From: AAAI Technical Report SS-94-06. Compilation copyright © 1994, AAAI (www.aaai.org). All rights reserved.

Incentive to Work: Deriving Cooperation Among
Self-Interested Agents (Preliminary Report)

Eithan Ephrati
Computer Science Dpt.
University of Pittsburgh

tantush@cs.pitt.edu

Abstract

In this paper we analyse a particular model of
control among intelligent agents, that of non-
absolute conirol. Non-absolute control in-
volves a “supervisor”.agent that issues orders
to a group of “subordinate” agents. An ex-
ample might be an Internet user who issues a
query to a group of software agents on remote
hosts, or a human agent on Earth directing
the activities of Mars-based semi-autonomous
vehicles. The members of the subordinate
group are assumed to be self-motivated, and
individually rational (i.e., they are basically
willing to carry out the supervisor’s request
if properly compensated). This assumption
gives rise to the need for a reward policy that
would motivate each agent to contribute to
the group activity. In this paper we intro-
duce such a policy under certain simplifying
assumptions.

1 Introduction

Research on planning in Distributed Artificial Intelli-
gence (DAI) has focused on two major paradigms: plan-
ning for multiple agents (where plans for multiple agents
are devised, usually implying a central agent that spec-
ifies actions of others), and distributed problem solving

_ (where multiple agents at various hierarchical levels of
authority plan in a distributed fashion). We are inter-
ested in that important family of scenarios in which the
control method combines both aspects. In these scenar-
ios, there are supervising and supervised agents, where
the control of a supervising agent over the supervised
ones is non-absolute (see, for example, {2]).

Within the field of DAI there is also a distinction be-
tween two research agendas: Distribuied Problem Solving
(DPS) and Mulii-Agent Systems (MAS). In the first area,
agents are assumed to be created by the same designer
(or group of designers), and thus work together to solve
common goals. In economic terms, the agents have a
common preference profile that yields an identical utility
function. On the other hand, researchers in Multi-Agent
Systems consider agents that may act selfishly towards
the achievement of their private goals. Thus each agent

Motty Perry
Center for Rationality
The Hebrew University
motty@coma.huji.ac.il

83

Jeffrey S. Rosenschein

Computer Science Dpt.

The Hebrew University
Jeff@cs.huji.ac.il

may have its private profile of preferences, and a distinct
individual utility function. The assumption is made that
agents will help one another only when it is in their own
best interests (perhaps broadly defined).

This paper addresses the issue of plan execution
within Multi-Agent Systems, under the model of non-
absolute control.

As an example, imagine that you are an Internet user
with a variety of tasks to carry out around the world,
collecting information, copying files, and printing doc-
uments. You have incomplete information about the
world and limited time, so you hand your problems over
to software agents whose task it is to do what is neces-
sary to achieve your goals. For example, you may specify
the high-level goal of retrieving the latest version of some
public-domain anti-virus software. With the goal handed
over to a group of agents, a plan is developed to locate
the desired software, ensure that it is readable and in a
public directory (this may involve receiving permission
from a local host to move files between directories and
alter their protection), copy the file over to your local
host (using the appropriate protocol and format), then
notify you that the file is available. If the software was
not public domain, a suitable payment may be arranged
automatically by one software agent to another. Simi-
lar scenarios might involve collecting specific information
from remote news servers, or locating a given person’s
email and regular mail addresses [3].

The key point here is that a group of software agents,
acting in concert, can carry out the overall plan that
is developed. Moreover, it is possible that these agents
are administered by separate organizations on separate
machines all over the world. They are truly heteroge-
neous systems. The agent at the University of Michigan
is willing to perform a lengthy search for you, but such
work consumes resources. It seems reasonable that this
software agent’s institution should be compensated for
all this effort—the agent will do whatever is necessary,
but it expects to be properly motivated.! It may be the
case that, while you know which agents were involved in

! Currently, there are primitive software agents that carry
out Internet searches or tasks, such as the Gopher programs
and Knowbots [7]. Of course, such work is today carried out
for free. However, information is often simply unavailable
over the Internet because there is no way to compensate its
owners—currently, the information is either free or inacces-

satisfying your goal, you are unable to verify the exact
amount of effort that each remote agent expended. Your
system of compensation must motivate all the agents to
do their share of the work, without detailed information
about how much to pay each one.

As another example, imagine that you have sent a
group of autonomous robots to build a space station on
the surface of Mars. Though your communication with
the group is limited, you are able, from time to time,
to send them goals, such as “Build a tower at Region
A.” Knowing their (possibly differing) capabilities you
may reason what their optimal multi-agent plan should
be. Since the agents are self-motivated (possibly manu-
factured by different designers) you also give them some
incentive to work. The simplest way to encourage each
agent to work would be to pay it (or its designer) the
true cost of any operation that it performs plus some
extra amount.?

However, since communication is limited and your
time is expensive, you would not like to treat each agent
in the group individually. Instead, you would rather
treat the group of agents as a whole and upon comple-
tion of the project reward all of its members identically.
Unfortunately, such an attitude may lead to undesirable
outcomes. Since each agent is self-motivated, it may be
tempted to avoid the group’s activity altogether and let
others do the work for which it will be rewarded anyway.
Thus, the project might not be executed at all. In the
literature of Economics, this classic problem is known as
the free rider problem [8].

In this paper, using concepts from Game Theory, we
introduce a solution to this problem under certain sim-
plifying assumptions.

Assumptions, similar to ours, about agents’ self-
ish behavior has motivated the development of other
economics-based approaches to deriving cooperation
among individual agents. For example, Kraus [5] has
used a reward method based on a monetary system to
convince agents to accept contracts that were suggested
by other agents. Wellman [9] has used an iterative bid-
ding mechanism to engender efficient cooperation based
on an economic market equilibrium,

In economics, the subfield of principal-agent theory
addresses a problem somewhat similar to the one in
which we are interested. There, the supervisor (prin-
cipal) tries to find the right incentives (payment) that
will make the agent report true data about the domain
in which it operates and, thus, in effect, to inform the
principal how to make him more productive [4].

2 The Model

Our scenario involves a supervisor and group, 4, of n
subordinate agents. The subordinate agents are self-
interested utility maximisers. The supervisor is not able

gible. It is to be expected that more sophisticated means of
employing agents will develop in the future.

iBy “payment” we do not necessarily mean money. A
more suitable payment might be resources such as an energy
supply or time slots for individual activity or access to your
own database.

84

to control, or interested in controlling, each member of
the group separately. We therefore would like a control
method that allows the supervisor to consider the group
of agents to be anonymous and symmetric.

Since the agents are not benevolent, given a goal (G)
they must be motivated to work. A straightforward pol-
icy would be to pay the agents some “extra” amount for
any work they carry out. Unfortunately, if the agents
are to be paid symmetrically this might not work. Each
agent might be tempted to “free ride” the others and
be paid for the others’ work. Under such cu'cumstances,
the goal might not be achieved at all.

We are looking for a reward policy that will induce
cooperation among the agents, while answering the fol-
lowing (hierarchically ordered) criteria:

(a) Achievement of the goal should be guaranteed.

(b) Agents should be rewarded with the minimal pos-
sible amount of payment.

(c) The goal should be achieved within the minimal
possible time.

(d) The work division among the agents should be
[134 »
'just.
The reward policy that we consider in this paper involves
two parameters:

(i) The declared final payment, V, which is assumed to
be equally divided among the agents if, and when,
the goal is accomplished.

(ii) A discrete discount function, §: P x T = IR that
reduces the final prize as a function of the devel-
opment of the optimal plan and the elapsed time
(6(T) will determine the discrete discount for the
elapsed execution time T3).

3 An Example

Consider a simple scenario in the slotted blocks
world. There are four slots (a,b,c,d), five blocks
(1,2,3,4,5), and the world is described by the
relations: On(Obj;, Obj;)—O0bj, is stacked onto
Obja; Clear(Obj)—there is no object on Obj; and
At(Obj, Slot)—Obj is located at Slot. The function

loc(Obj) returns the location (slot) of Obj.

1).—_—.op‘@)-=ogl=%> ,-—op’%:- G
2] [2] [[
_ogs g_py Od_BpEg O_BE
a b ¢ d a b ¢ d a b ¢ d a b ¢ d

Figure 1: A Blocks World Example of a Serial Plan

There are three agents operating in the world. The
start state and the goal state are shown, respectively,
at the far left and the far right of Figure 1. The goal’s
worth is 4.

There is only one available operator:

Move(Objy, Objz)—place Objy onto Objz. This oper-
ator can be characterized by the following STRIPS-like
lists:

[Pre : Clear(Objy), Clear(Objz), On(Obj1, Objs)],

[Del: On(Obj,, Objz), Clear(Objsz), At(Obj1,loc(0Obj1))]
[A_dd: On(Objl, Objz), At(Objl,loc(Objz)))]
[Cost: 1]

Given the goal G, we would like to find a policy that
causes the agents to follow the multi-agent optimal plan
that achieves that goal.

8.1 Game Theoretic Concepts of Solution

The general kind of interaction that we consider here
may be viewed as a game. Each agent i chooses a strat-
egy 8; (within a computer, of course, the “strategy” is
simply the program controlling the computer’s choices).
The strategy tells the agent which action (declaration of
preferences, in our case) to choose at each instant of the
interaction. The combination of strategies played by the
entire group (S = (s;,5_;)) determines the outcome of
the interaction, and in particular determines the result-
ing payoff for each agent (7).

Game theory has addressed many interactions simi-
lar to the one considered here. Such interactions have
been analyzed so as to determine what an agent’s cho-
sen strategies would be, given the rules of the interac-
tion. Our aim is complementary; it is to design rules that
would induce the agents to adopt some specific strategy
that we consider to be desirable.

All possible developments of the interaction may be
represented by a game tree (as an example consider Fig-
ure 2). Each node represents a decision choice of some
player; each different choice is represented by a different
branch. Given the history of the interaction, an agent
might not be able to distinguish, among a set of possible
nodes, which one is the actual node. This set is called
the information set at that particular point. Each path
on the tree describes one possible interaction. The end
nodes of the tree describe each agent’s resulting payoff
from that path.

To be motivated to adopt a particular strategy, a ra-
tional selfish agent should be convinced that its chosen
strategy is superior in some sense to its other, alterna-
tive, strategies. The most common solution in game the-
ory derives cooperation as the best response to the other
agents’ cooperative behavior:

Definition 1 The straiegy combination s* is a Nash
equilibrium if no agent has an incentive to deviate from
his sirategy given that the other agenis do not deviate.
Formally Vi, (s, 8%.) > mi(sl, o), V.

This concept of solution was used (within the DAI lit-
erature) in [9, 10]. The drawback of the Nash equilibrium
is that in general there are several equilibrium points for
the same game, and the desirability of a strategy is con-
sidered only from a player’s viewpoint at the start of the
game (not taking into consideration all possible paths
of the game). Thus, it might be difficult to have the
group of agents converge to a specific equilibrium® and

30n the other hand, a single equilibrium point among
equivalent ones can be specified and agreed upon ahead of
time by agent designers, who might be indifferent among the
different points or even all prefer one equilibrium over the
others.

the equilibrium point may be sensitive to the dynamics

" of the interaction.

85

A much stronger concept of solution (the second one
in the hierarchy of solutions) derives the desired strategy
(cooperation in our case) to be the unique equilibrium
along any development (path) of the interaction.

Definition 2 A subgame is ¢ game consisting of an in-
formation set which is a singleton in every player’s infor-
mation partition, that node’s successors, and the payoffs
at the associated end nodes, such that all information
sets that include any of that node’s successors do not
tnclude a node which is not one of its successor nodes.

A strategy combination is a subgame perfect Nash
equilibrium if (a) it is a Nask equilibrium for the en-
tire game; and (b) its relevant action rules are a Nash
equilibrium for any subgame.

In this paper we focus on a policy that induces a so-
lution which is in subgame perfect equilibrium (for a
similar approach, see (1, 6]).

3.2 Assumptions and Definitions

The goal G is a set of predicates. V is the value of
the final prize the group of agents will be awarded
as a whole upon completion of G.

There is a (random) order (a1,a2,...,as) over the
n agents. Following this random order, each agent
is supposed to contribute to the plan in its turn.

P(s0, G) is the optimal multi-agent plan that trans-
forms the initial state sp into a state that satisfies
the goal G (we will denote this plan by P). The
length of this plan will be denoted by |P|. The set
of operators that construct it is denoted by [op:,
opz, ...,0p|p|]-

The time duration of each operator op; is denoted
by t;. With respect to the construction of the plan
P, we denote the minimal accumulated completion
time of each operator op; in P by T;.

There exists a cost function (c: OP x A = R) over
the domain’s operators. With respect to this func-
tion we define the cost of a set of operators to be
the sum of the costs of its elements. Thus, the
cost of a plan, c(P), equals > ;- , ci(opx) (where i
denotes the agent that performs opg).

é denotes the maximal individual contribution
needed by any agent (¢ = max; 3, p ci(op;))-

We assume that é, as well as the duration of each
operator that makes up the plan and the order of
execution are known to the supervisor (these as--
sumptions are relaxed in Section 6).

4 Serial Plans

We first examine multi-agent plans that are constructed
by a series of consecutive operators. We call such plans
sirictly serial:

Definition 8 A multi-agent plan is said to be strictly
serial if it involves the invocation of at most one operator
at the same time.

The optimal plan that achieves the goal presented in
Figure 1 is strictly serial. Note that in a strictly serial
plan each operator may be indexed according to its ap-
pearance in the sequence that makes up the plan. Thus,
the plan cannot be completed at any time prior to 3¢ ¢;.

Theorem 1 The optimal reward policy for a serial plan
isV=nx(é+e)+|P|xeand §(T;) =e¢.

The first element of the reward is the actnal payment
to be given to the group. Note that since all agents
are treated symmetrically, all should be rewarded with
the same value that should suffice to motivate the one
that contributes the most (&) plus a profit of e. The
second element will never actually be spent; its role is to
motivate the agents to finish the plan execution within
the shortest time.

The proof shows that given this policy, there is only
one sub-game perfect equilibrium in which each agent
performs one operator in his turn along the equilibrium
path. Figure 2 shows the game tree that resulis from
invoking the proposed policy on the example given in
Figure 1. The equilibrium path is the right branch of
the tree (denoted by a thicker line). For simplicity, we
assume that if the plan will not be completed at T3, no
payment will be transferred to the group at all. The
maximal possible payoffs as a result of each path are
shown at the leaves.

T

000 (00) ©-10) O (100 (eee) Ty

¢1.0:) (1,-10)

Figure 2: The Game Tree of the Blocks World Example ‘

At the beginning of the process (Tp) agent a; may
choose to either perform the first operator of the plan
(op1) or any other operation instead (including null).
Choosing not to contribute would present a; with a
choice that would yield a payoff of at most 0 (if in its
turn az would not do anything). Following this path,
a3 would also prefer the null operator, and no part of
the plan will be performed. On the other hand,.if a;
would choose to perform op;, a; would be faced with a
choice that could yield him a payoff of ¢, counting on a3
to prefer ¢ over any payoff < 0. Thus, a; can be assured
that performing the first operator would guarantee him
a payoff of . The same reasoning process holds for the
other members of the group, which establishes the equi-
librium.

Proof. The formal proof is by (backward) induction on
k, the number of steps required to complete the plan:

86

1. k = 1; then if the |P| — 1 steps of the equilibrium
path were followed, a,, (actually an mod ») may ei-
ther perform op,, and complete the plan, with a
payoff of ¢, or perform any other operation (includ-
ing null) with a payoff < 0. Clearly, the first alter-
native strictly dominates the latter.

2. We will show that the claim holds for k = |P|, as-
suming that it holds for any k¥ < |P|~ 1. k =m
implies that it is a;’s turn to decide whether to
perform op; or perform null. The second alterna-
tive may guarantee a payoff of 0. However, due
to the induction assumption the former alternative
guarantees €. Therefore a; would strictly prefer to
contribute op;. o

Of course strictly serial plans are of less interest in
multi-agent environments. The power of multi-agent
planning is exploited when sets of operators in a plan
may be invoked in parallel. The next section is con-
cerned with parallel plans.

5 Pa_rallel Plans

An example of a parallel plan is given in Figure 3.
The goal state is shown at the far right. The opti-
mal plan that accomplishes this goal involves a; per-
forming (M(1,b,a)) and a; simultaneously performing
(M(4,b,d)). When parallel plans are considered there is
a need for a somewhat more sophisticated reward policy.

s |[F1S]

G
0

- |[=]
o |[=]

Figure 3: A Parallel Plan

Definition 4 A mulii-agent plan, P, is said to be a par-
allel plan if two or more of the operators that make it up
may be carried out simultaneously. We divide the set of

" operators that make up a parallel plan into conseculive

subsets of operators O Py such that each operator in OP;
should be invoked simultaneously in the optimal plan.

The agents participating in each OPy are indezed ac-
cording to their initial order by {ax,,ax,,...,ax,}, where
p=|0OF|.

Note that it follows from the definition that a parallel
plan may be completed in), maxp,cop, ti- Also note
that a strictly serial plan is a special case of a parallel
plan where each OP; contains only one member.

Figure 4 shows why the previous policy may not be
effective. Since a; has to act in parallel with a,, it
cannot distinguish between the two alternative nodes of
the game tree (ay’s information set includes these two
nodes). Therefore, a; may not count on a; to perform
opz, and thus the equilibrium path becomes the null
path!

A straightforward solution would be to let the agents
complete the plan as if it were a strictly serial plan, and
employ the previous reward policy. But then, of course,
the total elapsed time would be longer than it actually

Top

T

T,

2

(e

000 (04 (010 O (1009 (191) (110

Figure 4: The Game Tree of a Parallel Plan with a Serial
Policy

should be, and the advantage of the multi-agent envi-
ronment will be lost. Fortunately, a refinement of the
“serial policy” overcomes this problem.

Theorem 2 The opiimal reward policy for a parallel
planis V=nx (é+¢€)+ (3, |0P|) x € and §(T;) = ¢
where T; is defined as in the serial case.

The basic idea of this policy is that in each informa-
tion set each agent can be assured that even though his
contribution may be made simultaneously, he may wait
for the preceding agents (according to the order over the
agents) to contribute their share, only then perform his
share, and still end up with a profit. However, knowing
that this fact holds for all other agents in the information
set, each agent is motivated to act as soon as possible
(i.e., simultaneously) in order to increase its payoff.

Proof.

We prove that given this policy, there is only one sub-
game perfect equilibrium in which each agent performs
one operator in his turn along the equilibrium path. The
proof is by induction on k, the number of simultaneous
steps required to complete the plan:

1. k = 1. There are |OP;| > 1 operators to be carried
out simultancously, at time 77, in order to com-
plete the plan. Let A; denote the ordered group of
agents (a1,,a1,,...,a1,,) that is assigned the op-
erators in OP;. We follow the recursive reasoning
process of each a;; € A; (the agents that should
perform the operators in OP; according to their
sequential order) and show why each a,,’s best re-
sponse is to simultaneously perform at time 77 the
operator it is assigned: ‘

(a) Consider ay,. If it suspects that any other
agents in its information set, a;; (such that
j > 1), will not perform the operator that
it has been assigned (op,;), then by not per-
forming any operation it may save itself the
cost of that operator. However, following the
equilibrium path of the strictly serial case, by
performing op;,, it ensures itself a payoff of
at least ¢ (since in the worst case each agent
in A; will wait for its preceding agent to com-
plete his contribution and only then perform
its own contribution). Thus, a;,’s best re-
sponse is to perform op;, at T})

87

(b) Now consider a;,. Following the above rea-
soning it may count on a;, to perform op,, at
T?. Therefore ay, can choose either to wait
for a;, to complete its contribution and then
perform op;,, and thus ensure itself a payoff
of at least ¢, or perform op;, simultaneously
and increase its payoff by W%Tf‘ Obviously,
the second alternative is superior.

To reach the bottom of the recursion, consider
ay,.; Following the same reasoning as the
other agents, it may assume that all the other
agents in its information set will perform their
contribution at time TP. Therefore it is faced
with either waiting for the other agents in
Ay to simultaneously contribute their share
and only then contribute op, _, with a pay-
off of at least € + £ x (|OPy| — 2), or per-
form simultaneously with a payoff of at least
€+ £ x (|JOPy| — 1). Again, the simultaneous
move is superior.

Thus the entire group would prefer to con-
tribute simultaneously.

(<)

2. Assume that the claim holds for any j < k and con-

sider the k’th simultaneous move. Following the
same line of reasoning as in the last simultaneous
act, each agent in A; may reason that by perform-
ing his share in O P, simultaneously, it may increase
its payoft by I—(ﬁ"u_l'
Thus at each simultaneous step all members of the
information set will follow the equilibrium path.
The plan will be completed during the shortest
possible time and each agent will gain a payoff of
e+ 2 2%(|OP| -1). o

(10 (e2e2)

08D @A) G40 B4 64D @D (14D (A €19 6
Figure 5: The Game Tree of a Parallel Plan

Figure 5 demonstrates how such a policy would work
with the example. Consider a3 which is trying to figure
out whether to perform op; at Tp. Assuming that a; will
carry out op; at Tp, his best strategy would be to carry
out op; at Ty, deriving a final payoff of 2 x €. However,
not being sure about a3’s behavior a; may also wait to
see whether a; did contribute op;, and only then follow
his best strategy (which is performing op; at T, with ¢
payoff).

This line of a;’s reasoning can be followed by a;.
Therefore, his best strategy would be to carry out op; -
at Tp, ensuring itself a payoff > e.

In turn, a; can follow this last line of reasoning of
ay, and conclude that a; will carry out op; at Tp, and
therefore a; would be better off carrying out op, simul-
taneously. Thus, the plan will be executed within the
shortest possible time.

6 Relaxation of Assumptions

In this section we address some of the assumptions men-
tioned above.

Pre-Existing Order Among the Agents: Our anal-
ysis assumes a certain a priors order over the agents in
the group. We further assumed that execution is carried
out in correspondence to that order. However if agents
have differing capabilities and cost functions over the
domain’s operators, such a restriction may prevent the
construction of the optimal plan.

This assumption may be replaced with the assump-
tion that all agents may calculate what the optimal plan
is and, thus, what the corresponding order should be. Al-
ternatively, this order may be determined by the super-
visor, particularly if there exists more than one optimal
plan. Once the order is determined, their corresponding
subgame perfect strategy would still remain the same.

Note that there is a tradeoff to be made here by the
designer. Following this payment policy, the actual plan
may be improved; however the value of & (which is to be
multiplied by the number of agents in the group so as to
determine the final payment) may rise significantly.

The Maximal Individual Contribution of Any
Agent: Another assumption that was made was that
the supervisor knows the exact & In some domains,
such an assumption may be reasonable. For example,
in the domain of communication networks, it might be
plausible to restrict software agents to a certain action
cost (i.e., no possible action will ever cost an agent, or its
institution, more than some z amount). In such a case
the maximal individual contribution may be known.
Moreover, since the reward policy that was presented
in Theorem 2 would still work for any & > ¢, it is suf-
ficient to determine the upper bound for any individual
agent (but the associated payment should be issued ac-

cordingly).

The Exact Time Steps of the Optimal Multi-
Agent Plan: We have also assumed that the discount
function relies on the actual steps of the executed plan.
In many scenarios the supervisor might not be interested
in or able to reason about the actual time-steps of the
plan.

Fortunately, any discount function that would reduce
the payoff of the agents due to delay in completion of
the plan is sufficient. More precisely, let T* be the up-
per time bound desired by the supervisor for completion
of the plan, and 7" be the serial time needed for the com-
pletion of the plan. Then any (continuous or discrete)
discount function that would reduce the final prize start-
ing at time T, at a rate greater than the development
of the plan, is sufficient (i.e., a discount that would cap-
ture the shortest time-interval which is needed for the

88

execution of any operator). An example of such a dis-
count function might be the following continuous func-
tion (that will be invoked only when the execution time
reaches T™): ,1—?,'%,% x ¢ such that ¢ corresponds to the
actual (real world) continuous time difference between
T* and the actual completion of the plan and c is the
motivating payoff to be paid upon completion of the plan
at T*. We denote any such function by §-discount.

The following theorem summarizes these relaxed as-
sumptions. Note that although the completion of the
project within the optimal time is guaranteed, the su-
pervisor would suffer a loss of utility due to his lack of
knowledge:

Theorem 3 The optimal reward policy for a parallel
plan presented in Theorem 2 would yield the completion
of the plan within the shortest time for any &* > & (where

-& refers to the mazimal individual coniribution presented

in Theorem 2), any other 5-discount policy, and any al-
ternative common knowledge ordering over the group.

Proof,
The proof is by a straightforward modification of The-
orem 2. o

7 Conclusions

We have introduced a method to derive cooperation
among self-motivated agents. Through the use of a re-
ward policy, agents find it to be in their own best inter-
ests to cooperate with the other members of the group.
The reward policy can be used both when the multi-
agent plans are strictly serial, and when they are parallel
plans. The resulting cooperation is efficient.

Use of these kinds of reward policies will become in-
creasingly important as remote agents, independently
designed and maintained by various institutions, will
need to work together to carry out distributed tasks. It
will be necessary to motivate these heterogeneous agents
to work together using appropriate incentives.

Acknowledgments

This work has been partially supported by the Air Force Of-
fice of Scientific Research (Contract F49620-92-J-0422), by
the Rome Laboratory (RL) of the Air Force Material Com-
mand- and the Defense Advanced Research Projects Agency
(Contract ¥30602-93-C-0038), and by an NSF Young Inves-
tigator’s Award (IRI-9258392) to Prof. Martha Pollack. And
by the Leibniz Center for Research in Computer Science, and
by the Israeli Ministry of Science and Technology (Grant 032-
8284).

References

[1] Anat R. Adami and Motty Perry. Joint project
without commitment. Review of Fconomic Studies,
(58):259-276, 1991.

[2] E. Ephrati and J. S. Rosenschein. Planning
to please: Following another agent’s intended

plan. Journal of Group Decision and Negotiation,
2(3):219-235, 1993.

[3] O. Etsioni, N. Lesh, and R. Segal. Building Softbots
for UNIX (Preliminary Report). Technical Report
93-9-01, Computer Science Department, University
of Washington, 1993.

[4] B. Holmstorm and P. Milgrom. Multitask Principal-
Agent analyses: Incentive contracts, asset owner-
ship, and job design. The Journal of Law, Eco-
nomics and Organization, 7:24-52, September 1991.

[5] S. Kraus. Agents contracting tasks in non-
collaborative environments. Proceedings of the
11th National Conference on Artificial Intelligence,
pages 243-248, 1993.

[8] S. Kraus, J. Wilkenfeld, and G. Zlotkin. Multiagent
negotiation under time constraints. CS-TR-2975,
University of Maryland, College Park, Maryland,
1992. '

[7] Ed Krol. The Whole Internet. O’Reilly & Asso-
ciates, Sebastopol, CAL, 1992.

[8] T. Muench and M. Walker. Identifying the free rider
problem. In J. J. Laffont, editor, Aggregation and
revelation of preferences, chapter I(4), pages 61-87.
North-Holland, 1979.

[9] M. P. Wellman. A market-oriented programming
environment and its application to distributed mul-
ticommodity flow problems. Journal of Artificial
Intelligence Research, 1:1-23, 1993.

[10] G. Zlotkin and J. S. Rosenschein. A domain the-
ory for task oriented negotiation. In Proceedings of
the 13th International Joint Conference on Artifi-
ctal Intelligence, pages 416-422, Chambery, France,
August 1993.

89

