space, sDc(C) > ven(C).

Proof: Let d = vep(C). Floyd [5] shows that if C is
a maximum class of VC-dimension d on the set X, then
there is a data compression scheme of size d for C. For
any concept ¢ € C, let S be the set of labeled examples
obtained by applying the compression function to the
entire instance space labeled according to ¢. For ease of

" As discussed in Section 6.2 of Floyd’s thesis [5] this is
not true of all classes of VC-dimension greater than 1.



exposition, let X, denote the unlabeled sample obtained
by removing the labels from S;. Now, since C' is a maxi-
mum class, it follows from Theorem 3.6 of Floyd [5] that
for any labeling € of the 29 possible labelings of X, there
is a concept in C with the instances in X, labeled with
€ and all instances in X — X, labeled as in ¢. Thus any
learning algorithm can be forced to make d mistakes in
identifying this concept. ]

Note that if we extended the self-directed learning model
to hold for concept classes over inifinite instance spaces,
then by applying Theorem 3.7 of Floyd’s thesis we could
extend Theorem 9 to hold for any maximum concept
class C, including those for which the instance spaces
are infinite.

9 Relation to Mitchell’s Version Space
Algorithm

We have demonstrated that the number of mistakes
made under self-directed learning may be quite small. Is
there some characterization for the situations in which
the learner can perform so well? As a partial answer to
this question, we describe a relation between this work
and Mitchell’s version space algorithm {16].

We begin by describing Mitchell’s version space algo-
rithm. The version space with respect to a given sample
and concept class C is the set of all concepts ¢ € C that
are consistent with the sample.® The hope is that the
version space will shrink over time until it contains only
one concept, which must be the target concept.

The set G contains all the most general (inaximal) con-
cepts in the version space. The set S contains all the
most specific (minimal) concepts in the version space.
Hence S and G together delimit the “borders” of the
version space in the lattice of all concepts with respect to
the subset relation. The main idea of the version space
algorithm is as follows. Initially let G contain only the
concept containing all instances and let S contain only
the empty concept. Then, for each example, both G
and S are appropriately updated. See Haussler [8, 9],
and also Rivest and Sloan [17] for a discussion of con-
nections between Mitchell’s version space algorithm and
the distribution-free learning model.

We now describe a relation between the version space
algorithm and situations in which the learner can per-
form well under self-directed learning. Consider a con-

81n the version space literature, the concept class is usu-
ally called the rule space, and is thought of as being the
learner’s hypothesis space, although it is usually implicitly
assumed that the target concept does in fact come from the
rule space.
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cept class C, such that given any set of instances labeled
according to some concept in C, there is a unique most
specific concept (i.e. |S| = 1). We now define the notion
of a spanning set. A spanning set of a concept c € C
with respect to the class C is a set I C ¢ having the
property that ¢ is the unique most specific concept con-
sistent with the instances in I. (This generalizes the
notation of a spanning set of an intersection-closed class
given by Helmbold, Sloan, and Warmuth [11}.) Finally
we define I(C) for concept class C as follows:

1(C) = max{|L

I, is a minimal spanning set for ¢
with respect to C}.

To provide some intuition for our more general result,
we first consider the simple case for which I(C') = 1 and
the concept class C has a unique most specific concept
consistent with any sample. For example, the class of
monotone monomials® has the property that the set S
never contains more than one hypothesis [3]. Further-
more, for any monomial ¢, any minimal spanning set I,
is just the single instance for which all the variables in ¢
are 1 and the rest are 0. Thus for the class of monotone
monomials, I(C) = 1.

We now describe a self-directed learning algorithm that
makes a single mistake. The algorithm goes through all
the concepts from most general to most specific (i.e. goes
through the layers of the lattice ;from top to bottom),
and for each concept c it predicts that the instance I, is
negative. We claim that when the first mistake is made,
the target concept is the single concept in S. Clearly, if
the first mistake is made on the prediction (I, 0), then
the target is ¢ or a generalization of ¢. However, since
the concepts are considered from most general to most
specific, all concepts that are generalizations of ¢ must
already have been eliminated from the version space.
Thus the target concept must be ¢ which is the concept
in 8. Observe that this general technique when applied
to the class of monotone monomials yields exactly the
algorithm described in Theorem 1.

Figure 10 describes an algorithm that generalizes the
above algorithm for the case in which I(C) > 1. We
now prove the correctness of this algorithm. We first
argue that if a mistake occurs on all predictions made
in step (2b) then it follows that all instances in I, are
positive. Since ¢ € G it follows that ¢ is consistent with
all previously seen instances, and thus all instances in I,
that have previously been queried are positive. Further-
more, since a mistake occurs on all predictions made in
step (2b) the remaining instances in I, are also positive.

9Actually, this is true for the more general class of
pure conjunctive concepts over a finite set of tree-structured
attributes.



1. Let G be the set of most general concepts in C.
2. Foreach c€ G

- Make the prediction (z,0).

(a) Let I. be a minimal spanning set for ¢ with respect to C.
(b) For all z € I. such that z has not yet been queried

- If the prediction is correct remove from G all concepts for which z is positive and return to step 2.
(c) If all predictions made in step (2b) were incorrect then output S.
(d) Else update G (some new concepts may need to be added) and return to step 2.

Figure 10: Self-directed learning algorithm for case in which |S| = 1.

Now by the definition of a spanning set it follows that
the single most specific concept consistent with the pre-
viously seen examples must be the target or a gener-
alization of the target. Finally, since the concepts are
considered from most general to most specific, all con-
cepts that are generalizations of the target must have
already been eliminated and thus the algorithm is cor-
rect.

Without any further constraints on the selection of the
minimal spanning sets this algorithm could potentially
make |C|(I(C)—1)+1 mistakes since I(C)— 1 mistakes
could occur on the concepts that are generalizations of
the target and I(C) mistakes could be made on the tar-
get. (Observe that the learner makes this many mistakes
only if every concept has a spanning tree of size I(C).)
Let P be the set of previously seen positive instances
during the execution of the algorithm described in Fig-
ure 10. A sufficient property to obtain a good mistake
bound is that for each concept ¢ in G there exists a
minimal spanning set for ¢ that contains all instances in
P. Given that this additional condition can be met we
obtain the following result.

Theorem 10 If for concept class C there is always a
unique mosl specific concept consistent with any set of
ezamples (i.e. we always have |S| = 1), and for each
concept ¢ € G there ezists ¢ minimal spanning set for c
with respect lo C that contains all previously seen pos-
itive instances then there exists a self-directed learning
algorithm that makes at most I(C) mistakes.

Proof: The self-directed learning algorithm that
achieves the I(C) mistake bound is the algorithm shown
in Figure 10 where the spanning set selected in step (2a)
meets the conditions of the theorem. We have already
argued that the algorithm is correct. Thus, we need just
argue that it makes at most I(C) mistakes. Observe
that when the learner correctly predicts an instance the
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current concept being considered is eliminated from the
version space and the learner then considers some con-
cept ¢g € G. By the condition placed on the selection
of the minimal spanning sets if any mistakes were pre-
viously made then those instances must be in I.,. Thus
it can easily be shown by induction that this algorithm
makes at most I(C) mistakes. =

As an application observe that for axis-parallel rectan-
gles in {0,1,---,n—1}9 this theorem applies where for
all ¢ € C, I, contains the pair of positive instances from
two opposing corners. (Note that it is essential that the
same two opposing corners are used for each concept.)
This algorithm is like the algorithm described in Theo-
rem 4 except that it interleaves the steps described for
learning the two corners.

We conjecture that condition required in Theorem 10
holds for all intersection-closed concept classes. Com-
bined with the result from Helmbold, Sloan, and War-
muth [11] that I(C) < vep(C) would give the following.

Conjecture 11 For all intersection-closed concepl

classes spc(C) < vep(C).

We now extend Theorem 10 to concept classes that are
made of the disjunction of concepts from a concept class
for which it currently applies.

Theorem 12 Let C be a concept class for which The-
orem 10 applies. Then a concept of the form ¢; Vea V
--+Veg forey,...,ck € C can be learned with at most
k- I{C) mistakes under self-directed learning.

Proof Sketch: The algorithm used here is a modi-
fication of the algorithm given in Figure 10. Let the
learner’s hypothesis h initially be empty. The algorithm
used here proceeds just as the above algorithm except
that if for instance z, the hypothesis h classifies = as
positive then the learner (correctly) predicts that 2 is



positive. Finally, in step (2c), if a mistake is made on all
predictions then the concept in S is added to h and then
it returns to the start of the second step. Now using the
same technique as in the proof of Theorem 10, we can
show that the target formula is just the disjunction of
the concepts corresponding to the incorrectly predicted
instances. Thus at most I{(C') mistakes are made when
placing any new concept in h. Furthermore, at most &
concepts are put in h. Thus we get the desired mistake
bound. n

Applying the result of Bundy, Silver, and Plummer [3]
to this theoremn we get the result of Theorem 3.

Finally, all the results we have described relating the
number of mistakes made under a learner selected query
sequence to Mitchell’s version space algorithm can be
modified to give the dual results for when |G| = 1.

10 Alternate definitions and variations
on the model

Before concluding, we would like to discuss briefly some
of the choices we made in defining our model, and some
variations that we believe are worthy of further study.

10.1 Extension to infinite instance spaces

By modifying the definition of query sequence, one
could, of course, define the self-directed learning com-
plexity for any concept class over an arbitrary instance
space. We had several reasons for not doing so. First
of all, this seems contrary to the spirit of the model.
When first introducing this model, Goldman, Rivest,
and Schapire [6] applied it to a concept class with
a polynomial-sized instance space. Furthermore, the
learner was expected to eventually query each instance,
so there was no concern about the number of cor-
rectly predicted queries. (Although it was not explicitly
stated, it would be natural to allow the learner to stop
the learning session once the learner knows the classifi-
cation of all instances that have not yet been queried.)
Our goal in this paper has been to apply this learning
model to the more usual case of concept classes in which
the instance space is super-polynomial. This may be a
stretch, since the learner has to have some interaction
with all of the instances, but this question still seems
interesting if we are at least limited to a finite number
of instances.

It is also the case that we would get odd results from
allowing infinite instance spaces. Were we to go all the
way and allow uncountable instance spaces, then there
would be many geometry-based instance spaces with in-
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finite self-directed learning complexity. For example, let
X be the interval [0, 1] and let C' be the class of all closed
initial segments, i.e. C = {[0,7]: 0 <»r < 1}. 1t is easily
seen that for this class, sDc(C) = oo since there is no
way to make the queries “in the right order” to avoid
making infinitely many mistakes in the worst case.

While at first it may appear that restricting X to be
countable would correct this difficulty, observe that even
if we let X be the rationals in [0, 1], the self-directed
learning complexity is still infinite.!?

10.2 Restricting the learner’s queries

Given that the learner is restricted to use polynomial
time in selecting the next query for the query sequence,
is it reasonable to allow the learner to make a super-
polynomial number of correctly predicted queries? This
questions suggests an interesting variation of the self-
directed learning model that we do not explore here.
Namely, how does the self-directed learning complexity
change if we restrict the learner to use only polynomial
time and make only a polynomial number of queries?
In this variation of the model, the learning complex-
ity would still be the number of incorrectly predicted
queries, but learning algorithms must be designed to
limit the total number of queries to be polynomial.

10.3 A subset based model

Another interesting variation on the basic model is to al-
low an all-powerful adversary to select some finite subset
S of X. Then the learner must choose queries from the
subset S, on-line, in such a manner that all instances in
S are eventually queried (or at least enough are queried
so the learner knows the correct classification of all the
instances in S). Here too, the learner will be charged
only for incorrectly predicted queries. The learning com-
plexity would then be the worst-case taken over all tar-
get concepts and all finite subsets S of X. The key
differences here are that the learner cannot make any
queries on instances not in S, and the learner need not
obtain exact identification but should only minimize the
number of mistakes on the given subset of instances.
Observe that under this variation of the model, the VC-
dimension of the concept class is now a lower bound for
the learning complexity since the adversary can choose
S to be some shattered set. As we have seen, such
behavior does not occur in the original model of self-
directed learning—there are concept classes for which
the self-directed learning complexity is much less than

1%0ne might try to limit self-directed learning to countably
infinite instance spaces where the “natural” order on the
instance space is not dense.



the VC dimension. While this is an interesting variation
to study, restricting the learner to only query instances
in S greatly reduces the learner’s power by taking away a
key feature of both the self-directed learning model and
membership query model—the learner no longer has the
capability of learning the classification of some “impor-
tant” instance. Nevertheless, this is an interesting vari-
ation to study and fits in well with the allergist example
in the situation in which the allergist cannot test some
patients for some allergens.

11 Conclusions and Open Problems

We have demonstrated that the model of self-directed
learning is quite powerful. In particular, we have shown
the the self-directed learning complexity is less than the
learning complexities of most other commonly studied
models. Given that the learner is only charged for in-
correctly predicted queries, the “power” of this model
is really no surprise. However, as we have shown for
several well-studied concept classes a surprisingly small
number of mistakes can be made under self-directed
learning. While the complexity of self-directed learn-
ing can be arbitrarily smaller than the VC-dimension,
in general, the VC-dimension is not an upper bound
for the self-directed learning complexity. Namely, for
the family of concept classes of n-gons for odd n > 5
we have shown that vep(n—gon) = 2 whereas the
spc(n—gon) = 3. In contrast to that example, we
showed that all concept classes of VC-dimension 1 over
finite instance spaces have self-directed learning com-
plexity 1. Also, for any maximum concept class, we
showed that the VC-dimension gives a lower bound for
the self-directed learning complexity. Finally, we ex-
plored a relationship between Mitchell’s version space
algorithm and the existence of self-directed learning al-
gorithms that make few mistakes.

There are many interesting directions for future re-
search. In Section 10 we described two variations of
the self-directed learning model that raise interesting
questions for future research. It would be interesting
to understand how these variations of the self-directed
learning model relate to the model studied here and the
standard on-line and query learning models.

Another very intriguing open problem is to either prove
Conjecture 11 or give a counterexample to it. Along
these lines, we are very interested in finding an answer
to the following question: Is there a concept class C
over some finite set!! for which spc(C) = w(vep(C)),
or can one prove that for all C, spc(C) < « - vep(C)

M'We are interested in finite versus countable instance
spaces for the reasons discussed in Section 10.1.
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for some constant a? Or even better, can it be shown
that spc(C) < vep(C) + B for some constant 87 (As
far as we know this may hold for § = 1.)

We now describe a nice combinatorial characterization
of this open problem, as observed by David Haussler [7].
Littlestone [13] defined a mistake tree for target class C
over an instance space X as a decision tree in which
each node is a nonempty subset of C and each internal
node is labeled with a point of X, and that satisfies the
following:

1. The root of the tree is C.

2. Given any internal node C’ labeled with z, the left
child of C’, if present, is the subset of C’ for which
z is 0 and the right child, if present, is the subset
of C' for which z is 1.

Ehrenfeucht and Haussler [4] gave the following defini-
tion of the rank of a decision tree. The rank of a decision
tree @, denoted r(Q) is defined as follows:

1. If @ contains only one node, then r(Q) = 0.

2. Else if rg is the rank of the left subtree of Q and »;
is the rank of the right subtree of Q, then

M®={ if 7o # 1y

otherwise
Littlestone [13] showed that for any concept class C' the
worst-case mistake bound in the standard on-line learn-
ing model is equal to the largest integer k such that
there is a mistake tree for C such that every leaf has
depth at least k. Observe that the rank of a mistake
tree corresponds to the minimum depth of a leaf. Thus,
Littlestone’s result can be restated as follows:

Mu(C) = max {{2%{ r(t)}

max(rg, r1)
o+ 1

where M4(C) denotes the optimal-mistake bound for
target class C (in the standard on-line learning model)
and T; denotes the set of mistake tress for target con-
cept c¢. As part of the proof of this result, Littlestone
introduces an algorithm he calls the standard optimal
algorithm. Observe that every target concept and in-
stance sequence define a mistake tree for C. Littlestone
shows that by selecting a mistake tree with rank r, the
adversary can force the learner to make r mistakes and
furthermore that the standard optimal algorithm will
make at most » mistakes. Recall that the standard on-
line learning model and the self-directed learning model
are distinguished by whether the adversary or learner
selects the order in which the instances are presented.
Thus, Littlestone’s proof can be easily modified to show:

spe(C) = max {{rel%‘x: r(t)} .



Thus the only difference is that now the learner is
selecting the query sequence and thus can select one
which generates a mistake tree of minimum rank. Thus
we ask: How does the VC-dimension of C' relate to
max.ec {minimum rank of a mistake tree for C}?
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