From: AAAI Technical Report SS-01-01. Compilation copyright © 2001, AAAI (www.aaai.org). All rights reserved.

On the Foundations of Answer Set Programming

V.W. Marek
Department of Computer Science
University of Kentucky
J.B. Remmel
Department of Mathematics
University of California, San Diego

Abstract

Schlipf (Schlipf 1995) proved that the Stable Logic Pro-
gramming solves all NP decision problems. We extend
Schlipf’s result to all search problems in the class NP.
Moreover, we do this in a uniform way as defined in
(Marek & Truszczynski 1999). Specifically, we show
that there is a single DATALOG™ program Pz 80
that for every Turing machine T, every polynomial
with nonnegative coeeficients p, every positive integer
n and an input ¢ of size at most n over a fixed al-
phabet T there is a polynomial-time encoding of the
machine M and the input as an extensional database
edb s p,o S0 that there is a one-to-one correspondence
between the stable models of edbas,p,» U Prvy and ac-
cepting computations of the machine M that reach the
final state in at most p(n) steps. The decoding of com-
putations form stable models is done in polynomial (in
fact linear), time as well.

Introduction

The main motivation for this paper comes from re-
cent developments in Knowledge Representation, es-
pecially the appearance of a new generation of sys-
tems (Niemeld & Simons 1996; Eiter :& al. - 1998;
Cholewinski & al. 1999) based on the so-called An-
swer Set Programming (ASP) paradigm (Niemela 1998;
Cadoli & Palipoli 1998; Marek & Truszczyriski 1999;
Lifschitz 1998; 1999; East & Truszczynski 2000). In
particular, these systems suggest that we need to re-
visit one of the basic issues in the foundations of ASP,
namely, how can we characterize what such ASP sys-
tems can theoretically compute. Throughout this pa-
per, we shall focus on one particular ASP formalism,
namely, the Stable Semantics for Logic Programs (SLP)
(Gelfond & Lifschitz 1988) and related systems. We
note that the underlying methods of ASP are similar
to those used in Logic Programming (Colmerauer & al.
1973; Apt 1990) and Constraint Programming (Jaffar
& Maher 1994; Marriott & Stuckey 1998). That is,
like Logic Programming, ASP is a declarative formal-
ism and the semantics of all ASP systems are based on
logic. Like Constraint Programming, certain clauses of
an ASP program act as constraints. There is a fun-
damental difference between ASP programs and Con-
straint Logic programs, however. That is, in Constraint

Programming, the constraints act on the individual el-
ements of Herbrand base of the program while the con-
straint clauses in ASP act more globally in that they
place restrictions on what subsets of the Herbrand base
can be acceptable answers for the ASP program. For
example, suppose that we have a problem II whose so-
lutions are subsets of some Herbrand base H. In order
to solve the problem, an ASP programmer essentially
writes a logic program P that describes the constraints
on the subsets of H which can be answers to II. The
basic idea is that the program P should have the prop-
erty that there is an easy decoding of solutions of IT
from stable models of P and that all solutions of I can
be obtained from a stable model of P through this de-
coding. The program P is then submitted to the ASP
engine such as smodels (Niemeld & Simons 1996), dlv
(Eiter & al. 1998) or DeReS (Cholewiriski & al. 1999)
which computes the stable models of the program P.
Thus the ASP engine finds the stable models of the
program (if any exists) and we read-off the solutions
to I1 from these stable models. Notice that the idea
here is that all solutions are equally good in the sense
that any solution found in the process described above
is acceptable. Currently, the systems based on ASP
paradigm are being tested on the problems related to
planning (Lifschitz 1999; Niemeld 1998), product con-
figuration (T. Soininen & I. Niemeld 1999), combina-

" torial optimization problems (Cholewiniski & al. 1999;

Niemeld 1998) and other domains.

It is a well known fact that the semantics of exist-
ing Logic Programming systems such as Prolog have
serious problems. For instance, the unification algo-
rithm used by most dialects of Prolog do not enforce
the occur check and hence these systems can produce
incorrect results (Apt & Pellegrini 1994). Moreover, the
processing strategies of Prolog and similar languages
have the effect that correct logic programs can be non-
terminating (Apt & Pedreschi 1994). While good pro-
gramming techniques can overcome these problems, it
is clear that such deficiencies have been limiting the
appeal of the Logic Programming systems for ordinary
programmers or system analysts. The promise of ASP
and, in particular, of SLP and its extensions, e.g. Dis-
junctive Logic Programming, (Eiter & al. 1998), is that

124

a new generation of Logic Programming systems can
be built which have a clear semantics and are easier
to program than the previous generation of Logic Pro-
gramming systems. In particular, both of the prob-
lems referred to above, namely, the occur check prob-
lem and the termination problem, do not exist in SLP.
Of course, there is a price to pay, namely, SLP sys-
tems only accept programs without function symbols.
Consequently, one of the basic data structures used in
Prolog, namely, the term formed from function sym-
bols, variables and constants, is not available in SLP.
Thus SLP systems require the programmer to explic-
itly construct many data structures. In this sense, SLP
is similar to languages such as Perl (Wall & al. 2000)
where finite functions and arrays are used to build data
structures. In SLP programming, predicates are used
to construct the required data structures and constraint
type clauses are used to ensures that the predicates be-
have properly with respect to semantics of the program.
SLP programs are always terminating because the Her-
brand base is finite and hence there are only a finite set
of stable models. In addition, the order of the clauses
of the program does not affect the set of stable models
of the program.!. Finally the stable semantics of logic
programs is well understood so that SLP programs have
clear semantics.

We note that restriction that ASP programs do not
have function symbols is absolutely crucial. First, it
is well known that once one allows function symbols
in a logic program P, then Herbrand base becomes in-
finite. Moreover, the stable models of logic programs
with function symbols can be immensely complex. The
first result which showed that the set of stable mod-
els can be complex can be found in (Apt & Blair
1990). For stratified logic programs (Apt & al. 1988;
Przymusiriski 1986), the perfect model is the unique sta-
ble model of that program (Gelfond & Lifschitz 1988).
Apt and Blair (Apt & Blair 1990) showed that per-
fect models of stratified logic programs capture pre-
cisely the arithmetic sets. That is, they show that for
a given arithmetic set X of natural numbers, there is
a finite stratified logic program Py such that in the
perfect model of Px, some predicate px is satisfied by
precisely the numbers in X. This is a powerful result
limiting hopes for any meaningful practical program-
ming with stratified programs if we allow function sym-
bols. The result of (Apt & Blair 1990) was extended
in (Blair & al. 1995) where it is shown that the stable
models of a locally stratified program can capture any
set in the hyperarithmetic hierarchy. In (Marek & al.
1994) it is shown that there is a uniform translation of
trees contained in w<“ into logic programs so that given
an infinitely branching recursive tree T C w<%“, there
is a finite predicate logic program Pr such that there
is an effective one-to-one degree preserving correspon-
dence between stable models of P and infinite branches

'However it is the case that the order of the clauses does
affect the processing time of the ASP engine.

125

through T'. In effect, this result shows that the problem
of finding a stable model for a finite predicate logic pro-
gram is equivalent to finding an infinite path through an
infinitely branching recursive tree. One consequence of
this result is that the problem of determining whether
a finite predicate logic program has a stable model is
a Xl-complete. Moreover, the result of (Marek & al.
1994) gives us some idea about the structure of the fam-
ily of stable models of the program. A complete charac-
terization of families of stable models of logic programs
in terms of inverse-Scott topology has been found in
(Ferry 1994). More results on the structure of the fam-
ily of stable models of the programs can be found in
(Cenzer & Remmel 1999).

All the results mentioned in the previous paragraph
show that stable semantics for logic programs admitting
function symbols can be used only in a very limited set-
ting. This is precisely what the XSB system does (Rao
& al. 1997). The ASP systems such as those mentioned
above, propose a more radical solution to the problem
of complexity of stable models of logic programs with
function symbols, namely, we should abandon function
symbols entirely. Once this is accepted, the semantics of
logic program can be defined in two stages. First, we as-
sume that the program is interpreted over the Herbrand
universe of the program, although, in principle, such a
restriction is not necessary. Thus, given a logic program
P, we assume, as in standard Logic Programming, that
the universe is determined by the constants explicitly
occurring in P. The set of these constants is finite. The
program is grounded in these constants and the result-
ing program P, is a propositional logic program. In the
second stage, we compute stable models of the program
P, and those are the stable models of P. The process of
grounding is performed by a separate grounding engine
such as lparse (Niemeld & Simons 1996) and the result
is passed to the engine computing the stable models. It
is now clear that the features of SLP mentioned above,
i.e., the absence of occur check and termination prob-
lems and the independence of the semantics from the
ordering of the clauses of the program, automatically
hold. That is, since grounding uses only very limited
part of unification, the occur check problem is elimi-
nated. The space of candidates for stable models is
finite and so there is no termination problem. Finally,
the stable semantics of propositional programs does not
depend on the order of clauses (although the processing,
of course, does).

The language of logic programming without function
symbols has been studied by the database community
in expectation that it could lead to new, more pow-
erful, database languages (Ullman 1988). It is called
DATALOG and some database systems such as DB2
implement Horn part of DATALOG. The fact that ad-
mitting negation in the bodies of clauses leads to multi-
ple stable models was unacceptable from the database
perspective. Hence the semantics of DATALOG with
negation used in database community was either a well-
founded semantics (Van Gelder & al. 1991) (that is the

least three-valued stable model (Przymusiniski 1990)),
or other somewhat non-intuitive semantics such as the
inflationary semantics (Abiteboul & al. 1995).

The main purpose of this paper is to revisit the ques-
tion of what can be computed by logic programs with-
out functions symbols under the stable model seman-
tics. As we will see in a moment, the question itself
requires some fine-tuning. First, let us look at the case
of finite propositional programs. Here the situation is
simple. Let At be a set of propositional atoms. Let
F be a finite antichain of subsets of At (i.e. whenever
X,Y € F, X CY then X =Y). Then there is a logic
program Px so that F is precisely the class of all stable
models of Pr (Marek & Truszczyniski 1993). Moreover,
the family of stable models of any program P forms an
antichain. Thus in the finite propositional logic pro-
gram case, we have a complete characterization. How-
ever, this result does not tell us anything about the
uniformity and the effectiveness of the construction.
The problem of whether there exists a stable model
of a propositional program is NP-complete (Marek &
Truszczyniski 1991). For the DATALOG (with nega-
tion), an analogous result has been obtained in (Schlipf
1995).

To refine, our question about what can be computed
by logic programs without functions symbols under the
stable model semantics, we first introduce the notion
of search problem (Garey & Johnson 1979) and of a
uniform logic program (Marek & Truszczyriski 1999).
A search problem is a set S of finite instances (Garey
& Johnson 1979). For example, the search problem may
be to find Hamiltonian paths in a graph so that the set
of instances of the problem is the set of all finite graphs.
Given an instance I € S, we have a set S; of solutions
to S for instance I. For example, in our Hamiltonian
path problem, given a finite graph I, S; is the set of
all Hamiltonian paths of I. An algorithm solves the
problem & if it returns a solution s € S; whenever Sy
is non-empty, and returns “empty” otherwise. Decision
problems are special cases of search problems. Now
consider a search problem S. Assume that there exists

1. a polynomial time encoding edbs under which every
instance I of S is mapped to a finite set of atoms and

2. a single logic program Ps such that there is a polyno-
mial time computable function sols(:, -) such that for
every instance I of S, sols(I,-) maps the set of stable
models of the edbs(I) U P onto the set of solutions
Srofl.

In such a situation, we say that the search problem &
is solved by a uniform logic program. Schlipf (Schlipf
1995) has shown that the class of decision problems in
NP is captured precisely by uniform logic programs.
Specifically he proved that a decision problem is solved
by a uniform logic program if and only if it is in NP.
The goal of our paper is to prove the strengthening
of this result. Namely we will prove that the Schlipf
result remains true if we deal with search problems.
We shall exhibit a single logic program P that is ca-

126

pable to simulating polynomial time nondeterministic
Turing Machines. That is, given any polynomial time
nondeterministic Turing machine M and any input o,
there is a set of facts C,» such that a stable model of
PUCM,; codes an accepting computation of M started
with input o and and any accepting computation of
M started on input o is coded by some stable model
of PU Cum,. This results will show that logic pro-
grams without function symbols under the stable logic
semantics can capture precisely the set of N P-search
problems. Our proof of this result uses essentially the
same technique used by Cook (Cook 1971) in his proof
of the NP-completeness of the satisfiability problem.
That is, given the run-time polynomial bound p(z) for
M, stable models of P U Cyy,, encodes the sequence of
steps of length p(n) which occur in an accepting com-
putation of M started on o if ¢ has length n. More
precisely, give a nondeterministic polynomial time Tur-
ing machine M, the clauses Cps,. will incorporate the
description of M as the part of the instance description
(extensional database) to the program P. The input o
will also be a part of the extensional data base. Call
this extensional database edbas p,o. The size of edbas p,o
is polynomial in the size of M, |o], and the exponent
of p. There will be a one-to-one polynomial time cor-
respondence between the computations of the machine
M that reach the final accepting state in at most p(n)
steps and the stable models of P U edbas,p,o. Thus all
search problems in class NP can be solved by a uniform
logic program. The converse implication is, of course,
obvious.

We shall also show that we can apply the same tech-
niques to construct a metainterpreter for stable logic
programming. Specifically, we show that the search
problem of finding a stable models for propositional
logic program can also be solved by means of a uniform
logic program. Specifically, we represent any proposi-
tional logic program by a set of propositional atoms
that serve as an extensional database for a metainter-
preter. In fact, we can construct two such metainter-
preters with different properties. In this paper, we con-
struct a simple one that computes stable models for so-
called 0-2 programs. A result due to Blair (Blair & al.
1999) shows that every propositional program can be
semirepresented in the sense of (Marek & Truszczyriski
1993) by a 0-2 logic program and that the representa-
tion can be computed in linear time. A more complex
metainterpreter that directly computes stable models
can be constructed along the lines of the proof of The-
orem 2 below. Due to the space limitations, we shall -
not give any details about this second metainterpreter.

Technical preliminaries

In this section we formally introduce several notions
that will be needed for the proof of our result.

First, we introduce the set of logic programs that
we will study. We will consider here only so called
DATALOG™ programs. Specifically, a clause is an ex-

pression of the form
p(f) A ql(f)v ce 79!11(?)’ on (Y)’ ceey Y rﬂ(’—Y-) (1)

where p,q1,...,9m,71,---,Tn are atoms, possibly with
variables and/or constants. A program is a finite set P
of clauses of the form (1). Each program determines its
language (based on the predicates occurring in the pro-
gram), Herbrand universe U (set of all constant terms
occurring in the program), and Herbrand base Hp (the
set of all ground atoms of the language). Since there
is no function symbols in our programs, both Herbrand
universe and Herbrand base are finite.

A ground instance of the clause C of the form (1) is
the result of a simultaneous substitution of constants
for variables occurring in C. Given a program P, P,
is the propositional program consisting of all ground
substitutions of clauses of P.

Given a propositional program P and a set M C Hp,
the Gelfond-Lifschitz transform of P by means of M,
GL(P, M) is the program GL(P, M) arising from P as
follows. First, eliminate all clauses C in P such that for
some j, 1 £ j < n, r; € M. Finally, in any remaining
clauses, we eliminate all negated atoms. The resulting
set of clauses forms a program, GL(P, M), which is a
Horn program and hence it possesses a least model Njys.
We say that M is a stable model of the propositional
program P if M = Np. Finally, we say that M is a
stable model of a DATALOG™ program P, if M is a
stable model of the propositional program P,.

A nondeterministic Turing Machine is a structure of
the form M = (Q,X,T, D, 4, s, f) where Q is a finite set
of states, ¥ is a finite alphabet of input symbols. We
will assume that B is an additional symbol such that
B ¢ . The symbol B will denote “Blank”. The set
I' = T U {B} is the set of tape symbols. The set D of
move directions will consist of elements L, R, and A (L
is a “move left” symbol, R is a “move right” symbol,
and A is “stay put” symbol). The function § : @ xI' —
P(Q x I x D) is the transition function of the machine
M. The state s € Q is the start state, and f € Q is the
final state. To visualize the behavior of the machine M
we talk about the read-write head of the machine. The
read-write head of the machine is always in some state
from set Q). As usual, a Turing machine M operates on
atape. The tape could be thought as starting at the cell
with the index 1 and containing infinitely many cells i
for i > 0 to the right. However, when we consider a
polynomial time nondeterministic Turing machine, M,
with run time polynomial p(z), then on any input o of
length n, an accepting computation can affect at most
the first p(n) cells of the tape. Thus in such a situation,
there is no loss in only considering tapes of length p(n).
Hence in what follows, one can implicitly assume that
that the tape is finite.

A runtime polynomial p of a nondeterministic Turing
machine M is a polynomial of the form p(z) = ap +
a1z + - -+ + axz® where each a; € N = {0,1,2,...} and
ar # 0. If p is the runtime polynomial for M, then
on any input of size n, M computes an answer in at

127

most we reach the final step in at most p(n) steps for
any input of length n. Given a nondetrministic Turing
machine M with a runtime polynomial p, we modify
the usual operation of M in the following ways.

(1) We shall assume §(f,a) = {(f,a,A)} foralla € I.
(2) Given an input z of length n, instead of immediately
halting when we first get to state f reading a symbol a,
we just keep executing the instruction (f,a,) until we
have completed p(n) steps. That is, we remain in state
f, we never move, and we never change any symbols on
the tape after we get to state f.

Uniform coding of Turing Machines by
a Logic Program

In this section we describe a logic program used for the
uniform coding of the operation of Turing machines.
This program P is the core part of our encoding of NP-
search problems. The encoding of the input, specific
machine, and the run-time bound will all be encoded
by a collection of facts, i.e. of ground atoms.

Firstly, we need to define the language (i.e. a signa-
ture) of the program P. Here is the collection of atoms
(predicate symbols) that we use for description of P.
We also explain the use for each symbol.

time(X) for “X is a time step”.

lasttime(X) for “X is the last time step”.

cell(X) for “X is a cell number”.

symb(X) for “X is a symbol”.

state(S) for “S is a state”.

action(X) for “X € {L,R,\}".

rwct(Y,T) for “the read-write head is reading cell Y
at time T7.

rwst(X,T) for “machine M is in state X at time 7.

otherrwst(X,T) for “machine M is in state other than
X at time T”.

syct(X,Y,T) for “s symbol X is in cell Y at time 7.

othersyct(X,Y, Z) for “symbol other than X is in cell
Y at time T™.

delta(X,Y,X1,Y1, Z) for “the triple (X1,Y1,Z) is an
executable instruction when the read-write head is
in state X and reads Y.” (This five-place relation
represents the transition function §).

nogood(X,Y) for “the read-write head is in state X
and reads the symbol Y, but there is no instruction
to execute.”

inst(X,Y, Z) for “(X,Y, Z) is an instruction”.

ezinst(X,Y, Z,T) for “machine M executes the in-
struction (X,Y,Z) at time T”. Here we assume
that instruction (X, Y, Z) is executed at the start of
any given time step T > 1 and that the instruction
(X,Y, Z) was chosen by M at the previous time step.

candidateezinst(X,Y, Z,T) for “(X,Y,Z) is one of
the instructions that could be executed at time 7.

otherezinst(X,Y, Z,T) for “the instruction (X,Y, Z) (3.1.4) ezinst(f,X, A\, W) « time(T), time(W),
is not executed at time T™. succ(T, W), symb(X), cell(Y), rwet(Y, T),

suce(X,Y) for ‘Y =X +17 sth(X’Y’TT)’N”St(f’.X)' .

“ R . Case 2. The read-write state is g; at time ¢t where ¢q; #
neq(X,Y) for “X £Y f and we are reading symbol a; at time ¢, but
A is a propositional letter. 0(gi,a;) = 0. We have two clauses that ensure

that we can not get into this situation in a stable

When we encode a specific machine, input and run- model.

time, we will need constants. Notice that in the pro- .
gram P that we will write, there should be no constants. (32.1) A ‘_t t):(m;(T), celgg_}’l)f, ;gmb(X oz;dst;tez(z)s "
We will not be absolutely strict in this respect in this rwst(X,)’. syct(X, D)’"09' (X, 2),-
Case 3. The read-write state is g; at time ¢t where ¢; # f

paper. In the program P described below, we use five . 4
constants I,r,)\, f and 1. These constants can easily and ¢ # p(n), we are reading symbol a; at time ¢,

be eliminated by replacing the explicit use of such con- and

stants by new one-place unary predicates pred-lambda, 0(gi,85) = {(Qio, BjosYho)s -+ - » (Fias BjarTha)}
pred-r etc. Then, in the extensional database, we need Our next clauges are designed to ensure that there
only ensure that pred-lambda is satisfied only by A, is a unique instruction to be executed at time ¢.

pred-r is only satisfied by r, etc.
The following will be the constants that will be used (3.3.1) candidateezinst(S1, X1,2, W) « state(S)

in our description of time, cell numbers, cell contents .
and specific machines. The last two families of con- :'.tsf:((;)l)t’i.:grerzgl(’))().;:gc’?;‘(g’l))’riidc;?;l’(g‘g’
stants will be “machine-dependent”, since we did not syct(X i, T) r'wsi;(S, T) ¢’ielt a’(S X S’l X’l 2).
specify any restrictions on the finite sets Q and . (1) (3.3.2) egins t(’S,’X, ,Z, W) ; st:;te(s), s;/m;)(X,) ’
constant symbols 0,1,...,p(n) where n is th.e length action(Z), time(W), candidateezinst(S)’(Z,W)
of the input o, p is the runtime polynomial. (?) —-otherezi,ns £(S, X ’Z w). P T D
gg;{l;ﬁ’eq{}t;t’swkere 211: f{qﬂ’ S as g’i 2nd we will (3.3.3) otherezinst(S, X, Z,W) «+ state(S), state(S1),
nat 8= % = p+1- 1y 009 Gl symb(X), symb(X 1), action(Z), action(Z1),
where T = {ay,...,a,}, :gd B (bl?,nk l:ymbol) is aI';H ezinst(S1, X1, 21, W), neq(S, S1).
(4) 7,4, 1. We are now ready to write the program P. (3.3.4) otherezinst(S,X,Z,W) + state(S), state(S1),
1. Our first three clauses will ensure that in a stable symb(X), symb(X1), action(Z), action(Z1),
model, the read-write head is in exactly one state at ezinst(S1,X1,Z1,W),neq(X, X1).
any given time ¢t. . (3.3.5) otherexinst(S,X,Z, W) « state(S), state(S1),
(1.1) A « time(T), state(X), state(Y), symb(X), symb(X1), action(Z), action(Z1),
rwst(X,T),rwst(Y,T),neq(X,Y),-A. ezinst(S1, X1, Z1,W), neq(Z, Z1).
(1.2) rwst(X,T) « time(T), state(X), 4, Exgcuting the next 'instruction. .These clauses dg—
-otherrwst(X,T). scribe the computation process, i.e. the change in

time, the state of the read-write head, the content of

. ime(T), state(X), state(Y), o ;
(1.3) otherrwst(X,T) « time(T), state(X), state(Y) tape, and the position of the read-write head.

rwst(Y,T),neq(X,Y). : : X
2. Our next three clauses will ensure that in a stable (4.1.1) g?i‘:;ac;‘;fg'e?ealmg with the content of cells that
n.lodelé.the;e is exactly one symbol in cell y at any syct(X,Y, W) + time(T), time(W), succ(T, W),
given Ume ¢. ' symb(X), cell(Y), cell(Z),neq(Y, Z), rwct(Z,T),
(2.1) A « time(T), cell(Y), symb(X), symb(X1), syct(X,Y,T).
syct(X,Y,T), syct(X1,Y,T), neq(X, X1), ~A. (4.1.2) (Content of the cell changes according to instruc-
(2.2) syct(X,Y,T) + time(T), cell(Y), symb(X), tion)
—othersyct(X,Y,T) syct(X,Y, W) « time(T), time(W), succ(T, W),
(2.3) othersyct(X,Y,T) + time(T), cell(Y), symb(X), symb(X), cell(Y), state(S), action(Z),
symb(X1), syct(X1,Y,T),neq(X, X1). ezinstr(S, X, Z, W), rwct(Y,T).
3. These clauses describe the operation of the Turing (4.2) (Changing the state of the read-write head accord-
machine. ing to instruction) '
L rwst(S, W) « time(T), time(W), suce(T, W),
Case 1. The read-write head is in the final state f. symb(X), cell(Y), state(S), action(Z),
(3.1.1) rwst(f,W) « time(T), time(W), succ(T, W), ezinstr(S, X, Z, W), rwet(Y, T).
rwst(f,T) (4.3.1) (Moving the read-write head left, if at a cell with
(3.1.2) rwct(Y,W) + time(T), time(W), succ(T, W), index that is different from 1)
cell(Y), rwet(Y,T), rwst(f,T) rwct(Y, W) « time(T), time(W), succ(T, W),
(3.1.3) syct(X,Y, W) « time(T), time(W), succ(T, W), symb(X), cell(Y), cell(Z),neq(Z, 1), succ(Y, Z),
symb(X), cell(Y), syct(X,Y,T),rwst(f,T) exinstr(S, X,l, W), rwet(Z,T).

128

(4.3.2) (Blocking an attempt to move left the read-write

head when pointing to the cell of index 1)
A + time(T), time(W), succ(T, W), symb(X),
state(S), exinstr(S, X, 1, W), rcwt(1,T), ~A.

(4.4) (Moving the read-write head right).
rwet(Y, W) « time(T), time(W), succ(T, W),
symb(X), cell(Y), cell(Z), succ(Z,Y),
exinstr(S, X, r, W), rwct(Z,T

(4.5) (Leaving the read-write head where it is).
rwct(Y, W) « time(T), time(W), suce(T, W),
symb(X), cell(Y), exinstr(S, X, \, W), rwct(Y, T).

5. Our next set of clauses ensures that in a stable model,
the read-write head is over exactly one cell at time ¢.

(5.1) A « time(T), cell(Y),cell(Y1),
neq(Y, Y1), rwet(Y,T),rwet(Y'1,T), ~A.
(5.2) rwet(Y,T) « time(T),cell(Y), —otherrwct(Y,T).
(5.3) otherrwct(Y,T) « time(T), cell(Y), cell(Yl)
neq(Y, Y1), rwct(Y'1,T).

6. This group consists of a single clause. That clause
ensures that in a stable model, the read-write head
ends in state f = gp4+1 at time t = p(n).)

A « lasttime(T), state(X),neq(X, f),rwst(X,T),-A

We call the DATALOG™ program consisting of all
clauses in groups (1)-(6), Turing program, Pr,.

Extensional database — coding of the
machine, input and the run-time
We will define now the extensional database extasp,o.

Given initial input ¢ = 0; ...0, and runtime p(n), we
let I(y o(n)) consist of the following set of facts.

1. Basic descriptive facts

(a) state(g;) « fori=0,...,p+1.

(b) symb(a;) « fori=1,...,r+ 1.

(c) delta(s, z,s1,z1,d) + for every pair (s,z) and ev-
ery triple (s1,z1,d) € (s, z).

(d) nogood(s,z) for every pair (s,z) such that
é(s,z) = 0.

(e) succ(i,i+1) « for 0 <1< p(n).

(f) neg(a,d) + for all @,b € {0,...,p(n)} with a # b.

(g) time(s) «+ for 0 < i < p(n).

(h) lasttime(p(n) — 1).

(i) cell(?) «+ for 1 < i < p(n).

() syct(o:,i,0) +fori=1,...
fori=n+1,...,p(n).

(k) action(l), action(r), action(}).

2. Beginning state of the Read-Write Head
rwst(go,0) « (recall go = s is the start state.)

,n and syct(B,1,0) +

3. rwct(1,0) . This is initial read-write head cell con-
dition.

Main Results

The main results of this paper can be summed up in
the following three results. Our first proposition imme-
diately follows from our construction.

Theorem 1 There is a polynomial q¢ so that for ev-
ery machine M, polynomial p, and an mput o, the
size of the extensional database edbps, o 13 equal to

9(IM|, [o], p(|o1)-

We will prove that for any nondeterministic Turing
Machine M, runtime polynomial p(z), and input ¢ of
length n, that the stable models of edbas,p,o U Pryy €n-
code the sequences of tapes of length p(n) which occur
in the steps of an accepting computation of M starting
on o and that any such sequence of steps can be used
to produce a stable model of edbas,p o U Pryg.

Theorem 2 The mapping of Turing machines to
DATALOG™ programs defined by M +— edbyp o U
Pr,, has the property that there is a 1-1 polynomial
time correspondence between the set of stable models of
edby po U Pryy and the set computations of M of the
length p(n) ending in the state f.

Corollary 1 A search S problem can be solved by
means of a uniform logic program if and only if S is
an NP-search problem.

We can also prove that similar results hold for default
logic programs without function symbols with respect
to nondeterministic Turing machines with an oracle for
3-SAT. It follows that a search problem S can be solved
by means of a uniform default logic program if and only
if S isin T%.

Metainterpreters for logic programs

We will now discuss metainterpreters, i.e. programs
that process programs. Our goal is to build a single
DATALOG™ program P that given a coding edbg of
a propositional logic program @, the stable models of
P U edbg codes the stable models of Q. Such program
is analogous to the classical ‘vanilla metainterpreter’ of
(Bowen & Kowalski 1982).

In this paper, we will describe a metainterpreter for
the class 0-2 programs as described in the introduction.
A propositional program P is a 0-2 program if for every
clause C of P has either no positive literal in the body,
or exactly 2 positive literals in the body. Blair proved
that 0-2 programs semirepresent all propositional pro-
grams. (See (Marek & Truszczyriski 1993), Ch. 5, for
the discussion of semirepresentability). This result is
implicit in (Blair & al. 1999). Specifically we have the
following.

Theorem 1 (Blair) There is a linear-lime com-
putable function f that assigns to each propositional
program P a 0-2 program f(P) and such that there is a
one-to-one projection from the family of stable models
of f(P) to the family of stable models of P.

To put Blair’s result in proper perspective, we note
that there is a more restrictive class of programs with
an even stronger property. Namely, call a program P
purely negative if the clauses of P have no positive
literals in the body. Dung and Kanchanasut (Dung
& Kanchanasut 1989) proved that every propositional
program is representable by a purely negative program.
However, the purely negative program of Dung and
Kanchanasut can not be computed in polynomial time
from the original program. Thus the cost of this type
of more extensive preprocessing would be prohibitive.

We shall now construct our metainterpreter Metal
that computes stable models of 0-2 propositional pro-
grams. To this end we need a data structure that ex-
presses the given 0-2 program Q. The extensional pred-
icates that occur in the extensional database edbg are
as follows:

1. atom(-) for listing atoms,

2. clause(-) for listing clauses,

3. head(:,-) for specifying the head of a clause,
4

. neg(-,-) for specifying that an atom occurs negatively
in the body of a clause,

. first(-,-) for specifying that an atom is the first of the
two positive atoms occurring in the body of a clause,
and

. second(-,-) for specifying that an atom is the sec-
ond of two positive atoms occurring in the body of a
clause.

Next we list the intentional predicates that also occur

in Metal.

1. nempty(-) for specifying that there are atoms occur-
ring positively in the body of a clause.

. empty(-) for specifying that there are no atoms oc-
curring positively in the body of a clause.

. in(-) for specifying the atoms which occur in the sta-

ble model of the input program.

out(-) for specifying the atoms which do not occur in

the stable model of the input program.

. unusable(-), for specifying the clauses do not occur

in the Gelfond-Lifschitz reduct relative to the stable

model.

usable(-) for specifying the clauses that occur in the

Gelfond-Lifschitz reduct relative to the stable model.

computed(-) for specifying the atoms which are com-
puted to be in the stable model.

8. f a propositional atoms used to enforce constraints.

The extensional database edbq for a propositional pro-
gram Q consists of the atoms atom(a) for all atoms a
occurring in @, the atoms clause(c) for all clauses ¢
in Q, the atoms head(a,c) for the head a of clause c,
the atoms first(a, c) and second(b, c) where a, b are first
and the second atom in the body of ¢, respectively. We
denote this collection of atoms edbq.
We now describe the metainterpreter itself.

6.

7.

130

1. Generating the candidate for a model
(a) in(A) « atom(A),-out(A)
(b) out(A) « atom(A),-in(A)

2. Computing Gelfond-Lifschitz reduct

(a) unusable(C) + clause(C), atom(A),
neg(A,C), in(A)
(b) usable(C) + clause(C), ~unusable(C)
3. Classifying clauses
(a) nempty(C) + clause(C), atom(A), first(A,C)
(b) empty(C) + clause(C), ~nempty(C)
4. Computation process

(a) computed(A) + clause(C), empty(C), usable(C),
head(A, C)

(b) computed(A) « clause(C), first(A1,C),
second(A2, C), computed(Al), computed(A2),
head(A,C)

5. Constraints
(a) f « atom(A), in(A),~computed(A),~f
(b) f + atom(A), out(A), computed(A),-f
We now have the following result

Theorem 3 For every propositional 0-2 program Q,
there is a one-to-one correspondence between set of sta-
ble models of Q and the set of stable models of Metal U
edbg. Moreover, we can recover a stable model of Q
Jrom its corresponding stable model of Metal U edbg in
linear time.

Thus, in order to compute stable models of a proposi-
tional program P, first process P using Proposition 1,
getting a program Q. Next, apply Proposition 3, get
a stable model of Metal U edbg and project it twice.
First to get a stable model of Q and then of P.

We note that the metainterpreter Meta! does dis-
tinguish between the stable and supported semantics.
That is, the supported models of Metal U edbg do
not necessarily determine stable models of Q. Fi-
nally, we note that by using techniques similar to
those used to comstruct our program Pr,, we can
write another metainterpreter Meta2 that does not re-
quire a particular form for the input propositional pro-
gram. This requires a more complicated construction
where we directly simulate the iterations of the opera-
tor Tgr,(Q) in the computation of a stable model M
from it Gelfond-Lifschitz reduct GLp(Q). We can not
supply details here due to lack of space. However, we
will provide such details in the full version of the paper.

References
K.R. Apt Logic Programming. in Handbook of Theoretical
Computer Science, pp. 475-574. Elsevier, 1990. .
K.R. Apt and H.A. Blair. Arithmetical classification of

perfect models of stratified programs. Fundementa Infor-
maticae, 12:1-17, 1990.

K. Apt, H.A. Blair, and A. Walker. Towards a theory of
declarative knowledge. In J. Minker, editor, Foundations of
deductive databases and logic programming, pages 89-142,
Los Altos, CA, 1988. Morgan Kaufmann.

K.R. Apt and D. Pedreschi. Reasoning about termination
of pure Prolog programs. Information and Computation
106:109-157, 1994.

K.R. Apt and A. Pellegrini. On the occur-check free pure
Prolog programs. ACM Toplas 16:687-726, 1994.

S. Abiteboul, R. Hull, and V. Vianu. Foundations of
Databases. Addison-Wesley Publishing Company, 1995.
H.A. Blair, W. Marek, and J. Schlipf. The expressiveness
of locally stratified programs. Annals of Mathematics and
Artificial Intelligence, 15:209-229, 1995.

H.A. Blair, F. Dushin, D.W. Jackel, A.J. Rivera and M.
Sezgin, Continuous Models of Computation for Logic Pro-
grams: Importing Continuous Mathematics into Logic Pro-
gramming’s Algorithmic Foundations, The Logic Program-
ming Paradigm, pp. 231-255, Series Artificial Intelligence,
Springer-Verlag, 1999.

K.A. Bowen and R.A. Kowalski Amalgamating language
and metalanguage in Logic Programming. In: Logic Pro-
gramming, pp. 153-172, Academic Press, 1982.

M. Cadoli and L. Palipoli. Circumscribing datalog: expres-
sive power and complexity. Theoretical Computer Science,
193:215-244, 1998.

D. Cenzer and J.B. Remmel IT{ Classes in Mathematics. In:
Handbook of Recursive Mathematics pp. 623-821, Elsevier
1999.

P. Cholewitiski, W. Marek, A. Mikitiuk, and

M. Truszczyniski. Programming with default logic. Artifi-
cial Intelligence 112:105-146, 1999.

A. Colmerauer, H. Kanoui, R. Pasero, and P. Roussel. Un
systéme de communication homme-machine en frangais.
Technical report, University of Marseille, 1973.

S. Cook. The complexity of theorem-proving procedures.
Proceedings of Third Annual ACM Symposium on Theory
of Computing pp. 151-158. 1971.

P.M. Dung and K. Kanchanasut, On the generalized predi-
cate completion of non-Horn programs, In: Logic program-
ming, Proceedings of the North American Conference, pp.
587-603, MIT Press, 1989.

East, D., and Truszczynski, M. 2000. Datalog with con-
straints. In Proceedings of the Seventeenth National Con-
ference on Artificial Intelligence (AAAI-2000), 163-168,
2000.

T. Eiter, N. Leone, C. Mateis, G. Pfeifer, and F. Scarcello.
The KR System dlv: Progress Report, Comparisons, and
Benchmarks. In Proceedings Sizth International Confer-
ence on Principles of Knowledge Representation and Rea-
soning (KR-98), pages 406—417, 1998.

A. Ferry, Topological Characterizations for Logic Program-
ming Semantics, Ph.D. Dissertation, University of Michi-
gan, 1994.

M.R. Garey and D.S. Johnson. Computers and intractabil-
sty; a guide to the theory of NP-completeness. W.H. Free-
man, 1979.

M. Gelfond and V. Lifschitz. The stable semantics for logic
programs. In Proceedings of the 5th International Sympo-
sium on Logic Programming, pages 1070-1080, Cambridge,
MA, 1988. MIT Press.

131

J. Jaffar and M.J. Maher. Constraint logic programming:
A survey. Journal of Logic Programming, 19(20):503-581,
1994.

V. Lifschitz. Action languages, answer sets and planning.
The Logic Programming Paradigm, pp. 357-373. Series
Artificial Intelligence, Springer-Verlag, 1999.

V. Lifschitz. Answer set planning. In Logic program-
ming and nonmonotonic reasoning, volume 1730 of Lec-
ture Notes in Computer Science, pages 373-374. Springer-
Verlag, 1999.

W. Marek, A. Nerode, and J. B. Remmel. The stable mod-
els of predicate logic programs. Journal of Logic Program-
ming, 21(3):129-154, 1994.

W. Marek and M. Truszczyiski. Autoepistemic logic. Jour-
nal of the ACM, 38:588-619, 1991.

W. Marek and M. Truszczynski. Nonmonotonic Logic
- Contest-Dependent Reasoning. Series Artificial Intelli-
gence, Springer-Verlag, 1993.

W. Marek and M. Truszczyriski. Stable Models and an Al-
ternative Logic Programming Paradigm. The Logic Pro-
gramming Paradigm, pp. 375-398. Series Artificial Intelli-
gence, Springer-Verlag, 1999.

K. Marriott and P.J. Stuckey. Programming with Con-

- straints: An Introduction. MIT Press, Cambridge, MA,

1998.

I. Niemela. Logic programs with stable model semantics
as a constraint programming paradigm. In Proceedings of
the Workshop on Computational Aspects of Nonmonotonic
Reasoning, pages 72-79, 1998.

I. Niemelé and P. Simons. Efficient implementation of the

well-founded and stable model semantics. In Proceedings
of JICSLP-96. MIT Press, 1996.

T. Przymusiniski. On the declarative semantics of deduc-
tive databases and logic programs. In Foundations of de-
ductive databases and logic programming, pages 193-216,
Los Altos, CA, 1988. Morgan Kaufmann.

T. Przymusinski. The Well-Founded Semantics Coincides
With The Three-Valued Stable Semantics, Fundamenta
Informaticae, 13:445-464, 1990.

P. Rao, 1.V. Ramskrishnan, K. Sagonas, T. Swift, D. S.
Warren, and J. Freire. XSB: A system for efficiently
computing well-founded semantics. In Proceedings of LP-
NMR’97, pages 430-440, Lecture Notes in Computer Sci-
ence, 1265, Springer-Verlag, 1997.

J. Schlipf. The expressive powers of the logic programming
semantics. Journal of the Computer Systems and Science,
51:64-86, 1995. '

T. Soininen and I. Niemela. Developing a declarative rule
language for applications in product configuration. In Pro-
ceedings of the First International Workshop in Practical
Aspects of Declarative Languages, pages 305-319. Springer-
Verlag, 1999.

J.D. Ullman. Principles of Database and Knowledge-Base
Systems. Computer Science Press, Rockville, MD, 1988.

A. Van Gelder, K.A. Ross, and J.S. Schlipf. Unfounded
sets and well-founded semantics for general logic programs.
Journal of the ACM, 38:620-650, 1991.

L. Wall, T. Christiansen, and J. Orwant. Programming
Perl, Third edition, O’Reilly, 2000.

