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Abstract

An overview on the development of QSPR/QSAR
equations using various descriptor mining techniques and
multilinear regression analysis in the framework of
program CODESSA (Comprehensive Descriptors for
Structural and Statistical Analysis) is given. The
description of the methodologies applied in CODESSA is
followed by the presentation of the QSAR and QSPR
models derived for eighteen molecular activities and
properties. The properties cover single molecular species,
interactions between different molecular species,
properties of surfactants, complex properties and
properties of polymers.

Historical Introduction
The fast progress in modern computer technology has
created an entirely new environment for the efficient use of
the theoretical constructions of natural science in many
areas of applied research. The theoretical approach has
proven to be especially beneficial in chemistry and allied
sciences, where the experimental study and synthetic
development of new compounds and materials can
frequently be time consuming, expensive or even
hazardous. Contemporary quantum theory of molecular
matter and the corresponding ab initio computational
methods can, in principle, predict the properties of isolated
small molecules with an accuracy comparable to the
experimental precision. However, the majority of
industrially and environmentally important chemical
processes, and all biochemical transformations in living
cells take place in heterogeneous condensed media. The
extreme complexity of such systems usually prohibits use
of ab initio theory and thus the relationship between the
chemical and physical properties and the molecular

structure in these systems is often poorly described and
understood.

The direct development of empirical equations that are
commonly referred to as the quantitative structure-
activity/property relationships (QSAR/QSPR) has been an
attractive alternative approach to predict molecular
properties in complex systems. Notably, the QSAR
methodology has been extremely productive in
pharmaceutical chemistry and in computer-assisted drug
design. Thousands of potential new therapeutic agents have
been first developed on a computer screen before the
attempted implementation of selected examples in a
synthetic laboratory. In analytical chemistry, QSPR
equations are commonly used to predict spectroscopic,
chromatographic and other analytical properties of
compounds. In recent years, the QSPR approach has been
rapidly expanding to diverse areas of industrial and
environmental chemistry.

In most contemporary applications, empirical molecular
descriptors that rely on some experimental data have been
used in the development of QSAR/QSPR equations. Such
descriptors, ranging from the original Hammett substituent
σ-constants to the highly popular partition coefficients
between water and octanol (logP) are, strictly speaking,
restricted to those compounds for which the necessary
experimental data are available. Another shortcoming of
experimental descriptors evolves from the fact that many of
them reflect a complicated combination of different
physical interactions and thus their appearance in a
QSAR/QSPR equation may be difficult to interpret. An
alternative approach is to use molecular descriptors which
can be derived using only the information encoded in the
chemical structure of the compound. Importantly, such
theoretical descriptors can be developed for compounds
that are experimentally unexplored, unavailable, or even
unknown.
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The objective of this review is to provide a compilation
of the utility of theoretical molecular descriptors in a
variety of topics of chemistry, technology and related areas
of research. In this review we have, for reason of space,
restricted ourself mainly to work carried out using the
CODESSA software, developed by our groups on both the
MS Windows (Katritzky, Lobanov, and Karelson 1994a;
Katritzky, Lobanov, and Karelson 1995) and the Unix
platforms (Semichem 1995). QSPR treatments have been
developed by many other groups. Pioneer work was and is
being done in the groups of (in alphabetical order) Balaban
(Balaban 1997), Bodor (Bodor, Harget, and Huang 1991),
Benfenati (Benfenati and Gini 1997), Clementi (Pastor,
Cruciani, and Clementi 1997), Hilal (Hilal, Carreira, and
Karichoff 1994), Hopfinger (Hopfinger, Koehler, and
Rogers 1995), Jurs (Jurs, Chou, and Yuan 1978), Kier and
Hall (Kier and Hall 1986), Randic (Randic, Jerman-Blazic,
and Trinajstic 1990), Trinajstic (Randic and Trinajstic
1993), and the references quoted are but illustrative. In our
groups, we have tried to obtain as general a relationship as
possible, utilizing data sets of wide structural diversity and
we have tried to address problems of technological as well
as of academic interest.

Methodology

Geometry Optimization
The derivation of theoretical molecular descriptors
proceeds from the chemical structure of the compound.
Accordingly, the property of interest and corresponding
structures need to be prepared in a format acceptable for
the computer. In practice there are numerous ways to
prepare the data and each researcher can work out an
individual approach. For the users of CODESSA, the key
points of the data preparation are determined by the
available computer-readable formats of the structure of
compounds. The CODESSA software accepts various
standard structure formats as input: MDL .mol file;
Hyperchem .hin file; SYBYL .mol file; MOPAC/AMPAC
regular .out file. In most cases, the use of the correct 3D
molecular structure of the compounds is vitally important
to predict correctly the molecular properties or the
biological activity. Therefore, the geometry of the
molecules needs to be optimized to obtain the correct shape
and conformation of the molecule. A variety of molecular
modeling programs are available that employ different
molecular mechanics algorithms for the geometry
optimization. The following steps have been frequently
used for the preparation of data and generation of 3D
structures: (i) input of the molecular geometry using a
graphical interface or by downloading from the
corresponding database; (ii) preliminary geometry
optimization using molecular mechanics; (iii) refinement of
the 3D molecular structure and calculation of electronic
properties of compounds using (semiempirical) quantum

mechanical methods. The next step, the calculation of
molecular descriptors from these data, comprises the kernel
of the CODESSA software.

Descriptor Generation
The CODESSA software package includes a tool for
effective descriptor generation based on the information
given by the input file for the structure. All these
descriptors are derived only from the structure and
calculated electronic properties of the molecules. The
number of descriptors calculated depends on the
constitution of the molecule and the selections made by the
user. In most cases, more than 400 molecular descriptors
can be  calculated for a single molecule in the first instance.
By combining the available standard descriptors using a
special tool within the CODESSA program, this number
can be substantially increased. An option for the
development of new descriptors also provides the
possibility to calculate fragment descriptors.

The molecular descriptors available in CODESSA are
subdivided into various subsets according to the molecular
features they reflect. Constitutional, topological, geometric,
electrostatic, quantum-chemical, thermodynamic and
solvation descriptors can thus be distinguished. However,
such classification is somewhat arbitrary, because some
descriptors are sensitive to several molecular features. The
origin of various descriptors has been extensively described
elsewhere (Katritzky, Lobanov, and Karelson 1994b;
Murugan et al. 1994; Katritzky et al. 1996a; Katritzky et al.
1996b; Katritzky et al. 1997a) and we therefore limit
ourselves here to a short classification of theoretical
molecular descriptors.

Constitutional descriptors depend only on the chemical
composition of the molecule and describe very simple
dependencies such as the additivity of molecular properties
from constant fragment contributions. Topological
descriptors represent one of the most widely used class of
molecular descriptors that are derived from the two-
dimensional structural formula of the molecule. These
descriptors are sensitive to molecular connectivity and
reflect the branching of the molecule. Electrostatic
descriptors reflect the structural charge distribution in the
molecules. In many cases they are also related to the
molecular topology and composition. Partial charge
distributions can be calculated using various empirical
schemes that are based on the electronegativities of atoms
(Katritzky, Lobanov, and Karelson 1994a) or Mulliken
charges obtained from the quantum mechanical
calculations. Geometrical descriptors reflect the three-
dimensional structure and shape of the molecule. A large
number of molecular and local quantities characterizing the
reactivity, shape and binding of a molecule as well as its
molecular fragments and substituents can be defined as
quantum chemical descriptors (Karelson, Lobanov, and
Katritzky 1996). Quantum mechanical calculations have
become routine even for rather large molecular systems and
therefore the information related to the structure and



electronic distribution can be easily and efficiently used in
deriving new descriptors and explaining the properties of
molecules. Thermodynamic descriptors, which include the
heat of formation, entropy and heat capacity of the
compound, can be derived using the MOPAC/AMPAC
software. Solvatational descriptors are also based on the
quantum mechanical calculations and can be obtained using
SCRF2.2 program of self-consistent reaction field model
implemented in the MOPAC package (Karelson et al.
1989). A recent trend is the development of descriptors that
reflect the 3-dimensional properties of molecules (Cramer,
Famini, and Lowrey 1993; Hopfinger, Burke, and Dunn
1994; Cho, Garsia, and Bier 1996; Goodford 1996;
Balaban 1997) which should be more appropriate to
describe intermolecular interactions under real conditions.

Statistical Methods
The CODESSA software involves two menus that are
needed for the development of QSAR/QSPR equations on
the large molecular descriptor basis. The first of them
features the preliminary analysis of data whereas the
second incorporates various multivariate regression
analysis techniques (Katritzky, Lobanov, and Karelson
1994a; Katritzky, Lobanov, and Karelson 1995).

The preliminary analysis tool involves one-
dimensional, two-dimensional and multivariate analysis of
property(s) and descriptor(s). Statistical characteristics of
data such as the mean values, dispersions, standard
deviations and variation coefficients can be calculated
automatically both for the descriptors and for the
properties. Also, the requirement of  the  normal
distribution of data is checked according to various criteria.
Two-dimensional analysis makes it possible to analyze the
intercorrelation of descriptors. This procedure is mandatory
to avoid the chance correlations due to the collinearity of
the descriptors. The multivariate statistical analysis
methods represented in CODESSA involve principal
component analysis (PCA), nonlinear iterative partial last
squares (NIPALS) and target transformation PCA
techniques.

The regression analysis tool involves various
techniques based on the (multi-)linear regression analysis
to find the best QSPR/QSAR representation of a property
studied. Simple linear and multi-linear regression methods
can be used to develop relationships between the property
and specific descriptors. Several strategies are encoded in
CODESSA that can be used to develop the QSPR/QSAR
equations with the maximum predictive and descriptive
power. The strategies of the heuristic and the best multi-
linear regression approaches are usually those chosen first
(Katritzky, Lobanov, and Karelson 1994a; Katritzky,
Lobanov, and Karelson 1995; Katritzky et al. 1996c;
Katritzky et al. 1996b; Katritzky, Mu, and Karelson
1997b). These strategies are both based on the stepwise
forward selection of scales that proceed from the statistical
significance and collinearity control of the descriptors
selected into the correlation equations. One can also use

principal component regression analysis, NIPALS
regression analysis, or non-linear regression analysis to
develop the model with the best predictive and descriptive
power. However, it should be emphasized that the
development of the best QSAR/QSPR model for each
particular property/activity often involves a combination of
different approaches. Powerful strategies, already utilized
by other groups in QSPR analysis, include methods that
rely on neural networks (Bodor, Harget, and Huang 1991;
Gasteiger and Zupan 1993; Egolf and Jurs 1993), simulated
annealing (Sutter, Dixon, and Jurs 1995) and various data-
and knowledge-mining techniques.

Available Programs
Many commercially available statistical software packages
(STAT-GRAPHICS, MATLAB, LINPACK, etc.) (Meloun,
Militky, and Forina 1992) include the standard multi-linear
least squares technique and can in principle be used to
develop QSAR/QSPR correlations. However, their
extensive use in the QSAR/QSPR development is often
inconvenient because of the need (i) to calculate and format
the molecular descriptors separately using different
software , (ii) to select manually individual descriptor into
correlations, which is impractical for a large number
(several hundreds) of virtual descriptor scales.

A number of software packages have been developed
specifically for structure-activity/property relationship
studies. These packages include, as a rule, modules for
structure input and for the calculation of empirical and also
non-empirical descriptors. In most cases, various
techniques for the statistical data treatment are also
incorporated into the package. For instance, the ADAPT
(Automated Data Analysis and Pattern Recognition
Toolkit) program of Jurs (Jurs, Chou, and Yuan 1987;
Stuper, Brugger, and Jurs 1979) includes several methods
to select the best subset of descriptors and the mapping of
these descriptors onto the known biological activity or
physical property using regression analysis or
computational neural networks. ADAPT has also a large set
of modules to generate structure-based descriptors
classified as topological, geometrical, electronic and
physicochemical. The TSAR software is a fully integrated
QSAR package distributed by the Oxford Molecular Group
(OMG). Using TSAR the molecular structures, properties
and associated data can be conveniently treated in one
straightforward chemical spreadsheet. It also combines the
data visualization with the complex statistical analysis and
works as a front-end to several software packages
distributed by OMG. The QSAR+ is a module for the
Cerius2 program distributed by the Molecular Simulations
Inc. QSAR+ allows the calculation of various electronic,
conformational, shape and thermodynamic descriptors. It
also offers linear regression analysis, stepwise and multiple
linear regression analysis, principal component analysis
and principal component regression, and partial least
squares techniques for developing QSAR models. The
resulted models can be validated with cross-validated



regression coefficients (R2
cv), bootstrap R2, and the Fisher

significance test. The module Descriptor+ extends the
range of QSAR analysis in Cerius2 by supplying a wide
range of generic descriptors. The SPARC (Performs
Automated Reasoning in Chemistry) (Hilal, Carreira, and
Karichoff 1994) software is a specific package for the
prediction of physical properties and chemical reactivity
parameters of organic compounds from the molecular
structure data. It involves statistical methods related to the
conventional linear free energy relationship (LFER) and
structure activity relationships.

Some of the QSAR/QSPR programs are designed to
handle specific data or compounds. A good example is
TOPKAT (developed by Health Design, Inc. and
distributed by OMG) which computes and automatically
validates an assessment of the toxic and environmental
effects of chemicals based on developed QSPR/QSAR
models.

Results

Properties of Single Molecule Species

Boiling Point. The boiling point of a compound is
predetermined by the intermolecular interactions in the
liquid and by the difference in the molecular internal
partition function in the gas phase and in the liquid at the
boiling temperature. Therefore, it is expected to be related
directly to the chemical structure of the molecule and
indeed numerous methods have been developed for
estimating the normal boiling point of a compound from its
structure.

Our first study considered the boiling points of
pyridines and piperidines (Murugan 1994). A data set of 84
compounds was used to generate a QSPR model (R2 =
0.898) which involved six descriptors based only on
molecular structure (Murugan 1994). A subsequent related
study was limited to the boiling point of substituted
pyridines (Katritzky et al. 1996c). A set of 64 non-
associated (incapable of hydrogen bonding) pyridines
resulted in a good two-parameter correlation (R2 = 0.927)
for the boiling points. The descriptors showed the
importance of the effects related to the molecular mass
(expressed by the gravitation index) and intermolecular
dipole-dipole interactions in the liquid media. The full set
of pyridines (85 compounds) included also those
derivatives, which form hydrogen bond(s). A six-parameter
correlation model was derived (R2 = 0.948) with four
additional descriptors which describe the hydrogen bond
accepting/donating capability of compounds at the intra- or
intermolecular level (Katritzky et al. 1996c).

These successful studies of small groups of compounds
encouraged us to work with data sets which comprised a
large structural and functional variability. Such a QSPR
treatment of normal boiling points was carried out for a set

of 298 structurally variable organic compounds (Katritzky
et al. 1996b). A highly significant two-parameter
correlation (R2 = 0.9544, s = 16.2K) was obtained that
involved theoretical descriptors with clear physical
meaning. The first descriptor (gravitation index) is
connected with the bulk cohesiveness, dispersion and
cavity-formation effects in liquids. The second descriptor,
the area-weighted surface charge of the hydrogen bonding
donor atom(s), is connected with the hydrogen bonding
ability of the molecule. A more refined QSPR model (with
R2 = 0.9732 and s = 12.4K) included, in addition, the most
negative atomic partial charge and the number of the
chlorine atoms in the molecule. The four parameter
equation offered an average predicted error of 2.3% for a
standard set of compounds with an average experimental
error of 2.1%. The QSPR equations developed allowed
remarkably accurate predictions of the normal boiling
points for a number of simple inorganic compounds,
including water.

In follow-up work, the data set of 298 compounds was
extended to provide a still more diverse and general data
set of 584 organic compounds containing C, H, N, O, S, F,
Cl, Br and I atoms, compiled and divided into subsets by
molecular functionalities (Katritzky, Lobanov, and
Karelson 1998a). Additional descriptors were sought for
each subset which together with the gravitation index and
the charged surface area of hydrogen donor atoms, would
model the boiling points. A final global eight-parameter
correlation model had R2 = 0.965 and a standard error of
15.5K that is close to the estimated experimental error. The
model appears to be general for a wide variety of organic
compounds and expands and refines the conclusions of
previous correlation models of boiling point.

Melting Point. Another important physical property of
pure compounds is the melting point. The melting point is a
fundamental physical property specifying the transition
temperature when the solid and liquid phases can coexist.
Besides its direct utility as an indicator to whether a
compound is solid or liquid under normal conditions,
melting points have numerous applications in biochemical
and environmental sciences due to their relationship with
solubilities. Because of the complex interactions involved,
the melting temperature is expected to be a difficult
property to describe by a uniform QSPR model for
compound sets with large structural variability.
Additionally, many compounds crystallize in more than one
polymorphic form, with different melting points. Therefore,
our studies have been limited to distinct groups of
compounds.

The melting points of 141 pyridines and piperidines
were used to develop a QSPR model for these heterocycles.
Six descriptors gave a reasonably good correlation of
melting points with R2 = 0.831 and cross-validated R2

cv =
0.816 (Murugan et al. 1994). Later (Katritzky et al. 1996c),
the data set was limited to pyridines only and updated with
additional data points. The melting points of pyridine and
140 substituted pyridines yielded in a six-parameter



correlation with R2 = 0.857, R2
cv = 0.843 and standard

deviation s = 36.1K. The most important descriptor reflects
the importance of the hydrogen bonding ability of the
compound. The other descriptors can be related to
intermolecular interactions in condensed media, crystal
lattice packing and the fact that solid insulators with a
smaller energy gap between the valence band and the
unoccupied band are more resistant to disordering
(melting).

Another set comprised included 443 mono- and
disubstituted benzenes. A correlation equation including
nine descriptors (R2 = 0.8373, s = 30.19K) was obtained
for the whole set (Katritzky et al. 1997a). Three other six-
parameter equations described the ortho-, meta-, and para-
substituted compounds subsets. The importance of
hydrogen bonding descriptors was again reflected in these
QSPR models. Notably, the same hydrogen bonding
descriptor (the area-weighted surface charge of the
hydrogen bonding donor atom(s)) was also important in the
prediction of the boiling points (Katritzky et al. 1996b).
Apart from the hydrogen bonding ability of the molecules,
the melting point is governed by the molecular packing in
crystals (effects from molecular shape, size and symmetry),
and other intermolecular interactions such as charge-
transfer and dipole-dipole interactions in the solid phase.

Critical Temperature.  The critical temperature is one of
the important properties revealing the intermolecular
interactions between molecules in the liquid state. The
development of QSPR models for critical temperatures
using CODESSA methodology has been successful. One-
and three-parameter QSPR models were developed for sets
of 76 hydrocarbons and of 165 structurally diverse
molecules, respectively (Katritzky, Mu, and Karelson
1998b). The one parameter model utilizing the cube root of
the gravitation index allows the prediction of critical
temperatures for hydrocarbons with an average error of
13.9K (with R2 = 0.9526, R2

cv = 0.9472), while the three
parameter prediction of critical temperatures for diverse
molecules has an average error of 16.8K (with R2 = 0.955,
R2

cv = 0.9547). The models confirmed that molecular size-
dependent bulk effects (dispersion and cavity-formation) in
the liquid state can be represented by functions of the
gravitation index, whereas the hydrogen-bonding self-
association interactions can be represented by the area
weighted surface charge or hydrogen bonding donor atoms.
However, the donor hydrogen structural features alone do
not account for the differences among various hydrogen-
bonding acceptors, and this inadequacy is more serious for
the critical temperature than for the boiling point. The
supplementary descriptors needed to account for the
differences of hydrogen-bonding acceptors and branching
effects in isomers differ for the two properties.

Flash Point. Preliminary correlations of flash points have
given moderate results. A modest correlation (R2 = 0.758)
was obtained for the flash points of 126 pyridines
(Murugan et al. 1994). Flash point appears to be a difficult

physical property to predict unless some provision has been
made to separate compounds into similar functional groups.

A reduced data set of 121 pyridines with the exclusion
of experimentally questionable data was used to develop a
six parameter equation for the flash points (Katritzky et al.
1996c) with R2 = 0.837 (R2

cv = 0.832, s = 16.7K). The
descriptors employed in this equation indicate the
importance of molecular bulk and hydrogen bonding
effects in determining the flash point (Katritzky et al.
1996c).

Vapor Pressure. Vapor pressure determines the volatility
of a chemical. It governs the exchange rate of a chemical
across an air-water interface through Henry’s Law
Constant. Accurate vapor pressures of chemicals of low-
volatility are often not available due to analytical
difficulties. In such cases, the vapor pressure may be
predicted using either the Clapeyron-Clausius equation and
known values of the enthalpy of vaporization and the
respective compressibility factor, or by a group-
contribution method. Alternatively, the quantitative
structure-property relationship approach is highly
promising for the estimation of vapor pressures from
descriptors derived solely from the molecular structure by
fitting into experimental data. The method is more general
and is particularly suitable for the prediction of the vapor
pressure of new chemical products.

We applied regression analysis tools in CODESSA to
develop a QSPR model for the vapor pressure. The best
linear five-parameter correlation model (R2 = 0.949, R2

cv =
0.947, s = 0.331) applied to a set of 411 compounds
(Katritzky et al. 1998c). The model indicates that vapor
pressure is governed by structure factors similar to those
already found for the boiling point. The gravitation index
over all bonded atoms reflects the effective mass
distribution in the molecule and effectively describes the
molecular dispersion forces in the bulk liquid media. The
hydrogen-bonding donor charged surface area also
represents the forces of intermolecular attraction,
particularly the hydrogen bonding ability of the compound.
Three additional descriptors compensate for an inadequate
description of the intermolecular interactions occurring in
molecules containing fluorine, chlorine or nitrogen atoms.
The cross-validated correlation coefficient shows the
regression equation is of high stability and that the standard
error approaches the experimental error of 0.32 log units.

Refractive Index. The refractive index (n) is one of the
most important optical properties and is frequently
employed to characterize organic compounds. The
refractive index is defined as the ratio of the velocity of
light in vacuum to the velocity of light in the substance of
interest. It has been used as an indicator of the purity of
organic compounds, but the relationship of refractive index
to other optical, electrical and magnetic properties has
more significance. The refractive index is connected to
polarizability, critical temperature, surface tension, density,
and boiling point. Refractive index is also widely used in



material science to evaluate the applicability of materials
for various purposes. Prior to our work, no general QSPR
relationship relating refractive index of organic compounds
with the chemical structure had been proposed.

A five-parameter correlation equation (R2 = 0.945, R2
cv

= 0.937, s = 0.0155) was obtained for a diverse set of 125
organic compounds (Katritzky, Sild, and Karelson 1998d).
The descriptors reveal several interaction mechanisms
important for the refractive index. Specifically, they
include the polarizability and the polarity of the molecule,
the charge distribution in the molecule, hydrogen bonding
interactions in the medium, and molecular size dependent
effects in the molecule. The calculated cross-validated
correlation coefficient confirms the stability of the final
QSPR model. The predicted values have an the average
error of 0.8% when compared with the experimental
values, therefore this QSPR relationship can be used for the
prediction of refractive indices with a high degree of
confidence.

Density. The normal density (i.e. the density at 1 atm and
20°C) is one of the major physicochemical properties used
to characterize and identify a compound. Besides being an
indicator for the physical state (condensed phase or gas) of
a compound, the density also provides an indication of its
utility in certain industrial applications. In addition,
densities can be used to predict or estimate other physical
properties such as critical pressures.

A general QSPR treatment of 303 structures (containing
C, H, N, O, S, F, Cl, Br and I) incorporating a wide cross
section of classes of liquid organic compounds provided a
good two-parameter correlation for densities (R2 = 0.9749,
s = 0.0458 for density ρ20) (Karelson and Perkson 1999).
The main descriptor involved in this correlation represents
the intrinsic density of the compound calculated as the ratio
of the molecular mass and the molecular volume
(represented by the overlapping van der Waals’ atomic
spheres model) of the molecule. The second term is defined
as the average electrostatic interaction per atom in the
molecule, a term that is formally analogous to the
Madelung energy in ionic crystals. Correlations were also
developed for individual classes of organic liquids.

Interactions Between Different Molecular Species

Octanol-water Partition Coefficient. A six-parameter
CODESSA correlation model constructed for octanol-water
partition coefficient of 71 pyridines showed R2 = 0.943,
R2

cv = 0.929, s = 0.19 (Katritzky et al. 1996c). The
descriptors indicate the importance of the constitution and
topology of the compounds. The electrostatic and structural
features of the N atom were reflected by four descriptors
connected with the hydrogen bond acceptor ability of
pyridines in water and in octanol.

Aqueous Solubility of Liquids and Solids. The aqueous
solubilities (Sw) of organic compounds are very important
in many research areas, such as pharmaceutical or
environmental science. A confident prediction of the
aqueous solubility of a compound could greatly assist drug
design by avoiding the synthesis of unsuitable compounds.
The many different predictive methods available fall into
the following types: (1) Group contribution methods
derived from measured aqueous solubilities; (2)
Correlations with experimentally determined
physicochemical properties such as boiling point,
molecular surface area, molar volume, chromatographic
retention time and others; (3) Correlations with descriptors
calculated only from molecular structure.

The aqueous solubilities of a set of 96 hydrocarbons
and 126 halogenated hydrocarbons excluding compounds
capable of forming hydrogen bonds were correlated by a
three term equation using descriptors calculated solely from
molecular structure, with a correlation coefficient of 0.980
and a standard error of 0.386 log units, compared to an
estimated average experimental error of 0.24 log units
(Huibers and Katritzky 1998). This allows the estimation of
aqueous solubilities of hydrocarbons and halogenated
hydrocarbons (including PCBs). The key descriptor is the
molecular volume, modified by topological and
constitutional terms to account for features that increase the
solubility of the molecules.

To develop a general QSPR model for calculating the
aqueous solubilities of diverse organic compounds, the data
set was enlarged to 411 compounds (Katritzky et al. 1998c)
and a six-parameter correlation model (R2 = 0.879, R2

cv =
0.874, s = 0.573) was derived. Solute-solvent interactions
are major determining factors for the aqueous solubilities
of compounds and accordingly the descriptors involved in
the model are related to the polarizability of the molecule,
cavity-size effects (dispersion and cavity formation), shape
of the molecule and specific solute-solvent interactions.
The standard error of the model is within the estimated
experimental error of 0.58 log units.

Aqueous Solubility of Gases and Vapors (Water-Air
Partition Coefficients). The partitioning of non-
electrolytes between air and water or aqueous solutions is
of significant chemical and thermodynamical interest as
well as of great practical importance. The partitioning of
organic gases and vapors into water (Lw) has been studied
using CODESSA on two sets of compounds (Katritzky,
Mu, and Karelson 1996d). The first correlation equation
(R2 = 0.977, R2

cv = 0.975, s = 0.20K) gives an excellent
prediction for 95 alkanes, cycloalkanes, alkylarenes, and
alkynes with two descriptors which reflect the effective
mass distribution and the degree of branching of the
hydrocarbon molecule, and adequately represent the
effective dispersion and cavity formation effects for the
solvation of nonpolar solutes in water. An enlarged set of
organic compounds (406) with far greater structural
variability gives a good correlation equation (R2 = 0.941,



R2
cv = 0.939, s = 0.53) involving five descriptors. These

descriptors, which are completely different to those for the
set of 95 nonpolar solutes, account for the dispersion
energy of polar solutes in solution, the electrostatic part of
the solute-solvent interaction and hydrogen-bonding
interactions in liquids.

Vapor pressure (VP) and water solubility (Sw) are
fundamental physical parameters and they can be used to
derive many other properties. The relationship between
water-air partition coefficient (Lw), water solubility (Sw)
and vapor pressure (VP) is important because water
solubility and vapor pressure can be determined more
easily than water-air partition coefficients. Using the direct
relationship Lw=24.45Sw/VP (Katritzky et al. 1998c) we
could predict Lw by VP and Sw through experimental data
and/or through the appropriate QSPR models for VP and
Sw. The QSPR models also help the understanding of the
different structural factors which determine VP, Sw and Lw.

Values for vapor pressure and aqueous solubility were
predicted by the models described above for the diverse set
of 411 compounds (Katritzky et al. 1998c). They were then
used to predicted water-air partition coefficients according
to the derived formula. The result was compared with
experimental data. The mean standard error of this
prediction is 0.63 log units, which is close to the standard
error of Lw predicted using the equation derived directly
from the experimental values of Lw (Katritzky, Mu, and
Karelson 1996d). We conclude that hence this procedure is
a valid approach to calculate Lw by using QSPR predicted
values of VP and Sw. It is apparent that the QSPR models
of Sw and VP (Katritzky et al. 1998c) have similar leading
structural determining factors in comparison with the direct
QSPR equation of Lw (Katritzky, Mu, and Karelson
1996d).

Solvent Polarity Scales. The use of solvents is
fundamental to the practice of chemistry, and the choice of
an appropriate solvent can be anything but trivial. To assist
chemists in their understanding of solvent properties and in
the choice of solvent, many solvent polarity scales have
been developed. These scales are based on diverse physico-
chemical phenomena including reaction rates,
solvatochromic effects, reaction enthalpies, etc. Frequently
the actual mechanism of the solvent influence on a physical
or chemical process is unclear. The same is often true about
the individual polarity scales.

A three-parameter QSPR equation with R2 = 0.936 (R2
cv

= 0.900) was developed for the unified nonspecific solvent
polarity scale (S’) on the basis of theoretical molecular
descriptors (Katritzky, Mu, and Karelson 1997b). It
correlates S’ for 25 structurally diverse solvents within a
5% average absolute error. The correlation equation
includes the following three orthogonal theoretical
molecular descriptors: (i) the average structural information
content (order 0); (ii) the weighted partial negative surface
area; and (iii) the hydrogen-bonding acceptor surface area.
These descriptors provide insight into nonspecific solvation
at the molecular level. They reflect adequately the solvent-

solute interactions in the internal cavity of the solvents.
Predictions using this three-parameter model are used to
extend available S’ values to a total of 67 solvents. The
same solvent polarity scale has been also studied using
CODESSA to enable the prediction of the S’ values from
quantum-mechanical calculations (Mu, Drago, and
Richardson 1998).

In a more comprehensive study, the most important
solvent polarity scales were collected and QSPR models
developed for each of them. Altogether 45 different solvent
polarity scales and 350 solvents were analyzed. The QSPR
models for each of the scales were constructed using only
theoretical descriptors. From these, 27 of the 45 models
give R2 > 0.90 and only two had R2 < 0.82 (Katritzky et al.
1999a). This study allowed a unified PCA treatment of
solvent polarity where the missing values in the polarity
scales are calculated from correlation models derived with
CODESSA (Katritzky, Tamm, and Karelson 1999b). A set
of 40 scales and 40 solvents showed that three main
principle components accounted for a total of 74% of the
variance. Moreover for 29% of the scales these three
components described ≥ 88% of the variance. The PCA
loadings showed clear clustering of the scale is a 3
dimensional space in a chemical rational manner. Similarly
the PCA scores classified the solvent intelligently
(Katritzky, Tamm, and Karelson 1999b).

CODESSA has been also used to examine the
dimensionality of intermolecular interactions in liquids and
solutions (Stavrev, Tamm, and Zerner 1996; Karelson
1997a; Karelson 1997b).

GC Retention Time and Response Factor. A good six-
parameter QSPR model was obtained for the retention
indices of 50 polyalkylated pyridines (R2 = 0.971, R2

cv =
0.966, s = 017.8) (Katritzky et al. 1996c). The descriptors
involved in the equation reflect the relative position and
size of alkyl groups connected to the pyridine ring. They
also show the importance of intermolecular interactions
between solute and stationary phase, upon which gas
chromatographic retention depends.

A general QSPR treatment on 152 individual structures
incorporating a wide cross-section of classes of organic
compounds provided good six-parameter correlations for
gas chromatographic retention times (R2 = 0.959, R2

cv =
0.955, s = 0.515 for tR) and for Dietz flame-ionization
response factors (R2 = 0.892, R2

cv = 0.881, s = 0.0543 for
RFDietz) (Katritzky et al. 1994a). In the case of tR, the most
important descriptors were α-polarizability and the
minimum valency at an H atom, describing the dispersional
and hydrogen-bonding interaction between the compound
studied and the gas chromatographic medium, respectively.
In the case of RF, the most important descriptors were
found to be the relative weight of the "effective" carbon
atoms and the total molecular one-center one-electron
repulsion energy in the molecule. The possibility to predict
value is of particular significance for the response factors,
which are independent of GC column parameters. These
results are recently reevaluated using improved procedures



in CODESSA and new methods for the efficient variable
selection for multilinear regression analysis (Lucic et al.
1999).

Surfactant properties

Critical Micelle Concentration. The strategies
implemented in CODESSA have been successful in
developing QSAR models for complex surfactant
properties such as critical micelle concentrations. We
found that for these studies fragment descriptors, based on
the two clearly differentiated parts of a surfactant, were
applicable.

The first QSPR study was performed on the critical
micelle concentrations (cmc) of nonionic surfactants
(Huibers et al. 1996). A general three-parameter structure-
property relation was developed for a diverse set of 77
nonionic surfactants (R2 = 0.9849, R2

cv = 0.9823, s =
0.1697) employing topological descriptors calculated
separately for the hydrophobic and hydrophilic fragments
of the surfactant molecule. The three descriptors represent
contributions from the topology of the hydrophobic group,
and the size of the hydrophilic group. The cmc of nonionic
surfactants in aqueous solution is primarily determined by
the hydrophobic part of the molecule. The logarithm of the
cmc decreases with an increase in the size of the
hydrophobic fragment and increases with an increase in the
relative size of the hydrophilic fragment. Hydrophobicity is
affected by the branching of the hydrophobic fragment and
by the presence of heteroatoms.

Relationships between the molecular structure and the
cmc of anionic surfactants were investigated in a second
study (Huibers et al. 1997a). The measured cmc for 119
anionic structures were considered, representing sodium
alkyl sulfates and sodium sulfonates with a wide variety of
hydrophobic tails. The best multiple linear regression
model involved three descriptors and had a correlation
coefficient of R2 = 0.940 (s = 0.2173). A still better
correlation (R2 = 0.986) was obtained using three
descriptors for a subset of 63 structures, with variation only
in the hydrophobic domain.

Cloud Point. The cloud point is an important property of
nonionic surfactants. Below this temperature a single phase
of molecular or micellar solution exists, above it the
surfactant loses sufficient water solubility and a cloud
dispersion results.

A general empirical relationship (R2 = 0.937) has been
developed for estimating the cloud point of pure nonionic
surfactants of the alkyl ethoxylate class (Huibers, Shah, and
Katritzky, 1997b). For a set of 62 structures, composed of
linear alkyl, branched alkyl, cyclic alkyl, and alkylphenyl
ethoxylates, cloud points can be estimated to an accuracy
of ± 6.3ºC (3.7ºC median error) using the logarithm of the
number of ethylene oxide residues and three topological
descriptors that account for hydrophobic domain variation.

Complex Properties and Properties of Polymers

Polymer Glass Transition Temperature. The QSPR
description of polymer properties represents an interesting
challenge since many theoretical molecular descriptors for
the high molecular weight compounds are difficult to
calculate, or cannot be calculated directly. The glass
transition temperature, Tg, also known as the glass
temperature or the glass-rubber transition temperature, is
one of the most important properties of amorphous
polymers. In the vicinity of Tg, a polymer experiences a
sudden increase in the rate of molecular motions and as a
result undergoes a series of conformational
transformations.

Using the CODESSA software, an optimum four-
parameter QSAR model (R2 = 0.928, R2

cv = 0.890) was
derived for glass transition temperatures for a homogenous
set of 22 homo- and co-polymers (Katritzky et al. 1996a).
Removing an obvious outlier from the data set improved
the correlation to R2 = 0.983. The descriptors in the
correlation equations reveal that the glass transition
temperatures of the polymers studied are strongly
influenced by the difference between the positive and
negative partial surface areas normalized by the number of
atoms (DPSA). As expected the polymers with large DPSA
values have stronger intermolecular electrostatic
interactions and therefore display higher glass transition
temperatures. The next most important descriptor is the
topological Randic index computed for the repeating unit
and then extrapolated through multiplication by log N (N -
number of fragments), which reflects the branching level of
a molecule. According to the QSPR model developed, a
higher degree of branching in the repeating fragment
structure elevates the glass transition temperature. The third
parameter, the number of OH groups, is of the expected
significance because it accounts for the presence of
hydrogen bonds in the polymer matrix.

A five-parameter QSPR correlation (R2 = 0.946 and the
standard error 0.33 K g mol-1) of molar glass transition
temperatures (Tg/M) for a diverse set of 88 high molecular
weight polymers was developed as an extension of the
earlier work to more diverse structures (Katritzky et al.
1998e). The polymers were modeled with three repeating
units for each polymer and the descriptors were calculated
only for the middle unit of the trimeric structure. In this
way the influence from adjacent repeating units was also
taken into account. The descriptors in the model relate to
the rotational flexibility of the molecules at the Tg, the
branching of the polymer molecules, hydrogen bonding
interactions, and electrostatic interactions between the
polymer molecules. This approach is applicable, in
principle, to all linear polymers of regular structure, and
encourages the further application of QSPR methods to
other types of polymers such as copolymers, crosslinked
polymers and biopolymers.

Polymer Refractive Index. For polymers the refractive
index (n) is a fundamental optical property directly related



to other optical, electrical, and magnetic properties.
Therefore a satisfactory quantitative structure-property
relationship (QSPR) that would allow quantitative
prediction of the refractive index of both known and of as
yet unsynthesized polymers would clearly be of significant
utility.

A general QSPR model (R2 = 0.940, R2
cv = 0.934, s =

0.018) was developed for the prediction of the refractive
index for a diverse set of 95 amorphous homopolymers
(Katritzky, Sild, and Karelson 1998f). The five descriptors,
involved in the model, are calculated from the structure of
the repeating unit of the polymer. The QSAR model was
derived with an intercept fixed to a value of one, i.e. to the
refractive index of a vacuum. The correlation model shows
that the polarizability (described by the HOMO - LUMO
energy gap) has an important influence on the refractivity
index of polymers just as for low molecular weight
compounds (see above) (Katritzky, Sild, and Karelson
1998f). Compounds of lower stability (described by the
heat of formation) possess higher refractive indices. Other
descriptors show the importance of charge distribution and
the hybridization of carbon atoms in the repeating unit of
the polymer. The average prediction error of the model is
0.9%, and the highest prediction error is 3.2%.

Rubber Vulcanization Acceleration. In spite of the fact
that the vulcanization of rubber has been studied for many
years, its precise mechanism has remained unclear.
CODESSA QSPR treatment has assisted the understanding
of some key features of this process. The regression
analysis was carried out to correlate various parameters,
including ts2 (the onset of cure) and mxr (the maximum
rate of vulcanization), with molecular descriptors (Ignatz-
Hoover et al. 1999). Correlations were performed on four
data sets and two classes of accelerator molecules. The first
class comprised disulfides and the other represented a
combination of sulfenamides and sulfenimides. Parent
molecules of the accelerators and also their zinc complexes
with thiolate fragments were both modeled for each class to
give a total of four data sets, all of which gave good
correlations.

Biological Properties. The QSAR approach is widespread
in the prediction of the biological activity of compounds.
The CODESSA software has been used to study the
mutagenic toxicity. A QSAR model with R2 = 0.834 was
derived for a set of 95 heteroaromatic and aromatic amines
to correlate and predict their mutagenic activity measured
by the Ames test (Maran, Katritzky, and Karelson 1999). It
consists of six quantum-chemical descriptors, which
indicate the importance in the mutagenic activity of
heteroaromatic amines of hydrogen bonding, of effects
induced by the solvent, and of the size of compound.

The theoretical descriptors and statistical methods
implemented in CODESSA have been used to develop
interpretative and predictive QSAR models for structurally
diverse 5-HT1A receptor antagonists (Menziani, De
Benedetti, and Karelson 1998). Altogether ten correlation

models were analysed. The descriptors involved in these
models show the importance of electrostatic interaction
between the protonated amine function and a primary
nucleophilic site of the receptor necessary for recognition,
as expressed by the molecular orbital indexes localized on
the N-H+ group. Short-range attractive and repulsive
intermolecular interactions which modulate the binding
affinities are described by MO indexes computed on the
whole molecules (polar and dispersive forces), by CPSA
descriptors computed on the whole molecules or on the
bicyclic fragments (polar forces) and by ad hoc defined
size and shape descriptors (dispersive and steric forces).

Theoretical molecular descriptors in QSAR models also
elucidated the role of the main pharmacophoric
components and developed a model for the interaction of
the 5-TH3 ligands related to quipazine with their receptor
(Cappelli et al. 1998). The essential nature of the
arylpiperazine interaction mode toward the receptor can be
summarized as follows: (i) a charge assisted hydrogen
bond, (ii) a hydrogen-bonding interaction, and (iii) an
aromatic specific interaction.

Problems and Future Potential
The development of QSAR/QSPR models on large
theoretical descriptor spaces represents a powerful tool not
only for the experimentally meaningful prediction of the
chemical, physical and biological properties of compounds,
but also for the deeper understanding of the detailed
mechanisms of interactions in complex systems that
predetermine these properties. Two directions seem to be
especially promising for the further development of this
approach. First, it is essential to derive new theoretical
descriptors that correspond to clearly defined physical
interactions in complex molecular systems. In particular,
descriptors that account correctly for the properties of
mixtures, blends and other multi-component systems would
be of immense practical applicability in many areas of
chemical technology and engineering (Hopfinger, Koehler,
and Rogers 1995). It is also important to develop molecular
descriptors that could properly account for environmental
conditions such as the temperature, pressure and solvent.

The second direction in the further development of the
QSAR/QSPR approach is undoubtedly connected with the
extensive use of modern computer intelligence methods in
the development of quantitative relationships between the
molecular structure and properties. The methods that rely
on neural networks (Bodor, Harget, and Huang 1991;
Gasteiger and Zupan 1993; Egolf and Jurs 1993), simulated
annealing (Sutter, Dixon, and Jurs 1995) and various data-
and knowledge-mining techniques promise to be much
more efficient in developing QSAR/QSPRs in large and
very large molecular descriptor spaces. Notably, such
approaches should help overcome problems often
encountered in regression analysis due to the collinearity of
scales or heterosedasticity of the data.
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