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Abstract 
The complexity of the real world makes a perfect characteriza­
tion impossible. Purely deliberative approaches such as classi­
cal planning are thus susceptible to unexpected failures. Pre­
ventive learning approaches address the imperfect theory 
problem through the diagnosis of such failures and the deter­
mination of fixes to avoid similar failures in the future. Cura­
tive learning approaches such as completable planning instead 
treat fail ures as alternative outcomes and learn alternative 
plans to the recover from the failures. Through learning, a 
completable planner learns to plan only for the more likely out­
comes in the particular problem distribution it faces. It thus 
significantly reduces the COS! of disjuncti ve planning .. As a cu­
rative learning approach, it IS also better suited to domains 
where outrlghl fa ilures are unacceptable or failure diagnosis is 
expensive. making preventive Jearning infeasible. Complet­
able planning is a general incremental learning approach 
whose Sllccess in real world domains may be increased 
through the integration ot other learning techniques and the. 
considerat ion of different planning perspectives. 

Introduction 

Real worid planners must live with imperfect information. 
Consider a robot navigation system given the simple task of 
moving to a specific location down the hallway. A traditional 
classical planning representation of this problem involves in­
fo rmation regarding the robot's initial location and its goal lo­
cation It also includes some characterization of a MOVE op­
erator, with parameters such as speed, distance, start time, and 
stop time. This representation is imperfect in many ways. ff 
the robot is unstable in its initial position, then it may inadver­
tently change iocations between the start of planning and the 
start of execut ion. For example, if one of its wheels is teeter­
ing on the edge of a rai sed platform, it may fall off even before 
aitempting the move. If the robot calculated a specific dis­
tance to move based on its given initial location, then the suc­
cess of the move action will be affected as well. Furt.hermore, 
movement by dead reckoning will only succeed if the calcu­
lated movement parameters account for all possible factors­
the speed of the motors, wheel slippage during starting and 
stopping, wheel altgnment , air reSistance, and so on, not to 
mention potential interference from other active agents in the 
vicinity. 
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Problems with Imperfect Theories 

The/rame problem [McCarthy69] guarantees that it is im­
possible to completely consider all the factors possibly affect­
ing the effects an action. For STRIPS-type operators, thi s in­
completeness may be manifested in the form of an incomplete 
set of preconditions. This results in two types of execution 
failure. First, the action may fail to achieve its intended ef­
fects because a neceSSJry but unspecified precondition did not 
hold immediately prior to executing the action . Second, the 
action may result in additional unintended effects that clobber 
previously achieved preconditions for subsequent actions. 
With a domain theory consisting of actions with incomplete 
preconditions, a planner may construct plans which the do­
main theory supports as being correct but which fail to 
achieve their goals, 

Preventive Learning 

While a perfect symbolic representation of a domain is un­
attainable, learn ing may enable real world planners with im­
perfect domain theories to construct plans with high probabil­
ities of success. Previous learning approaches to the problem 
of imperfect domain theories have been preventive (e.g. [Ben­
nett90, Chien94, DeJong93, Gi193, Mostow87]) . These ap­
proaches rely failure diagnosis to explain the cause of any 
failures encountered dunng execution. Similar future failures 
can then be prevented by fixing the cause ot failure-e.g . re­
tracting a faulty assumption, adding a missing precondition, 
or changing acceptable parameter ranges. 

Learning is appropriate for planning domains where prob­
lems fall into problem classes, and the plans for the problems 
of a problem class have much in common. Genera! plan seg­
ments or pi ann 109 techniques may then be extracted from spe­
cific plans and used for other problems in the Droblem class. 
A plan schema is a general plan which may be instantiated 
into specific plans for a problem class . A plan schema may 
be associated with a success rate This is the probability that 
when the schema is applied to a problem, the specific instanti­
ation will achieve the problem goals. 

A preventive plan schema learner may be characterized as 
increasing the success rate of a plan schema by preventing its 
application pians to problems where Jl will nmsucceed. In (he 
Limit, the belJeved applicability or a plan schema closes in on 
the problems for which instantiating the schema results in a 
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plan which will achieve the problem goals. An alternative ap­
proach is to increase the success rate of a plan schema by aug­
menting it with additional or other actions to execute in the 
case when actions have unexpected effects. In this approach, 
unexpected effects are not treated as failures but rather as situ­
ations for which alternative plans are to be constructed. In the 
limit , the plan schema will succeed for the range of problems 
within its applicability set. Because this approach provides 
treatment to recover from failures, we call it the curative ap­
proach. 

Completable Planning 

Completable planning is a curati ve learning approach to 
the problem ofimpeIi'ectdomain theories. Completable plan­
ning begins with the construction of a base plan, which is a 
completely ordered sequence of operators. The base plan may 
be constructed using any standard classical planner, including 
partial-order planners (e.g. [Chapman87, McAllester9 I, Pen­
berthy92]). However, a permanent complete ordering must 
then be imposed. This is because different orderings may re­
sult in different sets offailures. Allowing arbitrary orderings 
would compromise the usefulness of any plans constructed in 
response to failures. 

Every stepln the base plan is associated with a partlcuhir 
set of expectations. These are the conditions that, accordIng 
to the domain theory of the planner, will be true and must be 
true for the achievement of the problem goals. Minimally, the 
expectat ions associated with a plan step are its preconditions, 
since these are the conditions believed to be necessary for the 
action to achieve its effects. Maximally, the expectations as­
sociated with a plan step IS the regression of the goal over the 
tail of the plan beginning with the action. If these conditions 
hold immediately prior to executing the action, then accord­
Jrlg [0 the domain theory. the preconditions of every remain­
ing action will be satisfied. Thus. the goal ultimately will be 
achieved. 

During execution, an attempt is made to verify the expecta­
tions associated with each step immediately prior to the step's 
execution. If the expectations are met, execution continues. 
If the expectations are not met, contingent planning is in­
voked. The planning component is called to construct an al­
ternative plan for achieving the goal from the current state. 
The contingent plan may branch back into the base plan atany 
point to reuse some of the actions in the plan. If a contingent 
plan is successfully constructed, the new segment is general­
ized and added into the base plan as a new alternative branch. 
Execution proceeds unt il either the goal is reached or contin­
gent planning fails. [Gervasi094] elaborates on the informa­
tion-gathering issues of completable planning. 

Completable planning employs a probably approximately 
correct (PAC) learning algorithm. A solution is defined with 

respect to () (minimum goal success rate), X (maximum ex­
ecution length) and Y (maximum per episode planning cost). 
A completable plan (i.e. a base plan with augmentations) is a 

solution jf every augmentatIOn IS constructed with cost::;; Y, 
every successful unfolding achieves the goal in ::;; X actions, 

and the probability of plan success is;:::: () . Gi ven a base plan 
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and PAC parameters f (error) , <5 (confidence), and y (solv­

abi lity), if the the probabil ity of generating a so lution is;:::: y , 

then with probability;:::: I -0 the algorithm outputs a plan 

with success;:::: () - f . The number of examples required to 

1 I 1 
generate a solution is polynomial in 7' -, and - . The 
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completable planning approach is thus an attractive, tractable 
learning approach to the problem of imperfect domain theo­
ries. 

Feasible Disjunctive Planning 

Disjunctive planning [Draper94, Peot<J2, Warren76] deals 
with the problem of incompletely specified preconditions by 
allowing actions to be characterized as having multiple possi­
ble outcomes. Goal achievement is then guaranteed by deter­
mining acontingency plan foreachpossibleuutcomeofevery 
action in a plan. However, with this branching potentially oc­
curring for every action in a plan as well as every action in ev­
ery contingency plan and so on, disjunctive planning qui ckly 
becomes unwieldy. With fewer preconditions to achieve, 
planning in the backward direction is decreased. However. 
wuh multiple possible outcomes, planning in the forward di­
rection is increased. Planning approaches to making disjunc­
tive planning more feasible have included associating proba­
bilities with the different outcomes and planning only for the 
most probable ones, as in [Drummond90], and using control 
rules to avoiding useless search. as in [Genesereth93]. These 
approaches buy feasibility at the cost of an increased domain 
engineering burden. 

Completable planning increases the feasibility of the dis­
junctive planning approach in three ways. First, the require­
ment of specifying all the possible outcomes of every action 
is eliminated. The burden on the knowledge engineer is thus 
reduced. Second, contingent planning cost is reduced be­
cause the completable planner plans only in response to fail­
ures. Thus, planning resources are expended only on those 
outcomes likely to occur in the particular problem distribu­
tion the system is facing. Third, total planning cost is reduced 
because of learning. This allows the cost associated with con­
structIng a particular schema or plan segment to be amortized 
over many applications. The increase in feasibility comes at 
the cost of learning. 

Curative Learning vs. Preventive Learning 
Crucial to the preventive learning approach IS a good fail­

ure diagnosis component. Without one, the determined cause 
offailure may be incorrect. Consequently, the attempted fixes 
may be insufficient for preventing future similar failures. Un­
fortunately, failure diagnosis is a difficult problem, not unlike 
the planning problem. The preventive learning approach is 
thus faced with a similar qualityllractability tradeoff. 

In contrast, the curati ve learning approach does not require 
additional knowledge for failure diagnosis and subsequent 
domain theory repair. In problem scenarios where pinpoint­
ing the cause of failure is difficult, completable planning may 
be the better choice. For example, consider a mobile system 



given the task of exploring a partially-charted planet. Be­
cause the information about the domain is incomplete, the 
system cannot anticipate all the situations which might occur. 
Thus, its initial plan may not work. Upon encountering a hos­
tile life form, a completable planning system could decide to 
employ defensive or evasive maneuvers to handle the situa­
tion. It can do this without having to understand why it 
crossed paths with the other agent. It only has to realize the 
anticipated encounter and figure out how to deal with it. The 
preventive alternative is not only more expensive, but poten­
tially dangerous as well, as it may leave the system vulnerable 
while it attempts to explain the unexpected situation. 

A curative learning approach such as compJetabJe planning 
can immediately use the results of its learning. Individual 
failures thus do not automatically result in a failure to achieve 
the problem goals . This makes completable planning partic u­
larly attractive for problem domains where achieving the goal 
is paramount. In a factory, for example, machines may break 
down, schedules may be delayed, and particular raw materials 
may be used up. A preventive sol ution would involve stop­
ping production whenever such unexpected events occurred, 
determining the cause of failure, installing preventive mea­
sures. and starting over. On the other hand , a compietable 
planner could learn ways to handle the failures and continue 
production. Some cost would be Incurred by the delay, but 
production need not come to a standsti ll and incur even great­
er costs. 

The savings achieved by eliminating failure diagnosis do 
come at {he cost of absorbing unrecoverable failures. While 
a preventive approach may result in a handful of robots fall­
ing off a cliff, a curative approach is susceptible to sending 
whole armies into the ravine, as it never learns why the robots 
are getting too close to the edge. Because it does not alter the 
flawed domain theory, the completable planning approach is 
much more sensitive to the quality of the given domain theory. 
However, unless the gi ven domain theory is pathologically in­
correct, the completable planning approach will result in 
greater plan success. 

Beyond Well-Behaved Environments 

Completable planning was developed for weI/-behaved en­
vironments for which often-correct though impeifect domain 
theories can be constructed. For example, an office environ­
ment is well-behaved. Each room is expected to contain ob­
jects such as desks, chairs, and computers. Howeve r, these 
may range in size and type as well as position and location . 
Floors may be known to either be carpeted or tiled . But the 
particular carpet fiber or tile materia! may be unknown. The 
domain is well-behaved because ignorance of the precise 
flooring material , for example , does not drastically affect the 
effects of moving across the floor. An office courier attempt­
ing to move four feet may result in moving four feet and twO 
inches on freshly-waxed tile or three teet and six inches on 
plush carpet. But it is unlikely to result in the courier turning 
two corners, entering another room, and crashing through the 
window. 

The more well-behaved a domain, the better the perform­
ance of completable planning. Experiments with a variety of 
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simulated domains, including robot navigation, a toolbox 
world [Krebsbach92], and parts assembly confirm that aver­
age execution length becomes longer as the probability of ex­
pected outcomes decreases. A greater range of possible out­
comes also increases the planning cost, associated with a plan 
schema. The learning cost is consequently increased as well. 
The upper bound on the success rate of a completable pl anner 
is also affected by the probability of unrecoverable failures. 

There are two ways in which completable planning may be 
more successfully adapted to les~ well-behaved domains. 
First, some aspects of preventive learning may be adopted for 
the purpose of improving the initial domain theory. In the ex­
ploration and manufacturing examples presented earlier, cu­
rative learning techniques could be used to immediately han­
dle unexpected situations. Meanwhile, a deeper analysis 
could be performed offline for the purpose of determming 
more long-term solutions. These could then be installed la ter 
at a more convenient time. The complementary s trengths of 
preventive and curative learning approaches make a hybrid 
approach attractive. 

A second way to make completable planning moreapplica­
ble to less well-behaved domains is to alter the planning com­
ponent. Completable planning was designed around a classi­
cal, deliberative planner. By using planners more suited to 
dynamiC, unpredictable environments, the completab!e plan­
ning approach may be made more applicable to less well-be­
haved domains. Forexample, the system couid employ an ap­
proach interleaving planning and execution. Instead of 
learning monolithic plan schemas, a compietable planner 
couid learn smaller general plan segments. This would be 
particularIy useful In domains where different plans often 
contam Similar segments but are rarely exactly alike. For ex­
ample, the daily plan for a pickup and deli very service will a l­
ways involve transporting packages between destinations, 
but the destinations as well as the packages will change. 
Through completable planning, an interleaving system could 
learn general segments such as transporting a paCkage from 
the east side to the west side. These segments could then be 
combined as appropriate to the other pickup and delivery 
tasks of the day. Developing the completable planning ap­
proach through the investigation of different learning tec h­
niques and planning paradigms raises many interesting issues 
for future research. 
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