From: AAAI Technical Report SS-94-06. Compilation copyright © 1994, AAAI (www.aaai.org). All rights reserved.

Toward Approximate Planning in Very Large Stochastic Domains

Ann E. Nicholson* and Leslie Pack Kaelbling'
Department of Computer Science
Brown University, Providence, RI 02912
{aen,lpk}@cs.brown.edu

Abstract

In this paper we extend previous work on ap-
proximate planning in large stochastic domains
by adding the ability to plan in automatically-
generated abstract world views. The dynamics of
the domain are represented compositionally using
a Bayesian network. Sensitivity analysis is per-
formed on the network to identify the aspects of
the world upon which success is most highly de-
pendent. An abstract world model is constructed
by including only the most relevant aspects of the
world. The world view can be refined over time,
making the overall planner behave in most cases
like an anytime algorithm. This paper is a pre-
liminary report on this ongoing work.

1 Introduction

Many real-world domains cannot be effectively modeled

deterministically: the effects of actions vary at random,

but with some characterizable distribution. In stochas-
tic domains such as these, a classical plan consisting of
a sequence of actions is of little or no use because the
appropriate action to take in later steps will depend on
the stochastic outcome of previous steps.

The theory of Markov decision processes provides
methods for constructing policies (mappings from states
to actions) that achieve robust execution by condition-
ing all actions on the current state of the world. These
methods, unfortunately, require enumeration of the state
space. Dean et al. [Dean et al., 1993] have addressed
this problem by arranging for the planner to consider
only parts of the state space that are likely to be tra-
versed during the execution of a plan. In very large
state spaces, however, there will be a huge number of

*Ann Nicholson’s work was supported by the Advanced
Research Projects Agency of the Department of Defense mon-
itored by the Air Force under Contract No. F30602-91-C-
0041 and by the National Science foundation in conjunction
with the Advanced Research Projects Agency of the Depart-
ment of Defense under Contract No. IRI-8905436.

!Leslie Kaelbling’s work was supported in part by a
National Science Foundation National Young Investigator
Award IRI-9257592 and in part by ONR Contract N00014-
91-4052, ARPA Order 8225.

190

dimensions of variability in the world, ma.kmg even the
likely state space quite large.

In this paper we introduce techniques for constructing
abstract probabilistic world models that allow efficient
approximate planning for very large stochastic domains.
Domains are specified compositionally, in terms of state
variables. The sensitivity of variables involved in the
goal to other variables is analyzed, allowing approximate
domain models at different levels of abstraction to be
constructed. During the planning process, the approxi-
mation is refined until it is sufficient for the derivation
of a plan at a specified level of reliability.

We begin by giving a brief review of the formal defini-
tions of the Markov decision process (MDP) model, then
we consider more compact compositional representations
for domains, and present an efficient approximate plan-
ning algorithm based on those representations.

2 Markov Decision Processes

The work on Markov decision processes [Bellman, 1957,
Howard, 1960], models the entire environment as a
stochastic automaton. An MDP is defined by the tuple
(S, A, T, R), where S is a finite set of world states that
can be reliably identified by the agent; A is a finite set
of actions; T is a state transition model of the environ-
ment, which is a function mapping elements of § x A
into discrete probability distributions over S; and R is a
reward function is a mapping from S to R, specifying the
instantaneous reward that the agent derives from being
in each state. We write T(s1,a, s2) for the probability
that the world will make a transition from state s; to
state so when action @ is taken and we write R(s) for
the instantaneous reward derived from being in state s.

A policy 7 is a mapping from S to A, specifying an ac-
tion to be taken in each situation. An environment com-
bined with a policy for choosing actions in that environ-
ment yields a Markov chain [Kemeny and Snell, 1976].
Given a policy m and a reward function R, the vdlue of
state s € 8, Vx(s), is the sum of the expected values of
the rewards to be received at each future time step, dis-
counted by how far into the future they occur. That is,
Va(s) = Yse0 7 E(rt), where r; is the reward received
on the tth step of executing policy 7 after starting in
state s. The discounting factor, 0 < vy < 1, controls the
influence of rewards in the distant future. When v = 0,

the value of a state is determined entirely by rewards
received on the next step; we are generally interested in
problems with a longer horizon and set v to be near 1.
Due to properties of the exponential, the definition of V
can be rewritten as

Va(s) = R(s) +7 Y_ T(s,7(s), 8" Va(s') .
s'es

We say that policy 7 dominates (is better than) #’ if|
for all s € S, Vx(s) > Vyi(s), and for at least one
s € 8, Va(8) > Vp(8). A policy is optimal if it is
not dominated by any other policy. Given a Markov
decision process and a value for 7, it is possible to com-
pute the optimal policy using either the policy itera-
tion algorithm [Howard, 1960] or the value iteration al-
gorithm [Bellman, 1957}.

One of the most common goals is to achieve a cer-
tain condition p as soon as possible. If we define the
reward function as R(s) = 0 if p holds in state s and
R(s) = —1 otherwise, and represent all goal states as
being absorbing, then the optimal policy will result in
the agent reaching a state satisfying p as soon as possi-
ble. A state is absorbing if all actions result in that same
state with probability 1; that is, Ya € A4, Pr(s,a,s) = 1.
Making the goal states absorbing ensures that we go to
the “nearest” state in which p holds, independent of the
states that will follow.

3 Simulated Robotic Domain

In previous work we used high-level mobile-robot path
planning as an exmaple domain. The floor plan is di-
vided into a grid of locations, £, with four directional
states associated with each location, D = {N, S, E, W},
corresponding to the direction the robot is facing. The
robot is given a task to navigate from some starting lo-
cation to some target location. The actions, A, available
to the robot are {STAY, GO, TURN-RIGHT, TURN-LEFT,
TURN-ABOUT}. The transition probabilities for the out-
come of each action could potentially be obtained empir-
ically through experimentation with a real robot; in this
example they are made up. The STAY action is guaran-
teed to succeed. The probability of success for Go and
the turning actions in most locations is 0.8, with the re-
mainder of the probability mass divided between unde-
sired results such as overshooting, over-rotating, slipping
sideways, etc. The reward function for the sequential de-
cision problem associated with a given initial and target
location assigns 0 to the states corresponding to the tar-
get location and —1 to all other states.

In this paper, the robotic domain is extended with a
number of extra attributes. The robot has a battery
voltage level, B. If the battery voltage is zero, the robot
cannot move. If the robot does move, the battery volt-
age is decreased by one. We also add the action CHARGE,
which deterministically results in the battery voltage be-
ing raised to the maximum level. In addition, locations
can be“cluttered”, C = {T, F}; if a location is cluttered,
then the probability of the Go action taking the robot
into the next location is reduced slightly. Finally, there
are multiple independent domain variables, such as the
temperature, which are not very relevant to the goal at

N
W jLoc| E
S
4 directions per -
location
Possible result
of GO action

Start location
and direction

L1

Figure 1: Section of the location floorplan used for ex-

* amples in this paper. Suppose the robot is in location

L3 facing north and executes action Go; the possible
location/direction pairings it might end up in are high-

lighted.

hand (reaching a particular location). A small section of
the example domain is shown in Figure 1; there are 6 lo-
cations, {L1, L2, L3, L4, L5, L6} and 3 levels of battery
voltage {0, 1, 2}; L5 is the only cluttered location.

4 Domain Models

The typical algorithms for working with MDP’s represent
the state transition function as a matrix and the reward
function as a vector, in order to find policies that work on
the entire state space. This approach works well in small
state spaces, but can very quickly become intractable. In
order for very large domains to be amenable to planning,
they must have internal regularities that allow them to
be represented more compactly. Approaches that take
advantage of these regularities typically give up general-
ity; but in their full generality, large planning problems
are intractable.

The models used in traditional Al planning, made up
of operator descriptions, provide an important starting
point for developing compact models of stochastic do-
mains. They start by considering the world state as be-
ing composed of a number of state variables (typically
propositional), each of which can take on values inde-
pendently. The state transition function is given compo-
sitionally, by specifying, in different rules, how different
aspects of the environment change given different ac-
tions. Thus, the color of walls need only be mentioned
when describing change that occurs as a result of the
paint operator.

Work on the Buridan planner [Kushmerick et al.,
1993] has extended traditional operator descriptions
to describe stochastic transitions. It allows the post-

191

conditions of an operator to be a probability distribution
over possible outcomes, expressed as equivalence classes
of world states. This representation is compact, but it
can be difficult to describe a situation in which, after do-
ing action a, the new value of variable X depends only
on the old value of X and the new value of variable Y
depends only on the old value of Y'; these independence
relations can also afford us with savings in model com-
plexity.

A simplified version of the Bayesian network formal-
ism [Pearl, 1988] is well suited to specifying stochastic
state transition and reward models. For each action, we
use a two-slice network, in which nodes in the first slice
represent values of state variables at time ¢ and nodes
in the second slice represent values of state variables at
time ¢t + 1. In addition, there is a node in the second
slice that represents instantaneous reward at time ¢ + 1.
The value of this node depends deterministically on the
values of the nodes to which it is connected; it plays the
role of a value node in an influence diagram.! Arcs in
the diagram indicate probabilistic dependence between
variables and are represented, in detail, by conditional
probability distributions over values of the target vari-
able given values of the source variables. Figure 2 shows
a Bayesian network model for the results of perform-
ing the actions GO and one for the turning actions (turn
right, left and about all have the same network structure)
in the example robot domain described in the previous
section, whose states are characterized by the robot’s lo-
cation, direction, battery voltage, and the clutter of the
current location. o

When there are no arcs between nodes in the second
slice, we can say that the attributes of the state at time
t + 1 are conditionally independent given the state at
time t. It is possible for attributes at time ¢ + 1 to be
dependent on one another, as long as there is no cycle of
dependency.

We assume, then, that the state set S is describable as
the cross product of a set of m sets of values V;, one for
each world attribute i. An individual state is described
by the vector (v1,...,vm). The state-transition function
of the MDP can be derived from the Bayesian network in
the conditionally-independent case as follows:

T((Il,.. ~,93m),“;(311, ..)ym>) =
HPr(yila)xly . ',(L'n) .
$

For any given y; term, it is only necessary to condition
on z; if there is an arc from node j in the first slice to
node ¢ in the second slice. If the second-slice attributes
are not conditionally independent, then because they are
acyclic, it is possible to find an ordering of them that
allows the following calculation:

T((.’Cl,---,zm),av (yl)”')yﬂl)) =

Mf it is useful to think of reward as being multi-
dimensional, it is possible to have a collection of reward
nodes, each with expected value given as a conditional func-
tion of some of the state nodes. The reward for any particular
state will be the (possibly weighted) sum of the values of the
reward nodes.

Action = GO

Time ¢ Time t+1

Cluttered
Location reward
Direction
Battery
O

Independent

Action = LEFT/RIGHT/ABOUT

Time ¢ Time +1
Cluttered ' ‘
Location O—Pg—PD reward
Direction () ;()
Battery O___>O

Independent O O

Figure 2: Bayesian network model of simple robotic ac-
tion

192

Pr(ylla:xl’ v 'axn)

H Pr(y'la, Tyt T, yl, * '-')y'_l) .
>1
Although it would be possible to compute the entire

state transition function from the Bayesian network rep-
resentation and store it in a table, it will be intractable
to do so for domains of the size we are interested. Thus,
we just compute instances of the T and R functions when
they are required.

5 Abstract World Views

Even with a compact representation of the dynamics of
the entire world, we will rarely want or need to work
with the whole model. Given different goals, different
time constraints, or different current world states, we
might want to take very different views of the world.
In this section, we discuss the construction of different
world views by specifying only a subset of the possible
attributes in the complete world model. In some cases,
these abstract views will capture all of the world dynam-
ics relevant to the problem at hand. In other cases, they
will serve as tractable approximations to more complex
models.

The idea of using abstract versions of a problem space
for efficient planning is by no means new. Polya men-
tions it as a problem solving heuristic in How to Solve
It [Polya, 1945]. It was articulated formally and applied
to planning by Sacerdoti in his work on ABSTRIPS [Sacer-
doti, 1974]. ABSTRIPS planned first in abstract domains
that left out preconditions of low criticality. These pre-
conditions (and operators to satisfy them) were grad-
ually added back in to completely flesh out a skeletal
plan that was built without them. Our use of abstrac-
tion has much the same character, leaving out domain
attributes of low criticality and potentially adding them
back in over time. We are, however, interested in work-
ing domains so large that all of the potentially relevant
attributes can never be considered.

5.1 Constructing Abstract World Views

An abstract world view is derived from an MDP and is,
itself, an MDP. It is constructed by projecting out some
of the dimensions of world state description, so that each
state in the abstract view stands for an equivalence class
of states in the original world model.

Given an original world (S, A, T, R) with elements of
S having the form (zy,...,2,,), an abstraction can be
specified by giving a set of indices ¢ to be projected out.
The abstract world view is (§’, 4, T", R'). The new state
set, &’ is constructed from S by removing from each el-
ement attributes whose indices are in ¢. In this work,
the action set remains the same; in the domains we are
currently considering, this set is small and does not in-
troduce any efficiency problems.?

Since the original T' and R functions are specified with
a Bayesian network, we retain this representation, and

2We might want, eventually, to represent .4 composition-
ally in order, for example, to be able to characterize agents
with independent, simultaneous output modalities, such as
moving and speaking. i :

193

construct a new Bayesian network for the abstract view.
Projecting out a dimension is equivalent to deleting the
two corresponding nodes from the network, one from
each slice. Let us assume we are projecting out dimen-
sion k from a network that does not have links among
second-slice nodes. Then we must modify the conditional
probability distributions associated with any arcs com-
ing from node k in the first slice. For every node i in
the second slice that has a link from k, we define a new
conditional probability distribution

Pr(yi’xly t "xk—l;wk-f-l; .t ',mm) =

Z Pr(zi) Pr(yiley, -, zm) -

Now we are faced with the problem of needing to know
a prior distribution on the values of dimension k. In
this work, we assume a uniform distribution.® A slightly
more complex form of this basic technique applies to the
reward nodes and to the case in which there are links
among the second-slice nodes.

5.2 Sensitivity Analysis

In order to determine which abstract views of a world
may be most useful for solving a particular problem,
we can perform a sensitivity analysis on the Bayesian
network model. Sensitivity analysis determines the de-
gree to which the conditional probability distribution of
a particular node in the second slice will be affected by
the distribution of a node in the first slice. Knowing this
will allow us to determine useful abstract views.

Given a Bayesian network model to represent the dy-
namics of a particular action, a € A, let o4,(N, N’) be
the sensitivity of node N in the second slice to a par-
ent node N'. It is, intuitively, the difference between the
distribution of values at node N when the values at node
N’ are taken into account and the distribution of values
at node N when node N’ is assumed to take on all of its
values according to some fixed distribution.

Let A be the set of parents of N (nodes with links to

- N). We can compute the sensitivity of N to any node

N'" € M. First, let ® be the set of possible valuations

. of the nodes nodes N — {N'}, and let n’ range over the

values of N’. Then

o0a(N,N') =

1 .
] Y > Pr(n’)D(Pr(N|n', $), Pr(N|¢)) ,

$€P n'
where D is a measure of distance between two distribu-
tions. As a distance measure, we use the information-
theoretical distance (also known as the Kullback-Leibler
information distance)[Rényi, 1984] as follows:

D(P,Q) = Z P(z)log gg; .

It measures the distance between two distributions by
taking the expectation (according to the first distribu-

tion) of the difference of the log probabilities at every

30f course, this might be a very bad approximation, be-
cause we don’t know the relative probabilities of being in the
elements of the equivalence class.

N N o(N,N)
T L 0.220377
L D 0.014027
L B 0.009335
£ C 0.004814
D L 0.015208
D D 0.170770
D B 0.079002
D C 0
B~ L 0
B D 0
B B 0174207
B ¢ 0
C £ 0.016360
C D 0
cC B 0
c ¢ 0

Table 1: Sensitivity of domain variables to each other
for the robot example

point. This measure is suited to the situation in which
P is the true value of a quantity and @ is an estimate; in
this case, it makes sense to take an expected difference
with respect to the distribution P. This value is always
non-negative; if the two nodes are independent, then the
sensitivity will be zero. The more the values of N’ affect
the values of N, the higher the sensitivity value will be.
The overall sensitivity o(N, N’) of domain variable N
to domain variable N’ is the average over all actions:

n_ 1 /
a(N,N)_I—ﬂXa:aa(N,N)

5.3 Example of World View Abstraction

We performed the sensitivity analysis on the exam-
ple robot domain represented by the Bayesian network
model given in Figure 2, and obtained the sensitivities
shown in Table 1.

The location is most sensitive to the previous location
by an order of magnitude, then in order of decreasing
sensitivity to the direction, the battery level and the
clutter of the current location.- If more locations are
cluttered, or if the battery has more capacity, the rela-
tive sensitivity of location to the battery level and the
clutter is reversed. The direction is most sensitive to the
previous direction and the battery level; the lower sensi-
tivity to the location reflects the low probability outcome
where there the robot slips and turns while performing
a GO action. As expected for the domain specification,
the battery level is only sensitive to the previous bat-
tery level, and the clutter variable is only sensitive to
the location.

The location domain variable is the one we are most
interested in, as it is the only one influencing the reward
node. The sensitivity analysis suggests constructing an
abstract world view containing the location and direction
domain variables. Applying this abstraction to the world
modeled -in Figure 2 results in the abstract world view
shown in Figure 3.

194

Action = GO

Time ¢ Time t+1

Location reward

Direction

Action = LEFT/RIGHT/ABOUT

Time ¢ Time ¢+1

Location O__»O_.D reward
Direction H

Figure 3: Abstracted Bayesian network model of simple
robotic actions

6 Planning With Approximate World
Models

In this section we outline the basic approximate plan-
ning algorithm of Dean et al. [Dean et al., 1993], then
show how we can extend the notion of planning in re-
stricted state spaces by planning in restricted versions of
abstract world views. The work by Dean et al. presented
two planning models: a precursor model in which all
planning is performed before any execution begins and
a recurrent model in which planning and execution take
place in parallel. The techniques described in this paper
are equally applicable to both models, but for simplicity
in presentation we consider only the precursor model.

An important property of this planning algorithm is
that it works by constructing successive approximations
to the optimal policy. Although there are rare cases
in which approximations can get worse over time, in
most cases this algorithm behaves like an anytime al-
gorithm [Dean and Boddy, 1988], generating better and
better policies the longer it has to compute. It can be
interrupted at any time and a policy will be available.
The extensions we are making to the original algorithm
preserve this property.

6.1 Original Algorithm

The original planning algorithm attempts to reduce the
complexity of generating a policy by considering only a
subset of the state space of the MDP. The algorithm
starts with an initial policy and a restricted state space
(or envelope), extends that envelope, and then computes
a new policy. In the precuror model, the planner con-
structs a policy that is followed by the agent until a
new goal must be pursued or until the agent falls out of
the current envelope. In the simple case, a deadline is
specified indicating when planning stops and execution
begins.

A partial policy is a mapping from a subset of S into
actions; the domain of a partial policy 7 is called its
envelope, £;. The fringe of a partial policy, Fr, is the

set of states that are not in the envelope of the policy,
but that may be reached in one step of policy execution
from some state in the envelope. That is, Fr = {s €
S—&x |38 € Exst. T (¢, 7(8"),s) > 0}.

To construct a restricted MDP, we take an envelope &
of states and add the distinguished state ouT. For any
states s and s’ in £ and action a in A, the transition
probabilities remain the same. Further, for every s € &
and a € A, we deﬁne the probability of gomg out of the
envelope as

T(s,a,0out) =1~ Z T(s,a,s’) .
s'ee

The OUT state is absorbing.

The cost of falling out of the envelope is a param-
eter that depends on the domain. If it is possible to
re-invoke the planner when the agent falls out of the en-
velope, then one approach is to assign ¥V (0UT) to be the
estimated value of the state into which the agent fell mi-
nus some function of the time required to construct a
new partial policy. Under the reward function described
earlier, the value of a state is negative, and its magni-
tude is the expected number of steps to the goal; if time
spent planning is to be penalized, it can simply be added
to the magnitude of the value of the ouT state with a
suitable weighting function.

The high level planning algorithm, given a description
of the environment and start state sp or a distribution
over start states, is as follows:

1. Generate an initial envelope £
2. While (£ # S) and (not deadline) do

a. Extend the envelope £

b. Generate an optimal policy « for restricted au-
tomaton with state set £ U {ouT}

3. Return 7

The algorithm first finds a small subset of world states
and calculates an optimal policy over those states. Then
it gradually adds new states in order to make the policy
robust by decreasing the chance of falling out of the en-
velope. After new states are added, the optimal policy
over the new envelope is calculated. Note the interdepen-
dence of these steps: the choice of which states to add
during envelope extension may depend on the current
policy, and the policy generated as a result of optimiza-
tion may be quite different depending on which states
were added to the envelope. The algorithm terminates
when a deadline has been reached or when the envelope
has been expanded to include the entire state space.

6.2 Using Abstract World Views

Even though the planning technique described above
considers a potentially very small subset of the state
space, it considers fully-specified world states, which may
make distinctions that are not important to the planning
task at hand. By restricting the world view before ap-
plying the envelope-based algorithm, we can potentially
drastically reduce the number of states in the envelope.
With an abstract world view, each of the states in the
envelope stands for an equivalence class of world states

195

that can be treated the same for the current purposes.
The extended planning algorithm can be described as
follows:

1. Generate an initial world view (S8’, 4, T, R')
2. Generate an initial envelope £ C &'
3. While (£ # 8’) and (not deadline) do

¢ Extend the envelope £

o Generate an optimal policy w for restricted au-
tomaton with state set £ U {ouT}

o If the current world view is insufficient then

— Expand the world view
— Go to step 2

4. Return 7

This algorithm works by initially making a fairly gross
approximation to the real world dynamics, which allows
it to quickly derive a partial policy that is of some utility,
though perhaps not as good as desired. If time remains,
the world view is refined and new policies are constructed
within the refined world view. The best policy from
the previous world view is always retained, so that if
time runs out before a good policy can be found in the
new world view, the previous policy can be returned for
execution.

Off-line, a sensitivity analysis can be performed, re-
vealing the sensitivity of the reward node to each of
the state attribute nodes. The initial world view is
constructed by including only those state attributes to
which the reward node is most sensitive (determined by
a threshold). If this view proves to be insufficient for
planning, then a new view is constructed by adding the
state attribute with the next most sensitivity.

The question, then, is how to determine that the cur-
rent world view is insufficient for planning. We are cur-
rently investigating several possible criteria. When the
estimated value of the starting state is not improving
through envelope expansion or when the quality of the
best solution solution does not exceed some threshold
that may indicate that a less abstract world view is
needed. It may also be possible to learn when to change
views by statistical learning in the same way that we
learn envelope extension strategies in the original work.

7 Future Work

Obviously, our first goal is to get the entire system im-
plemented and running, and to perform empirical tests
of the performance of this planning algorithm. In par-
ticular, we expect to have to experiment with criteria for
deciding when to refine the current abstract world view.
As the algorithm currently stands, when we add a di-
mension, we add it to the entire state space. We are
considering methods that would allow different abstrac-
tions over different parts of the state space, capturing
the idea that whether or not a particular door is open is
only relevant in certain parts of a large domain.
Finally, we are interested in learning the domain model
and perhaps also the sensitivity information, eventually
building an integrated learning and planning system.

References

[Bellman, 1957] Bellman, Richard 1957. Dynamic Pro-
gramming. Princeton University Press, Princeton,
New Jersey.

[Dean and Boddy, 1988] Dean, Thomas and Boddy,
Mark 1988. An analysis of time-dependent planning.
In Proceedings of the Seventh National Conference
on Artificial Intelligence, Minneapolis-St. Paul, Min-
nesota.

[Dean et al., 1993] Dean, Thomas; Kael-
bling, Leslie Pack; Kirman, Jak; and Nicholson, Ann
1993. Planning with deadlines in stochastic domains.
In Proceedings of the Eleventh National Conference on
Artificial Intelligence, Washington, DC.

[Howard, 1960] Howard, Ronald A. 1960. Dynamic Pro-
gramming and Markov Processes. The MIT Press,
Cambridge, Massachusetts.

[Kemeny and Snell, 1976] Kemeny, John G. and Snell,
J. Laurie 1976. Finite Markov Chains. Springer-
Verlag, New York.

[Kushmerick et al., 1993] Kushmerick, N.; Hanks, S.;
and Weld, D. 1993. An Algorithm for Probabilis-
tic Planning. Technical Report 93-06-03, University
of Washington Department of Computer Science and
Engineering. To appear in Artificial Intelligence.

[Pearl, 1988] Pearl, Judea 1988. Probabilistic Reasoning
in Intelligent Systems: Networks of Plausible Infer-
ence. Morgan Kaufmann, San Mateo, California.

[Polya, 1945] Polya, George 1945. How to Solve It.
Princeton university Press, Princeton, New Jersey.
[Rényi, 1984] Rényi, Alfréd 1984. A Diary on Informa-
tion Theory. John Wiley and Sons, New York, New

York.

[Sacerdoti, 1974] Sacerdoti, Earl D. 1974. Planning in a
hierarchy of abstraction spaces. Artificial Intelligence
5:1156-135.

196

