
The Potential for Cooperation among Web Agents

Cristina Bicchieri
Depts. of Philosophy and

Social and Decision Sciences
Carnegie Mellon University

cb36+@andrew.cmu.edu

Martha E. Pollack
Dept. of Computer Science and

Intelligent Systems Program
University of Pittsburgh

pollack@cs.pitt.edu

Carlo Rovelli
Dept. of Physics

University of Pittsburgh
rovelli+@pitt.edu

Abstract
In building intelligent network agents, computer
scientists may employ a variety of different design
strategies, and their design decisions can have a
significant effect on the ultimate nature of network
interactions. Some agent designs are “cooperative,”
and populations of agents based on them would be
able to interact smoothly, effectively utilizing network
resources. In contrast, other agent designs can lead to
ineffective and wasteful competition for network
resources, resulting in massive bottlenecks and
unacceptable access delays. We focus here on a
particular design question, the multiple-access
problem: if an agent seeking a piece of information
knows of several sites that have, or might have, that
information, how many queries should it issue, and
when? We provide a formal analysis that
demonstrates the viability of cooperative responses to
this question. We then discuss the limitations of this
analysis and describe a simulation system we are
building to study more general versions of the
problem.

Introduction

An emerging vision of future massive information
networks has them populated by intelligent electronic
agents who are capable of understanding a user's
specification of information goals, and deciding upon and
carrying out the tasks necessary to achieve those goals.
These agents will have knowledge of how to locate, access,
and retrieve information from the network, thereby
relieving users of the burden of having this knowledge
themselves. Ideally, network agents will not be limited to
tasks of pure information retrieval, but will also be capable
of filtering email, scheduling meetings, and so on, and they
will be capable of learning their users' preferences about
how such tasks are to be performed. Simple intelligent
network agents have already been built in early prototype
form, e.g., (Lieberman 1995, Perkowitz & Etzioni 1995,
Etzioni & Weld 1994, Kautz 1994).

In building intelligent network agents, computer scientists
may employ a variety of different design strategies, and
their design decisions can have a significant effect on the
ultimate nature of network interactions. Some agent

designs are “cooperative,” and populations of agents based
on them would be able to interact smoothly, effectively
utilizing network resources. In contrast, other agent
designs can lead to ineffective and wasteful competition for
network resources, resulting in massive bottlenecks and
unacceptable access delays. More generally, populations
of agents on a network may be comprised of agents that
employ different interaction strategies---for example, some
percentage of them may be fully cooperative, another
group may be partially cooperative, and the rest may be
highly cooperative. Given this, we ask two questions:

1. What is the nature of network interactions for different
such populations?

2. If agents are adaptive, i.e., capable of modifying their
behavior in response to current network conditions, what
will the population dynamic be? In particular, can
adaptation of access strategy ever lead to cooperation, and,
if so, under what circumstances?

In our ongoing research, we are addressing these questions
using a variety of tools from artificial intelligence,
distributed systems theory, and noncooperative and
evolutionary game theory. Initially, we are focusing on
the problem of information retrieval, in particular, on what
we call the multiple-access problem: if an agent seeking a
piece of information knows of several sites that have, or
might have, that information, how many queries should it
issue, and when? We have defined a set of information-
access strategies that vary in the degree to which they are
cooperative, and we are examining populations of agents
that employ these strategies in varying proportions. The
multiple-access problem is, of course, just one among
many that must be addressed in the design of an intelligent
network-agent; our focus on it is meant to be illustrative of
the larger research enterprise, and to support the
development of a model that can serve as the foundation
for many related questions.

In this extended abstract, we briefly define the multiple-
access problem, and sketch a formal analysis of one
version of it that uses techniques from game theory and
queuing theory. We then discuss the limitations of the
formal analysis, and describe a simulation system we are
building to study more general versions of the problem.
This system will also serve as the basis of our experiments
on adaptation and the possibility of emergent cooperation.

From: AAAI Technical Report SS-96-01. Compilation copyright © 1996, AAAI (www.aaai.org). All rights reserved.

The Multiple-Access Problem

Problem Definition
As is well known to users of the World Wide Web, the
same piece of information is frequently located at multiple
sites. For example, someone seeking a local weather
forecast can typically retrieve that information from more
than a dozen different sites. Usually, a human Web user
will visit one of those sites at a time; if she encounters a
delay in accessing the first site she attempts to visit, she
may then try a second, and so on. A similar situation arises
when a Web user performs a net search, using a tool like
Lycos or Netscape Search, which take as input keywords
of interest, and return as output lists of sites that may
contain relevant information. The usual strategy for the
human user is to visit the listed sites on the one at a time,
until the sought information is located.

In either scenario, the value of the information sought may
be time-dependent; that is, there may be some penalty
associated with a delay in getting the information. In some
cases, e.g., for ordinary Web searches, the penalty may
simply be the “opportunity cost,” or annoyance
experienced by the human user as she wastes time waiting
for the information she needs. In other cases, the penalty
can be much more severe: examples include the use of the
Web by stock-traders to gain real-time information about
financial markets, or its use by military commanders to
gain real-time information about situation development.

This possibility of significant penalties for delayed
information access raises an interesting question, which we
call the multiple-access problem : If an agent seeking a
piece of information knows of several sites that have, or
might have, that information, how many queries should it
issue, and when? Should several queries be issued
simultaneously, rather than in the sequential fashion that is
typical today? This question becomes particularly relevant
once artificial agents are tasked with the job of information
retrieval, because such agents could easily spawn several
subprocesses (subagents) to access multiple sites
simultaneously---a task that is more burdensome for the
human user.

If there is no extrinsic cost associated with accessing a site,
a plan to simultaneously issue multiple queries might
appear to be a good one, increasing the likelihood of
getting the information quickly, without incurring any cost.
However, if multiple agents form such plans, a cost may in
fact be incurred, as the result may be a highly overloaded
system, in which all agents, on average, do worse.

A Simplified Case
We begin by considering a simplified version of the
problem, in which there are exactly two agents and two
sites that the agents both know to have the information
sought. We assume that if both agents attempt to access the
same site, there is an equal chance that either one will get
there first. We assume further that both agents have the
same, very simple payoff function: the utility of being the
first to access one or both of the sites is h while the utility
of being second to access both is l, under the constraint that
h > l. Finally, we assume that there is no extrinsic cost
associated to the access (i.e., all agents can submit
information requests “for free”), that all hosts are deemed
equally reliable, and that all this information is common
knowledge.

With these assumptions, the decision that each agent must
make can be modeled as a strategic-form game, as
follows:1

Access One Access Both
Access
 One

.75h + .25l ,
 .75h+ .25 l

 .5h + .5l ,
 h

Access
Both

h,
.5h+.5l

.75h + .25l ,
 .75h+.25l

FIGURE 1. The Two Agent Case.

For example, if both agents adopt the strategy of accessing
one site, then there is a 50% chance that they’ll go to
different sites (in which case each will receive a reward of
h), and there is a 50% chance that they will go to the same
site. In the latter case, for each agent, there is a 50%
chance of getting there first (and being rewarded h), and a
50% chance of getting there second (and being reward l).
Thus, each agent’s expected utility in this case is .5h +
.5*.5h + .5*.5l = .75h + .25l. Similar analyses can be
given for the other cells.

What we see is that each player has a dominant strategy, to
access both sites, and the result is a Nash equilibrium that
is also Pareto-optimal. What this means, in brief, is that (i)
each agent prefers to access both sites regardless of what
the other does (dominant strategy); (ii) when an agent
believes that the other agent will access both sites, then it
also prefers to access both sites itself (Nash equilibrium);
and (iii) there is no other combination of actions that leads
to a better outcome for one agent without the other agent
doing worse (Pareto-optimal). Thus, for the two-agent,
two-data site case, under the assumptions we made above,
there is no need for agents to explicitly cooperate with each

1 For details of modeling games in strategic form, see
(Osborne & Rubinstein 1994). Note that, as is standard in
the strategic-form notation, the first payoff in every cell
belongs to row-agent, and the second to the column-agent.

other: by simply choosing their dominant strategies, they
achieve a result that is as good as if they were cooperating.

This fact changes, however, as we introduce more agents.
For example, in Figure 2, we show the strategic-form game
for three agents and two sites, under the assumption that
being the first to access either site results in a payoff of h,
being second at one site and second or third at another
results in a payoff of m, and being third at all three sites
results in a payoff of l, under the constraint that h > m > l.
Note that Figure 2 lists the expected payoffs only for the
row player. The expected payoffs for the other players are
symmetrical.

Each agent still has a dominant strategy, to access both
sites, and the situation in which everyone accesses both
sites is the unique Nash equilibrium of the game. The
equilibrium, however, is deficient, i.e., Pareto-suboptimal,
since all would do much better were they to access only
one site. We thus have a classical Prisoner’s Dilemma.
Agents would stand to gain were they capable of
cooperating with each other and submitting queries to one
site only. In fact, as the number of agents increases
relative to the number of databases, the spread increases
between the cooperative, Pareto-optimal outcome, in which
all agents access one database, and the defective outcome,
in which they all access both databases. The more agents
there are in the system, the greater would be the gain from
cooperation.

 Both Access
One

 One Accesses
 One

 Both Access
 Both

Access
One

 7/12h+1/3m
 + 1/12 l

 5/12h + 5/12m
 + 1/6 l

 1/3h+ 1/3m
 + 1/3 l

Access
 Both

 7/8h+ 1/8m 2/3h+ 1/3m 5/9h+ 3/9m
 + 1/9 l

FIGURE 2. The Three agent Case.

But how could such cooperation arise? In a one-shot
encounter, there is no reason for an agent to be
cooperative: if one expected the others to access only one
site, the rational choice would be to access both. The
situation changes, however, if agents interact repeatedly
with each other. Traditional game-theoretic models show
that, in case agents assess a sufficiently high probability of
a future encounter, cooperative behavior can occur, since
the gains from continuing cooperation far outweigh the
gains of defection. Such models, however, are not fully
applicable to the case at hand. First,, they assume that
agents are not anonymous, but are able to identify one
another, and thus to obtain “reputations”, which can result
in retaliation; we return to this point in the final section of
the paper. Second, these models assume that agents are
fully rational and have common knowledge of their mutual
rationality, and that they are perfect calculators without any

time or computational constraints. In fact, real agents
(including Web agents) are boundedly rational: they have
only limited knowledge of their environment and of other
players, and they are computationally limited.

The Effect of Limited Knowledge
Perhaps surprisingly, the fact that Web agents have limited
knowledge can be used to demonstrate that, at least in an
idealized case, cooperation may occur among agents that
are designed according to principles of rationality. The
argument, which we sketch here, is presented in detail in
(Bicchieri, Pollack, & Rovelli 1996), and hinges on agent’s
lack of complete knowledge about the state of their
environment.

Specifically, assume that there are m sites and n agents,
and that each agent submits a query with average
frequency F. We assume that agents' queries are
independent of each other, and that the frequency F is the
same for all agents. Further, each database has a response
time of ∆T, which is the same for all databases. At any
time, a database can be either free or busy. If it is free and
it receives a query, it becomes busy and stays busy for time
∆T, after which it sends an answer. If the database is busy
while the query arrives, the query will wait in line until the
database is free. Incoming queries will form a queue: for
example, if there are five prior queries, the sixth query will
be answered after 6∆T. The maximum frequency at which
a database replies is 1/∆T.

As in the simplified case above, we consider only the two
most “extreme” strategies, full cooperation (C), in which
each agents sends one query to a randomly selected
database and waits for a response, and defection (D), in
which each agent send queries to all databases at once.
(To simplify the analysis, we assume that all databases
have the information sought.) We denote by nc the
number of agents using strategy C (the cooperators) , and
by nd the number of agents using strategy D (the
defectors). Finally, we use Tc and Td to represent the
average waiting time for cooperators and defectors,
respectively.

The average number of queries per period received by a
database will be:

n F n Fm
m

c d+

We refer to this FDB. Its inverse (1/ FDB) is the average
waiting time between two queries in a database; we will
call this WDB. There are then three possible situations:

(i) W TDB >> ∆

In case (i), there is enough delay, on average, between the
queries, to prevent queuing. Thus, there is no particular
advantage to either cooperation or defection: Tc = Td =
∆T.

(ii) W TDB << ∆

In case (ii), the wait time is small, and the system is
overloaded. As the inequality increases, the average
waiting time for both types of agents goes to infinity.

(iii) W TDB ≈ ∆

In case (iii), the average wait time between queries
submitted is close to the response time for each database.
In this case, defectors will achieve better performance than
cooperators. This is because, even though we are assuming
that queries are uniformly distributed in time and among
the databases to which they are sent, in general, the queue
lengths will not be identical at each database. The uniform
distribution of queries does not imply that they are sent at
constant time intervals from each other, or that precisely
the same number of queries is sent in each unit of time.
Rather, the number of queries generated in a given time
interval will in general fluctuate from one time interval to
the next, with the relative fluctuation going to zero only in
the limit. Consequently, there will be variation among the
queue lengths. Because defectors submit queries to
multiple data sites (in fact, to all data sites), they have a
higher probability of reaching a site with a small queue,
and thus receiving a rapid response. In short, in case (iii),
the average waiting time for cooperators is greater than for
defectors, i.e. Tc > Td.

Given this analysis, we can see that, if there is no cost
associated with sending a query, then, at least under our
current assumptions, agents should be designed to use a
defector’s strategy, since cooperation and defection are
equivalent in cases (i) and (ii), while defecting pays in case
(iii). Suppose, however, that query submission has a cost.
Minimally, there is the opportunity cost of using resources
that might be employed elsewhere; moreover, each
answered query might cost the agent a fixed amount of
money, and so might connection time. Even if these costs
are rather insignificant, they are enough to tilt the scale in
favor of cooperation. This is because, if queries have a
cost, then in cases (i) and (ii), it will pay to be a cooperator
rather than a defector: average waiting time is equivalent
for both strategies, but the costs of defecting are higher.
The agent must then determine the probability of being in
each situation (i, ii, or iii). It follows from standard
queuing theory that the probability of being in the

transitional situation (iii) is extremely. (For details, see
(Bicchieri, Pollack, & Rovelli 1995). For example, if the
the agent’s maximum waiting time---the amount of time it
is willing to wait before “giving up”---is on the order of 1
second, and the database response time is 1 ms., then the
probability of being in the transitional region is only 1 part
in 2 million. Given these odds, it is reasonable to presume
that the agent will seldom be in a type (iii) situation;
consequently, it should be designed to use a cooperative
strategy, which will achieve better performance in cases (i)
and (ii).

Strategies for Information Access

The preceding section sketched a theoretical argument that
cooperation could occur among Web agents. While it
provides an important baseline analysis, it depends upon a
number of very strong assumptions and simplifications.
Amongst these is its focus on only two, rather extreme
strategies for information access: a fully cooperative
strategy (submit an information request to only one site),
and a fully uncooperative strategy (immediately submit
information requests to all potential sites). In fact, agents
have a much larger set of possible access strategies, the
space of which we can illustrate with a few examples, for
which we provide pseudo-code below in Figure 3.

The most cooperative strategy involves accessing only a
single site at a time. In one version of this strategy
(“Unconditional Cooperation”), the agent picks a single
site to which to issue a query, and then waits indefinitely
for a response. In another, (“Impatient Cooperation”) the
agent cycles through the sites known to have the
information in question, waiting for some fixed time period
before retracting the query and issuing a new query to a
different site. Somewhat less cooperative is the
“Conditional Cooperation” strategy, in which the agent
begins by issuing a query only to one site, but, if it fails to
receive a response within some fixed time, issues another
query to a second site without retracting the first query, and
so on. As time passes, this agent will have queries
outstanding at more and more sites. A somewhat more
extreme version of this approach is “Grim Cooperation,”
in which the agent begins by being cooperative, issuing a
query only to one site, but if an answer is not received
within a fixed time period, it immediately issues queries to
all remaining known sites. The least cooperative strategy
is “Defection,” which involves immediately issuing
requests to all sites known to have the required
information.

Given a set of such strategies, one would like to be able to
analyze the performance of populations agents using
them. However, a clean formal analysis, using the tools of
game theory, is quite difficult. In part, this is due to the
complex behavior that results from the larger space of
strategies. In part, it is due to other limitations of game-

theoretic tools that preclude their application to the general
Web agent problem.

 Unconditional
 Cooperation
i := pick-db;
issue-query-to (i);
while data not retrieved

wait.

 Impatient Cooperation
i := pick-db;
issue-query-to (i);
t := 0;
while data not retrieved

begin
while t < T

if data retrieved then
exit

else t : = t + 1;
retract-query-from (i);
i := pick-db;
issue-query-to (i);
t := 0;
end.

 Conditional Cooperation
i := pick-db;
issue-query-to (i);
t : = 0;
while data not retrieved

begin
while t < T
 if data retrieved then

exit
 else t := t + 1;

if not all db's queried
then

begin
 i := pick-db;
issue-query-to (i);
end;

 t := 0;
end.

 Grim Cooperation
i := pick-db;
issue-query-to (i);
t := 0;
while t < T

if data retrieved then exit
else t : = t + 1;

for all other db's j
 issue-query-to (j);

while data not retrieved
wait.

 Defection
for all db's j

issue-query-to (j);
while data not retrieved

wait.

FIGURE 3. Access Strategies

These limitations include difficulties in:
• handling asynchronous interactions. Traditional game

theory assumes sequential, synchronized interactions,
but no synchronization can be assumed to hold among
network agents.

• handling situations in which the sets of agents

involved in sequential interactions overlap with each
other. Traditional game theory can handle the case of

a new agent entering into a game only if the agents
involved come with reputations from past play.
However, in the context of network agents, different
sets of agents will be seeking information at different
times, and the community will be too large to ensure
readily available “reputations”.

• having agents infer the strategies being used by other

agents. In the traditional game theory literature,
agents know, at the end of each interaction, what
action the other agents have taken. In the network
agent setting, this is not the case: agents have no
privileged access to the actions of other agents. They
must infer, on the basis of what they can observe, what
other agents are doing. For example, an agent may
only know that it has an average access delay that is
greater than what is expected, and may, on the basis of
this, conclude that other agents are failing to behave
cooperatively.

• integrating the problem of deciding among a set of

options for action with the problem of determining
what those options are in the first place. Traditional
game theory assumes that the “game” is specified, i.e.,
that the agents know what their choices for action are.
Within AI, the field of planning has focused on the
question of how an automated agent can determine
what actions can lead to its goals. A merging of these
two efforts in needed.

Given these factors, we are taking a two-pronged approach
to the task of modeling Web agents more realistically.
First, we are working to extend game-theoretic tools, to
remove some of the limitations just mentioned. Second,
we are developing a simulator that can serve as the
platform for Web population studies, to determine whether
cooperation is in fact feasible under more realistic
conditions than those assumed in the formal analysis
above.

Adaptive Strategies

Even if we are successful in modifying standard game-
theoretic tools to meet the challenges outlined above, this
will constitute only a first step. This is because, as we
noted earlier in the paper, these presuppose that agents
repeatedly interact with the same parties, can recognize and
monitor each other's behavior, and can thus effectively
employ retaliation when needed. This is not the case in
large, anonymous groups, for example, collections of
network agents. When the number of agents is large,
defection may go undetected; even if it may be detected, it
might prove too costly (and ultimately useless) for an agent
to punish the defector, since the probability of future
encounters is vanishingly small.

We are thus also examining the relevance of the work on
evolutionary models to the network agent problem
(Axelrod 1984, Smith 1982). In such models, agents may
not only incorporate strategies for interaction, but also may
have a meta-rule for switching strategies: such meta-rules
constitute adaptive algorithms. Among a population of
adaptive agents, strategies may be viewed as being in
competition, in which only the “fittest” survive. It can be
shown that, depending on the initial environment,
strategies that lead to cooperation in Prisoner's Dilemma-
type games outperform strategies that don't. An appealing
feature of such models is that, in an evolutionary context,
agents are modeled as limited reasoners. In this
framework, a strategy can be seen as a recipe for
converting information acquired during past interactions
into actions to be taken in the future. Moreover, these
strategies require very limited computational resources
and are therefore quite appropriate for resource-bounded
agents such as network agents.

Well-known evolutionary models such as Axelrod's have
only studied the evolutionary course of strategies that are
matched pairwise in round-robin tournaments. In the case
of network agents, however, we must consider encounters
among more than two, and potentially many, agents; this,
again, is where our simulator will prove useful. It then
matters whether the population is fixed or not, and whether
agents have the possibility of repeated encounters with at
least some small subsets of the population. Bicchieri and
Rovelli (1995) have shown that, if the population is fixed,
cooperation can emerge as a stable strategy, provided that
defection creates small but cumulative overall costs and
that there exists a (very) small but stable number of
conditional cooperators in the population. This is a step in
the right direction, but one must go even further for the
network agent application, in which the population is not
fixed: agents continually enter and exit the environment.

One way to approach this situation is to view the agents as
clustered into local “neighborhoods,” in which they have
repeated interactions with each other for sufficiently long
periods. Examples might include users of a LAN such as
co-workers within an individual office or department.
Although it is unlikely that two such users (or their agents)
would typically query the same end database at the same
time, it is much more likely that they frequently submit
queries that must pass through the same intermediate
servers, resulting again in a need for cooperation.

The expectation is that adaptive agents involved in such
local interactions are likely to develop cooperative
behavior. Moreover, since they are adaptive and will
therefore tend to keep using a strategy that did well in the
past, and change it otherwise---cooperative behavior may
spread from such local “neighborhoods” to much larger
groups, provided that the number of cooperators entering
the bigger group is large enough. This, however, is
currently just a hypothesis. The focus of our ongoing

efforts is to explore whether in fact the Web agent’s
environment will be one in which cooperative behavior can
emerge.

Acknowledgments. Principal support for this work has
come from the Office of Naval Research (Contract
N00014-95-1-1161). Pollack has received additional
support from the Rome Laboratory (RL) of the Air Force
Material Command and the Advanced Research Projects
Agency (Contract F30602-93-C-0038), and from an NSF
Young Investigator's Award (IRI-9258392).

References

R. Axelrod, The Evolution of Cooperation. Basic Books,
New York, 1984.

C. Bicchieri, M. E. Pollack, and C. Rovelli, “Cooperation
among Network Agents,” in preparation.

C. Bicchieri and C. Rovelli, “Evolution and Revolution:
The Dynamics of Corruption,” Rationality and Society, 7,
1995.

O. Etzioni and D. Weld, “A Softbot-based Interface to the
Internet,” CACM 37(7):72-76, 1994.

H. Kautz et al., “An Experiment in the Design of Software
Agents,” in Proceedings of AAAI-94, pp. 438-443.

H. Lieberman, “Letizia: An Agent that Assists Web
Browsing,” in Proceedings of IJCAI-95, pp. 924-929.

M. J. Osborne and A. Rubinstein, A Course in Game
Theory, MIT Press, Cambridge, 1994.

M. Perkowitz and O. Etzioni, “Category Translation:
Learning to Understand Information on the Internet,” in
Proceedings of IJCAI-95, pp. 930-936.

J. M. Smith, Evolution and the Theory of Games.
Cambridge University Press, Cambridge, 1982.

