
Effect of knowledge representation on model based planning : experiments using
logic programming encodings

Le-chi Tuan and Chitta Baral
Department of Computer Science and Engineering

Arizona State University
Tempe, Arizona 85287
flctuan,chittag@asu.edu

Abstract

In this paper we implement planning using answer set
programming. We consider the action language A and
its extensions. We show that when the domain is de-
scribed using richer features such as qualification, ram-
ification and conditional effects not only the encoding
is smaller, but also it takes less time to find a plan. We
also show that encoding of Bacchus and Kabanza’s style
temporal constraints is fairly straightforward in answer
set planning. Finally, unlike other model enumeration
planning encodings, in our encoding we can just give
an upper bound of the length of the plan, instead of the
exact length. We illustrate the above features using the
blocks world example from the AIPS planning contests.

1 Introduction and motivation
Recently there has been a lot of success in planning using
the model enumeration approach. In this approach the plan-
ning problem is encoded in a logical language in such a way
that each model of the encoded theory corresponds to a plan.
This approach was first studied by Kautz and Selman [KS92]
where they encoded planning problems using propositional
logic. Recently, they also considered domain constraints
[HSK99].

Following Subrahmanian and Zaniolo [SZ95], Dimopoulos
et. al. [DNK97] and Lifschitz [L99] have worked on plan-
ning using logic programming encodings. In this approach,
also called answer set planning [L99], each answer set of an
encoded logic program corresponds to a plan. In this paper
we follow this approach and present several translations (to
logic programs) from domain descriptions in the extended
language A and prove their correctness. The main contri-
butions of our paper are:

� We consider features such as defined fluents, qualifica-
tion, ramification constraints and give encodings of the
blocks world problem – perhaps for the first time – us-
ing these features. We then experiment with these en-
codings and show that the richer features not only result
in more compact encodings but also improve planning
performance. (It should be noted that, as described by
Reiter and Lin in their paper “State Constraints revis-
ited”, qualification and ramifications can not be easily
expressed in propositional logic.)

� We show how domain specific temporal constraints can
be easily and compactly encoded in logic programming.
We report results that show that, as expected, adding
temporal constraints significantly improves planning
performance.

� Finally, most of the existing encodings assume a fixed
plan length. Our formulations allow users to give an
upper bound of plan length. The encoding ensures that
once the goal has been achieved, action occurrences af-
ter that point is prohibited.

2 Background
We consider several STRIPS and ADL domains taken from
the AIPS contests as our illustrative examples. STRIPS
[FN71] is a simple action description language where oper-
ators are specified by a precondition list, an add-list and a
delete-list. ADL is an extension of STRIPS which allows
amongst other things conditional effects. A [GL93] is a high
level action description language with a simple English-like
syntax and an automata-based semantics. In this paper we use
an extension ofA. This extension ofA captures STRIPS and
the ADL features. Our formal results will be with respect to
this extension. We now briefly presentA.

The alphabet of the language A has two non-empty disjoint
sets of symbols, called fluent names F and action namesA. A
fluent literal is either a fluent name or a fluent name preceded
by �. For a fluent literal l, we shorten ��l to l.

The domain description language of A consists of “ef-
propositions” and “ex-propositions”. An ef-proposition is an
expression of the form

a causes f if p�� � � � � pm��qm��� � � � ��qn (2.1)

where a is an action name, p�,� � �,pm,qm��, � � �,qn, (n � �)
are fluents.

An ex-proposition is an expression of the form

executable a if p�� � � � � pm��qm��� � � � ��qn (2.2)

where a is an action name, p�,� � �,pm,qm��, � � �,qn, (n � �)
are fluents.

A domain description D is a collection of “ef-propositions”
and “ex-propositions”.

From: AAAI Technical Report SS-01-01. Compilation copyright © 2001, AAAI (www.aaai.org). All rights reserved. 



The query language of A consists of “v-propositions”
(queries) of the form:

f after a�� � � � � am (2.3)

where f is a fluent literal, and a�,� � �,am (m � �) are action
names. Ifm � �, we write (2.3) as

initially f (2.4)

A set of observations (or observation set) O is a collection of
initially f axioms.

The semantics of A, described in more detail in [GL93;
GL98], defines an entailment relation between domain de-
scription and queries, with respect to an observation set. In-
tuitively, D j�O f after a�� � � � � am means that based on
the information in D and O the fluent f will be true in the
situation reached after executing a�� � � � � am in the initial sit-
uation. This entailment is useful in that it defines correctness
of plans.

3 Encodings for planning in STRIPS

In this section we present a general encoding of planning
problems in STRIPS domains described in our extension of
A. Note that in STRIPS the initial state is always complete.
In our translation to logic programs, we divide the logic pro-
grams into two main modules: a problem description module
specific for each initial, goal state and domain description and
an answer-set generation/testing module which is domain in-
dependent.

Given a domain description D and a complete observa-
tion set O, a plan length l and a goal literal h, we con-
struct a logic program ���D�O� consisting of the following
parts: ���D�O� � �exe

� � �ef
� � �goal

� � �aux
� � �obs

� �

�in
� � �choice

� , where �exe
� � �ef

� are domain dependent and
�goal
� � �aux

� � �obs
� � �in

� � �
choice
� are domain independent.

1. Translating ex-propositions
(�exe

� ): Every ex-proposition of the form (2.2) where
n � � is translated to the following rules:

executable�a� T �� T � l�
holds�p�� T �� � � � � holds�pm� T ��
not holds�qm��� T �� not holds�qn� T ��

� T � l� occurs�a� T �� not executable�a� T ��

2. Translating ef-propositions (�ef
� ): Every ef-proposition

of the form (2.1) is translated as follows:

(a) if f is a fluent then we have the rule:

holds�f� T � �� � occurs�a� T ��
holds�p�� T �� � � � � holds�pm� T ��
not holds�qm��� T �� � � � � not holds�qn� T ��

(b) if f � �g for a fluent g, then we have the rule:

holds�neg�g�� T � �� � occurs�a� T ��
holds�p�� T �� � � � � holds�pm� T ��
not holds�qm��� T �� � � � � not holds�qn� T ��

3. Translating the goal literal (�goal
� ): If the goal h is a

fluent, it is represented by the fact finally�h�. If h is
a negative fluent literal h � �g it is represented by the
fact finally�neg�g��. We also add the following into
�goal
� , where F represents f or neg�g� depending on h:

not goal�T �� finally�F �� not holds�F� T ��
goal�T �� time�T �� not not goal�T ��
� not goal�l� ���

4. Auxiliary rules (�aux
� ): For each fluent f , �aux

� con-
tains the following rules:

contrary�f� neg�f��� contrary�neg�f�� f��

5. Translating observations (�obs
� ): For every

v-proposition of the form (2.4) where f is a fluent we
have the rule holds�f� ��. If f is a negative fluent literal
f � �g, we have the rule holds�neg�g�� ��.

6. Inertia rules (�in
� ): �

in
� contains the following rule:

holds�F� T � ��� contrary�F�G�� T � l�
holds�F� T �� not holds�G� T � ���

7. Choice rules (�choice
� ): The choice rule generates action

occurrences but makes sure that there is only one action
that can occur at a time point T up to l, and actions
occur at time points only when the goal has not been
achieved. The second condition allows us to specify an
upper bound on the plan length instead of an exact plan
length.

other occurs�A� T �� occurs�B� T �� A �� B�

occurs�A� T �� T � l� not other occurs�A� T ��
not goal�T ��

3.1 Main Proposition
The following proposition relates answer sets of our encoding
with plans for a goal w.r.t. a givenD and O.

Proposition 1 Let D be a consistent domain description in
A and O be a complete set of observations, l be the length
of the plan that we are looking for, n � l and h be a goal
fluent literal. D j�O h after a�� � � � � an and for all j � n,
D �j�O h after a�� � � � � aj iff���D�O� has an answer setM
with foccurs�a�� ��� � � � � occurs�an� n�g as the set of facts
about occurs inM .

3.2 Example of planning in STRIPS domains with
complete information (Blocks-World domain)

We translated PDDL domain of a block world problem taken
from AIPS2000 into A domain. The domain description
D consists of the following propositions. (Here we use
a causes f�� � � � � fn as a short hand for n propositions
a causes f� � � � a causes fn.)

pick up�X� causes �ontable�X���clear�X�� holding�X�
�handempty

executable pick up�X� if clear�X�� ontable�X��
handempty

put down�X� causes ontable�X�� clear�X��
�holding�X�� handempty

executable put down�X� if holding�X�



stack�X�Y � causes �holding�X���clear�Y �� clear�X�
handempty� on�X�Y �

executable stack�X�Y � if holding�X�� clear�Y �

unstack�X�Y � causes holding�X�� clear�Y ���clear�X��
�handempty��on�X�Y �

executable unstack�X�Y � if clear�X�� on�X�Y ��
handempty

We now list the translation�Block
� presented to Smodels for a

particular problem domain. �Block
� consisted of the following

parts: �fact
� � ��a�� � � �� ��f�, �exe

� � ��g�, �ef
� � ��h�,

�goal
� � ��a����b�,�aux

� � ��c�,�obs
� � ��d�,�in

� � ��e�,
and �choice

� � ��f�, in Smodels syntax.

1. The domain-dependent problem description module.

(a) Defining an upper bound on the number of steps
in a plan:

const length � 	�

(b) Defining objects in the problem domain:

block�a�� block�b�� block�c�� block�d��

(c) Defining initial state for the problem domain:

initially�clear�c��� initially�clear�a���
initially�clear�b��� initially�clear�d���
initially�ontable�c��� initially�ontable�a���
initially�ontable�b��� initially�ontable�d���
initially�handempty��

(d) Defining goal state for the problem domain:

finally�on�d� c��� finally�on�c� b���
finally�on�b� a���

(e) Defining fluents: The fluents are defined by rules
of the following form.

fluent�on�X�Y ��� neq�X�Y �� block�X��
block�Y ��

(f) Defining actions: The actions are defined by rules
of the following form.

action�pick up�X��� block�X��

(g) The executability conditions were defined in a
slightly different way from part (1.) of Section
3. The simplification below was possible because
in the blocks world domain each action has only
one executability condition. We now give the rules
corresponding to the executability condition of the
action put down�X�. The rules for the other ac-
tions are similar.
� block�X�� time�T �� T � length�

not holds�holding�X�� T ��
occurs�put down�X�� T ��

(h) Defining effects of actions: The rules specifying
the effect of actions were defined as described in
part(2) of Section 3.

2. Domain-independent module.

(a) We define goal�T � using the first two rules of part
(3) of Section 3.

(b) The third rule of part (3) of Section 3 is used to
eliminate possible answer sets which do not en-
code a plan of the given length.

(c) We define time points, literals and contrary flu-
ents.

(d) What holds and does not hold in the initial state
is defined in terms of the initially predicate using
the following rules.

holds�F� ��� literal�F �� initially�F ��
holds�neg�F �� ��� fluent�F ��

not initially�F ��
(e) We use the inertia rule from part (6) of Section 3.
(f) For enumerating action occurrences we use the

following rule consisting of the cardinality con-
struct from Smodels (instead of the rules in part
(7) of Section 3) which reduces the planning time
drastically.

�foccurs�A� T � 
 action�A�g�� time�T ��
T � length� not goal�T ��

4 Representing temporal constraints
In this section, we show that Bacchus and Kabanza’s style
temporal constraints [BK00] (control knowledge) can be eas-
ily encoded. The temporal constraints are specified as sepa-
rate rules and constraints and are simply added to the program
�Block
� .

1. Defining control knowledge axioms:

(a) Defining bad tower below a blockX :

holds�bad tower below�X�� T ��
time�T �� block�X�� block�Y �� neq�X�Y ��
holds�ontable�X�� T �� finally�on�X�Y ���

holds�bad tower below�X�� T ��
time�T �� block�X�� block�Y �� neq�X�Y ��
holds�on�X�Y �� T �� finally�ontable�X���

holds�bad tower below�X�� T ��
time�T �� block�X�� block�Y �� neq�X�Y ��
holds�on�X�Y �� T �� finally�holding�Y ���

holds�bad tower below�X�� T ��
time�T �� block�X�� block�Y �� neq�X�Y ��
holds�on�X�Y �� T �� finally�clear�Y ���

holds�bad tower below�X�� T ��
time�T �� block�X�� block�Y �� block�Z��
neq�X�Y �� neq�Z� Y �� neq�Z�X��
holds�on�X�Y �� T �� finally�on�X�Z���

holds�bad tower below�X�� T ��
time�T �� block�X�� block�Y �� block�Z��
neq�X�Z�� neq�X�Y �� neq�Z� Y ��
holds�on�X�Y �� T �� finally�on�Z� Y ���

holds�bad tower below�X�� T �� time�T ��
block�X�� block�Y �� holds�on�X�Y �� T ��
neq�X�Y �� holds�bad tower below�Y �� T ��

(b) Defining good tower:

holds�good tower�X�� T �� time�T ��



block�X�� holds�clear�X�� T ��
not finally�holding�X���
not holds�bad tower below�X�� T ��

(c) Defining bad tower:

holds�bad tower�X�� T �� time�T ��
block�X�� holds�clear�X�� T ��
not holds�good tower�X�� T ��

2. Defining temporal constraints:

(a) Do not destroy good towers:

� block�X�� block�Y �� neq�X�Y ��
time�T �� T � length�
holds�good tower�X�� T ��
holds�on�Y�X�� T � ���
not holds�clear�X�� T � ���
not holds�good tower�Y �� T � ���

(b) Do not stack on bad towers:

� block�X�� block�Y �� neq�X�Y ��
time�T �� T � length�
holds�bad tower�X�� T ��
holds�on�Y�X�� T � ���

(c) Do not pick up singleton bad tower blocks unless
their final positions are ready:

� block�X�� block�Y �� neq�X�Y ��
time�T �� T � length�
holds�ontable�X�� T �� finally�on�X�Y ���
not holds�good tower�Y �� T ��
holds�holding�X�� T � ���

5 Encodings corresponding to richer features
5.1 Adding defined fluents, qualification and

ramification to STRIPS
In this section, we show how ramification constraints can be
encoded in answer set planning. For this, we use Aex, an ex-
tended version ofA that allows ramification constraints. Aex

has a new type of proposition called static causal propositions
(sc-propositions) of the following form:

p�� � � � � pm��qm��� � � � ��qn causes f (5.5)

where p�� � � � � pm� qm��� � � � � qn are fluents and f is a fluent
literal. The static causal propositions define the interaction
among the basic fluents. For the semantics of this extended
language, the readers are referred to [GL98].

We follow the following principles in the new encoding:

1. We divide the fluents into two categories: basic fluents
and defined fluents.

2. The effect axioms only change the truth values of the
basic fluents.

3. The defined fluents are defined from the basic fluents.

4. We add ramification axioms which further simplify the
effect axioms and also simplify executability condi-
tions.

We now consider a (different) representation of the blocks
world problem that has qualification and ramification ax-
ioms, and has basic and defined fluents. For lack of
space, we do not show this representation, but rather show
its encoding in logic programming. In this encoding,
which we will refer to as �Block�rich

� , the basic fluents are
on�X�Y �, ontable�X�, holding�X� and the defined fluents
are clear�X�, handempty.

1. The domain-dependent problem description module:

(a-d) Parts (a) to (d) are the same as in �Block
� .

(e) Defining fluents:
i. The basic fluents are defined as the fluents are
defined in �Block

� .
ii. The defined fluents are declared using the fol-
lowing rules.

def fluent�clear�X��� block�X��
def fluent�handempty��

(f-g) (f) and (g) are the same as in �Block
� �

(h) Effects of actions: The effects of actions on basic
fluents are defined as in �Block

� .
(i) The relation between defined fluents and basic flu-
ents are expressed using the following rules:

holds�clear�X�� T �� block�X�� time�T ��
holds�ontable�X�� T ��
not holds�neg�clear�X��� T ��

holds�clear�X�� T �� block�X�� block�Y ��
neq�X�Y �� time�T �� holds�on�X�Y �� T ��
not holds�neg�clear�X��� T ��

holds�neg�clear�X��� T �� block�X��
time�T �� holds�holding�X�� T ��

holds�neg�clear�X��� T �� block�X��
block�Y �� neq�X�Y �� time�T ��
holds�on�Y�X�� T ��

holds�handempty� T �� time�T ��
not holds�neg�handempty�� T ��

holds�neg�handempty�� T �� block�X��
time�T �� holds�holding�X�� T ��

(j) Following is the qualification constraint:

� block�X�� block�Y �� block�Z�� time�T ��
neq�X�Z�� neq�X�Y �� neq�Z� Y ��
holds�on�X�Y �� T �� holds�on�Z� Y �� T ��

(k) The ramification constraints are based on the fol-
lowing causal relationship between basic fluents:
static causes�on�X�Z�� neg�on�X�Y ����

block�X�� block�Y �� block�Z�� time�T ��
neq�X�Z�� neq�X�Y �� neq�Z� Y ��

static causes�on�X�Y �� neg�holding�X����
block�X�� block�Y �� neq�X�Y ��

static causes�on�X�Y �� neg�ontable�X����
block�X�� block�Y �� neq�X�Y ��

static causes�ontable�X�� neg�holding�X����
block�X��

static causes�ontable�X�� neg�on�X�Y ����
block�X�� block�Y �� neq�X�Y ��



static causes�holding�X�� neg�ontable�X����
block�X��

static causes�holding�X�� neg�on�X�Y ����
block�X�� block�Y �� neq�X�Y ��

2. Domain-independent module

(a-b) Parts (a) and (b) are the same as in �Block
� �

(c) We add the the definition of literal and contrary for
the defined fluents.

(d-f) Parts (d) to (f) are the same as in �Block
� �

(g) The ramification constraints are defined as fol-
lows:
holds�F� T �� literal�F �� literal�G��

neq�F�G�� time�T ��
holds�G� T �� static causes�G�F ��

5.2 Planning in ADL domains
ADL is a language richer than STRIPS where, amongst other
things, conditional effects are allowed. We take an example
of a blocks world problem in AIPS98 where conditional ef-
fects are present. The domain description D is described as
follows:

puton�X�Y � causes on�X�Y ���clear�Y � if X �� table
puton�X�Y � causes �on�X�Z� if on�X�Z�
puton�X�Y � causes clear�Z� if X �� table�

Z �� table� on�X�Z�
executable puton�X�Y � if X �� table� Y �� table�

clear�X�� clear�Y �
executable puton�X�Y � if Y � table� clear�X�

We now show the major differences between ���D�O� and
���D�O�, where the later takes into account ADL descrip-
tion of the Blocks world domain. The main differences are
with respect to encoding effects of actions and executability
conditions.

1. The domain-dependent problem description module

(a-f) The translation is the same as in �Block
� , with the

exception that we need to add block�table��.
(g) We now give a rule corresponding to the exe-

cutability of the action puton. (We need two other
rules, which we do not present here.)
� time�T �� T � length� block�X�� block�Y ��

neq�X�Y �� neq�X� table�� neq�Y� table��
not holds�clear�X�� T �� occurs�puton�X�Y �� T ��

(h) Effects of actions: Due to lack of space we only
give one of the four rules that encode the effect of
the action puton�X�.
holds�clear�Z�� T � ���

time�T �� T � length�
block�X�� block�Y �� block�Z��
neq�X�Y �� neq�X�Z�� neq�Z� Y ��
neq�X� table�� neq�Z� table��
holds�on�X�Z�� T �� occurs�puton�X�Y �� T ��

2. The domain-independent module is same as those of
�Block
� �

5.3 Planning in ADL domains together with
ramification and qualification

In this subsection, we further modify the encoding �Block
�

to allow qualification and ramification constraints. We refer
to the new encoding as �Block�rich

� . The process of modifica-
tion is similar to the modification from�Block

� to�Block�rich
� .

We have only on�X�Y � as the basic fluent in this case. The
only defined fluent is clear�X�. We now describe the major
differences between �Block

� and �Block�rich
� .

1. The domain-dependent problem description module:

(a-g) Same as those of �Block
� except that we need to

define on�X�Y � and clear�X� as defined fluents.
(h) We now have a single rule to encode the effect of

the action puton�X�Y � on the single basic fluent
on�X�Y �.

holds�on�X�Y �� T � ��� time�T ��
T � length� block�X�� block�Y �� X �� Y�
neq�X� table�� occurs�puton�X�Y �� T ��

(i) The following rules express the relation between
defined fluents and basic fluents:
holds�clear�X�� T �� block�X�� block�Y ��

neq�X�Y �� neq�X� table�� time�T ��
not holds�on�Y�X�� T ��
not holds�neg�clear�X��� T ��

holds�clear�X�� T �� block�X�� block�Y ��
neq�X�Y �� neq�X� table�� time�T ��
holds�on�X�Y �� T ��
not holds�neg�clear�X��� T ��

holds�neg�clear�Y ��� T �� block�X��
block�Y �� neq�X�Y �� neq�X� table��
neq�Y� table�� time�T �� holds�on�X�Y �� T ��

(j) Following is the qualification constraint:
� block�X�� block�Y �� block�Z�� time�T ��

neq�X�Z�� neq�X�Y �� neq�Z� Y ��
neq�X� table�� neq�Z� table�� neq�Y� table��
holds�on�X�Y �� T �� holds�on�Z� Y �� T ��

(k) The ramification is based on the following:
static causes�on�X�Y �� neg�on�X�Z����

block�X�� block�Y �� block�Z�� neq�X�Y ��
neq�Y� Z�� neq�X�Z�� neq�X� table��

2. The domain-independent module:

(a-f) Same as those of �Block�rich
� �

(g) The ramification constraints are accounted for by
the following rule:
holds�F� T ��

literal�F �� literal�G�� neq�F�G�� time�T ��
holds�G� T �� static causes�G�F ��

6 Experiments and a brief analysis

We took all STRIPS and ADL versions of the blocks world
problems in AIPS98 and AIPS2000 to run on a pentium III
PC with 700MHz CPU and 128MB of RAM running Win-
dows 2000. Table 1 shows the results of running �Block

� ,
�Block�rich
� and �Block

� , �Block�rich
� in Smodels [NS97]



without using control knowledge. Table 2 shows the results
of running those encodings with control knowledge. Blanks
in the tables mean either parsing time or running time greater
than one hour.

When no control knowledge is used, the encodings corre-
sponding toAex (richer encodings) in both STRIPS and ADL
domains perform much better than encodings corresponding
to A (”normal” encodings). �Block�rich

� runs much faster
and scales well when number of blocks and the plan length
increase. However, the encoding �Block

� , �Block�rich
� and

�Block
� take substantial amount of time when the number

of blocks is greater than 8 and the plan length is over 18.
�Block�rich
� can only solve up to the problem 10-1 where

there are 10 blocks with the plan length of 34. Also, use
of the upper bound does not significantly affect the planning
time, although too high an upper bound would lead to blow
up in the size of the ground program. For example, for prob-
lem 6-2 whose minimal plan length is 20, an upper bound of
20 took 87 secs with �Block

� while an upper bound of 54 took
288 secs.

When control knowledge is used by adding additional rules
and constraints, all four encodings solve all the problems of
blocks world with reasonable amount of time. Table 2 shows
that the normal encodings and the richer encodings are com-
parable, although the richer encodings perform slightly better
when the number of blocks is less than 11 and the plan length
is less than 34. The normal encodings perform slightly better
than the richer encodings in the remaining problems.

7 Conclusion
We consider the language A and its extensions and present
a family of encodings by translating domain descriptions in
these languages into logic programs. We prove the correct-
ness of the first translation. We demonstrate that encoding
of temporal constraints is fairly straightforward in answer set
planning and it really improves planning performance. We
also give the encoding w.r.t description in richer languages
and also show that the encoding is not only smaller but it also
takes less time (in the absence of the temporal constraints) to
find a plan. Finally, although in this paper we only present the
blocks world problem, we did encode and experiment with
the other AIPS contest problems with similar results. Due to
lack of space we do not discuss them here.

References
[BK00] Bacchus F. and Kabanza F.: Using Temporal Logics to Ex-

press Search Control Knowledge for Planning. Artificial Intel-
ligence volume 16, pages 123–191, 2000.

[DNK97] Dimopoulos Y., Nebel B. and Koehler J.: Encoding Plan-
ning Problems in Nonmonotonic Logic Programs. ECP97,
169-181

[FN71] Fikes R. and Nilsson N.: STRIPS: A new approach to the
application of theorem proving to problem solving. Artificial
Intelligence, 1:27-120, 1971.

[GL93] Gelfond, M. and Lifschitz, V.: Representing Actions and
Change by Logic Programs, J. of Logic Programming 17
(1993) 301–323.

[GL98] Gelfond, M. and Lifschitz, V.: Action languages, Elec-
tronic Transactions on AI, Vol. 3, No. 16, 1998.

[HSK99] Huang Y.C, Kautz H. and Selman B.: Control Knowledge
in Planning: Benefits and Tradeoffs, Proc. AAAI-99, Orlando,
FL, 1999

[KS92] Kautz H. and Selman B.: Planning as Satisfiability, Proc.
ECAI-92.

[L99] Lifschitz V.: Answer set planning, in Proceedings of the 1999
International Conference on Logic Programming, 1999, pp.
23-37.

[NS97] Niemela, I. and Simons, P.: Smodels – an implementation
of the stable model and well-founded semantics for normal
logic programs, in Proc. of LPNMR 97, 1997, pp. 420-429.

[SZ95] Subrahmanian, V. S. and Zaniolo, C.: Relating stable mod-
els and AI planning domains, in Proceedings of ICLP 1995,
1995, pp. 233-247.

Table 1: Blocks world with no control knowledge
Problems ��Block ��Block�rich ��Block ��Block�rich

(Names
/length)
4-0 (6) 0.11 0.10 0.14 0.05
4-1 (10) 0.14 0.08 0.10 0.11
4-2 (6) 0.03 0.04 0.06 0.04
5-0 (12) 2.18 0.65 0.28 0.55
5-1 (10) 0.54 0.46 0.41 0.35
5-2 (16) 1.09 1.14 0.95 1.28
6-0 (12) 3.60 4.96 0.96 0.97
6-1 (10) 2.12 2.28 1.73 0.58
6-2 (20) 86.59 10.69 33.10 3.00
7-0 (24) 6650.5 12.06 10.89 17.77
7-1 (22) 1052.00 1027.33 1401.96 11.07
7-2 (20) 142.93 448.78 2131.50 104.62
8-0 (18) 7958.56 1457.89 10.08
8-1 (20) 14.19
8-2 (16) 8.30
9-0 (29) 94.05
9-1 (32) 150.91
10-0(34) 146.87
10-1(34) 276.85

Table 2: Blocks world with control knowledge
Problems ��Block ��Block�rich ��Block ��Block�rich

(Names
/length)
4-0 (6) 0.02 0.03 0.03 0.03
4-1 (10) 0.12 0.09 0.11 0.08
4-2 (6) 0.05 0.04 0.08 0.05
5-0 (12) 0.45 0.34 0.33 0.23
5-1 (10) 0.27 0.21 0.23 0.15
5-2 (16) 1.14 0.47 0.56 0.43
6-0 (12) 0.74 0.55 0.60 0.43
6-1 (10) 0.17 0.23 0.35 0.25
6-2 (20) 3.82 0.99 1.34 1.24
7-0 (24) 2.78 3.34 2.81 3.44
7-1 (22) 34.39 4.30 2.39 2.59
7-2 (20) 6.87 3.50 2.14 1.95
8-0 (18) 9.58 4.41 2.44 2.75
8-1 (20) 23.97 8.31 2.31 2.15
8-2 (16) 3.33 1.72 1.77 1.67
9-0 (29) 115.67 8.9 7.22 6.68
9-1 (32) 170.54 18.16 8.58 14.28
10-0(34) 1077.84 19.12 14.19 21.80
10-1(34) 39.25 16.12 18.19
10-2(34) 99.68 21.28 14.87 20.05
11-0(36) 31.81 68.56 19.28 24.10
11-1(32) 43.97 21.26 24.43
11-2(38) 44.32 64.35 22.55 37.63
12-0(36) 280.43 322.32 26.08 38.24
12-1(42) 199.58 107.96 43.80 86.45
13-0(44) 64.87 114.71 49.53 89.60
13-1(46) 85.89 127.73 63.08 63.11
14-0(48) 3486.27 12746.96 77.14 129.56
14-1(44) 173.71 621.33 73.44 101.20


