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Abstract

We extend answer set programming of dynamical sys-
tems with more expressive programming constructs such se-
quence, conditional, loop, non-deterministic choice of ac-
tions/arguments, and procedures. We discuss its relevance to
the problem of answer set planning. We present an SMOD-
ELS encoding of these constructs and formally prove the cor-
rectness of our encoding.

Introduction
In (Lifschitz 1999), Lifschitz showed how answer set pro-
gramming (ASP) (Marek & Truszczyński 1999; Niemelä
1999) can be used to do planning and coined the term an-
swer set planning. It combines the advancements of research
in reasoning about actions using logic programming (see
e.g. (Gelfond & Lifschitz 1993) and the papers in (Lifschitz
1997)) and answer set programming (Marek& Truszczyński
1999; Niemelä 1999). While the latter proposes a general
framework to solve constraint satisfaction problems in logic
programming, the former supplies the logic programming
axioms for representing and reasoning about actions and
their effects, which can be used for a variety of tasks, in-
cluding plan verification.
The key idea of answer set programming is to represent

the solution to a problem by an answer set, or a model of
the program. That is, to solve a problem, one first needs
to represent it as a logic program whose answer sets cor-
respond one-to-one to the solutions of the problem; next,
to find a solution, one uses available tools such as SMOD-
ELS (Niemelä & Simons 1997), DLV (Citrigno et al. 1997),
DeRes (Cholewinski, Marek, & Truszczynski 1996), or
CCALC (McCain & Turner 1997) to compute an answer set
of the program; finally, some translation from the answer set
to the solution of the problemmay be necessary. As its name
suggests, answer set planning focuses on solving planning
problems using the answer set programming paradigm.
Even though logic programming is regarded as suitable

for use as both the representation language and the imple-
mentation language in answer set programming, it is ar-
gued that in many cases, a richer language for represen-
tation is useful in answer set programming (Simons 1999;
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Niemelä, Simons, & Soininen 1999). Simons introduced
new types of rules called choice rules, constraint rules,
and weight rules and Niemelä et al.demonstrated its useful-
ness in different applications (Niemelä, Simons, & Soini-
nen 1999). The stable model semantics of logic pro-
grams containing these rules is given in (Simons 1999;
Niemelä, Simons, & Soininen 1999). These features are now
implemented in SMODELS, an efficient implementation of
stable model semantics of logic programs.
In this paper, we extend answer set programming by

adding more expressive constructs such as sequence, condi-
tional, loop, non-deterministic choice of actions/arguments,
and procedures, for representing and reasoning with dy-
namical domains. These constructs are derivative of con-
structs in procedural programming languages such as AL-
GOL, and of constructs in the logic programming language
GOLOG (Levesque et al. 1997). We define the semantics
of these constructs using a predicate called trans which is
adapted from the Trans and Final predicates used to define
the computational semantics of ConGolog (De Giacomo,
Lesperance, & Levesque 1997; De Giacomo, Lespérance, &
Levesque 2000). We implement an interpreter for these con-
structs in SMODELS and formally prove its correctness. We
discuss the relevance of this work to answer set planning.
The paper is organized as follows. We begin with a review

of the basics of stable model semantics, the action descrip-
tion language � and answer set planning. We then introduce
the new constructs, present their encoding in logic program-
ming, and prove the correctness of the implementation. We
relate our work to GOLOG and discuss some desirable ex-
tensions of the current work in the last section.

Preliminaries
Stable Models of Logic Programs
We review the basic notion of a stable model for extended
logic programs, introduced by Gelfond and Lifschitz in
(Gelfond & Lifschitz 1988). A program � is defined over a
first-order language�� , extendedwith a special unary pred-
icate – the negation-as-failure operator – denoted by not. A
negation-as-failure literal (or naf-literal) is of the form ��� �
where � is an atom of the language �� . A program � is a
set of rules of the form

�� � ��� � � � � ��� ��� ����� � � � � ��� ��� (1)
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where � � � � �, each �� is an atom, and, ��� represents
the negation-as-failure operator.
Let ������ denote the set of ground atoms in the language

of the program�.

1. If � does not contain any naf-literal (i.e. � � � in every
rule of �) a stable models of � is defined as the small-
est set 	, 	 � ������ such that for any ground instance
�� � ��� � � � � �� of a rule from �, if ��� � � � � �� � 	, then
�� � 	.

2. If the program � does contain some naf-literals (� 
 �
in some rule of �), 	 � ������ is a stable model of � if
	 is the stable model of the program� � obtained from the
set of all ground instances of � by deleting

(a) each rule that has a formula��� � in its bodywith � � 	,
and

(b) all formulas of the form ��� � in the bodies of the re-
maining clauses.

We note that in ASP, a new type of rules called con-
strains with empty head (or �� � false) is extremely use-
ful. Stable models of logic programs with constraints are
defined formally in (Niemelä, Simons, & Soininen 1999;
Lifschitz & Turner 1999).

Representing Action Theories in �
We use the high-level action description language� of (Gel-
fond & Lifschitz 1998) to represent action theories. In such
a language, an action theory consists of two finite, disjoint
sets of names called actions and fluents and a set of propo-
sitions of the following form:

caused����� � � � � ���� �� (2)

causes��� �� ���� � � � � ���� (3)

executable��� ���� � � � � ���� (4)

initially � (5)

where � and ��’s are fluent literals (a fluent literal is either
a fluent 
 or its negation �
, written as ��
�
�) and � is
an action. (2) represents a static causal law, i.e., a ramifi-
cation constraint. (3) represents the (conditional) effect of
�, while (4) denotes executability condition of �. Proposi-
tions of the form (5) are used to describe the initial state.
Often, an action theory is given by a pair ����� where �
consists of propositions of the form (2)-(4) and � consists of
propositions of the form (5). For the purpose of this paper,
it suffices to note that the semantics of such an action theory
is given by a transition graph, represented by a relation �,
whose nodes are the states of the action theory and whose
links (labeled with actions) represent the transition between
its states (see (Gelfond & Lifschitz 1998) for details). That
is, if 	�� �� ��
 � �, then there exists a link with label � from
state � to state ��. A trajectory of the system is denoted by a
sequence ������ � � � ���� where ��’s are states and ��’s are
actions and 	��� ����� ����
 � � for � � ��� � � � � �� �
.

Answer Set Planning
A planning problem is specified by a triple 	�����
 where
����� is an action theory and � is a fluent formula (or
goal), representing the (partial) goal state. A sequence of

actions ��� � � � � �� is a possible plan for � if there exists a
trajectory ������ � � � ���� such that �� and �� satisfies �
and�, respectively.
Observe that the notion of plan employed here is weaker

than the conventional one where the goal must be achieved
on every possible trajectories. This is because an action the-
ory with causal laws can be non-deterministic. Generating
plans for non-deterministic action theories is an interesting
topic but is beyond the scope of this paper. If � is deter-
ministic, i.e., for every pair of a state � and action � there
exists at most one state �� such that 	�� �� ��
 � �, then every
possible plan for� is also a plan for�.
Given a planning problem 	�����
, answer set planning

solves it by translating it into a logic program ��������
(or �, for short) consisting of domain-dependent rules that
describe�, �, and� respectively, and domain-independent
rules that generate action occurrences and represent the tran-
sitions between states.

Action theory representation. We use two predicates ���
and �� to define the sort set and to represent the set mem-
bership function, respectively. We assign to each set of
fluent literals that occurs in a proposition of � a distin-
guished name. The constant ��� denotes the set �
. A set
of literals ���� � � � � ��
 will be replaced by the set of atoms
� � �������� ������ ��,. . . ,������ ��
 where � is the name
assigned to ���� � � � � ��
. With this representation, propo-
sitions in � can be easily translated into a set of facts of
�. For example, a proposition ��������� �� ���� � � � � ��
�
with �� � is encoded as a set of atoms consisting of
��������� �� �� and the set � (� is the name assigned to
���� � � � � ��
).

Goal representation. To encode�, we define formulas and
provide a set of rules for formula evaluation. Due to the typ-
ing requirement of SMODELS, we consider formulas which
are bounded classical formulas with each bound variable as-
sociated with a sort. They are formally defined as follows.

� A literal is a formula.

� The negation of a formula is a formula.

� A finite conjunction of formulas is a formula.

� A finite disjunction of formulas is a formula.

� If��� � � � � �� are variables that can have values from the
sorts ��� � � � � ��, and ������ � � � � ��� is a formula then
���� � � � � ��������� � � � � ��� is a formula.

� If��� � � � � �� are variables that can have values from the
sorts ��� � � � � ��, and ������ � � � � ��� is a formula then
���� � � � � ��������� � � � � ��� is a formula.

The encoding of formulas in SMODELS is done similarly
to the encoding of sets. A sort called formula is intro-
duced and each non-atomic formula will be associated with
a unique name and defined by (possibly) a set of rules. For
example, the formula in the fifth item can be represented
by the rule ����������������� ������ � � � � ����� �
������ ���� � � � � ������ ��� where � is the name assigned
to it. As with literal, negation will be represented by the
function symbol ��
. For example, if � is the name of a



formula then ��
��� is a formula representing its negation.
Rules to check when a formula holds or does not hold can
be written in a straightforward manner and are omitted here
to save space.

Domain-independent rules. The domain-independent
rules of � are adapted mainly from (Gelfond & Lifschitz
1992). The key difference is the representation of time that
has been used previously in (Dimopoulos, Nebel, & Koehler
1997; Lifschitz 1999; Lifschitz & Turner 1999). The main
predicates in these rules are:

� �������� � �: � holds at time � ,

� ����������� � �: action � is executable at time � ,

� ������ � �: action � occurs at time � ,

� ����� ���������� � �: formula � holds at time � , and

� ����� ����	� � �: 	 - a set of literals - holds at time � .

The main domain-independent rules are given next. In these
rules, � is a variable of the sort ����, ��� are variables
denoting fluent literals (written as  or ��
� � for some
fluent  ), 	 is a variable set of the sort ���, and ��! are
variables of the sort ������.

holds(L, T+1):-
occ(A, T), causes(A, L, S),
holds_set(S, T).

holds(L, T):-
caused(S, L), holds_set(S, T).

holds(L, T+1):-
contrary(L, G),
holds(L, T), not holds(G, T+1).

possible(A,T):-
executable(A, S),
holds_set(S, T).

holds(L, 0):-
literal(L),
initially(L).

nocc(A,T):-
A =/= B, occ(B,T), T < length.

occ(A,T):-
T < length,
possible(A,T), not nocc(A,T).

Here, the first rule encodes the effects of action, the sec-
ond rule encodes the effects of static causal laws, and the
third rule is the inertial rule. The fourth rule defines a pred-
icate that determines when an action can occur and the fifth
encodes the initial situation. The last two rules are used to
generate action occurrences, one at a time. ���
�� is used to
stipulate the maximum length of the resulting program. We
omit most of the auxiliary rules such as rules for defining
contradictory literals etc. The source codes and examples
can be retrieved from our web-site1.
Let ��������� (or �� when it is clear from the context

what�, �, and� are) be the logic program consisting of

� the set of domain-independent rules in which the domain
of � is ��� � � � � �
,

1http://www.ksl.stanford.edu/people/son/macros.html

� the set of atoms encoding� and �, and

� the rule � ��� ����� �� that encodes the requirement
that� holds at �.

The following result (adapted from (Lifschitz & Turner
1999)) shows the equivalence between trajectories of
	�����
 and stable models of ���������.

Theorem 1 Given a planning problem, 	�����
. Let 	
be a stable model of ���������, and define ���� �
�� � �������� �� � 	
 and �	�� "
 � 	��� � � � � �� 
 where �� "
are integers, � is a fluent, �� is an action, and for every �,
� � � � ", ������� �� � 	, then

� if ���� � � � ������ is a trajectory of 	�����
, then there
exists a stable model 	 of �� such that �	�� ���
 �
	��� � � � � ����
 and �� � ���� for � � ��� � � � � �
, and

� if 	 is a stable model of �� with �	�� ���
 �
	��� � � � � ����
 then ������ � � � �������� is a trajectory of
	�����
.

ALGOL-like Constructs in Answer Set
Planning and Programming

GOLOG is a logic programming language developed by the
Cognitive Robotics Group, University of Toronto, for rea-
soning about dynamical systems (Levesque et al. 1997).
In GOLOG, ALGOL-like constructs such as sequence,
loop, conditional, and nondeterministic choice of argu-
ments/actions are added to the situation calculus language
as macros that can be used to write programs. In Con-
Golog (De Giacomo, Lespérance, & Levesque 2000), a vari-
ant of Golog, these constructs are realized as terms within
the language. Instead of planning, GOLOG and its vari-
ants are used to specify (non-deterministic) programs that
constrain the evolution of the world. In the situation cal-
culus, searching for a plan amounts to deductively instan-
tiating the binding of the situation variable in the goal for-
mula. The situation dictates the sequence of actions from
the initial situation required to entail the goal. Similarly, a
sequence of actions that realizes a GOLOG program is sim-
ply determined by searching for appropriate bindings of sit-
uation terms that satisfy situation calculus formulae estab-
lished by our GOLOG program. PROLOG-based GOLOG-
interpreters have been developed and used in a variety of
applications (e.g., (Boutilier et al. 2000)).
We will show next that this feature can also be integrated

easily into answer set programming, and used for answer set
planning. First, we extend the language of answer set pro-
gramming with the complex constructs to define programs.
For an action theory ����� we define

� an action � is a program,

� a formula # is a program,

� if ��’s are programs then ��� � � � � �� is a program,

� if ��’s are programs then ��� � � � ��� is a program,

� if �� and �� are programs and # is a formula then
“if # then �� else ��” is a program,

� if � is a program and # is a formula then “while # do �”
is a program, and



� if � is a variable of sort �, ���� is a program, and ����
is a formula, then pick��� ����� ����� is a program.

The operational semantics of programs is defined as fol-
lows. A trajectory ������ � � � ������, denoted by $, is said
to be a trace of a program � if

� for � � � and � is an action, � � � and �� � �,

� for � � #, � � � and # holds in ��,

� for � � ��� ��, there exists an � such that ���� � � � �� is a
trace of �� and ���� � � � �� is a trace of ��,

� for � � ��� � � � ���, $ is a trace of �� for some
� � ��� � � � � �
,

� for � � if # then �� else ��, $ is a trace of �� if # holds
in �� or $ is a trace of �� if ��
�#� holds in ��,

� for � � while # do ��, � � � and ��
�#� holds in �� or
# holds in �� and there exists some � such that ���� � � � ��
is a trace of �� and ���� � � � �� is a trace of �, and

� for � � pick��� ����� %����, then there exists a con-
stant & of the sort of � such that ��&� holds in �� and $
is a trace of %�&�.

We next present the logic programming rules that realize
this semantics. We define a predicate �������� ��� ��� which
holds in a stable model 	 iff �������� � � � ����� is a trace of
�2. As is customary with SMODELS, we will assign to each
program a name (with the exceptions of action or formula),
provide rules for the construction of programs, and use the
prefix notations. More precisely,

� A program ��� � � � � �� is represented by the atoms
�������, ������� ���, ������� ��� and the set of atoms
representing ��� � � � � ��, where �� ��, and �� are the
names assigned to ��� � � � � ��, �� (if it is not a primitive
action or a formula), and ��� � � � � ��, respectively.

� A program ��� � � � ��� is represented by the set of atoms
������, ������ ��� � � � � ������ ��, ���������������, and
the set of atoms representing ��’s where � and ��’s are
the names assigned to the program ��� � � � ��� and ��’s,
respectively.

� A program if # then �� else �� is represented by the
atom ����� ��� ��� ��� and the set of atoms representing
�� and �� where �� ��� �� and�� are the names assigned
to the program if # then �� else ��, the formula #, ��,
and ��, respectively.

� A program while # do �� is represented by the atom
'������� ��� ��� and the set of atoms representing ��
where �, ��, and �� are the names assigned to the pro-
gramwhile # do ��, the formula #, and ��, respectively.

� A program pick���#� ��� is represented by the rule
��������
���� ��� ��� � ���� and the set of atoms
representing �� where ���� is the type definition of � ,
and �, ��, and �� are the names assigned to the program
pick���#� ���, the formula #, and ��, respectively.

The rules for the ����� predicate are listed below.
2Recall that we define ���� � ��	
����� �� � � � � is a fluent�

and assume 	

���� �� � �.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% axioms for programs
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
trans(P,Tb,Te):-

time(Tb), time(Te), time(Te1),
Tb <= Te1, Te1 <= Te,
proc(P), head(P,P1), tail(P,P2),
trans(P1,Tb,Te1), trans(P2,Te1,Te).

trans(A,Tb,Tb+1):- time(Tb),
action(A), neq(A, null), occ(A,Tb).

trans(null,Tb,Tb):- time(Tb).

trans(N,Tb,Te):- time(Tb), time(Te),
Tb <= Te, in(P1,N),
choiceAction(N),
trans(P1,Tb,Te).

trans(F,Tb,Tb):- time(Tb),
formula(F), holds_formula(F,Tb).

trans(I,Tb,Te):- time(Tb), time(Te),
Tb <= Te, if(I,F,P1,P2),
holds_formula(F,Tb), trans(P1,Tb,Te).

trans(I,Tb,Te):- time(Tb), time(Te),
Tb <= Te, if(I,F,P1,P2),
not holds_formula(F,Tb),
trans(P2,Tb,Te).

trans(W,Tb,Te):- time(Tb), time(Te),
while(W,F,P), holds_formula(F,Tb),
time(Te1), Tb <= Te1, Te1 <= Te,
Tb <= Te, trans(P,Tb,Te1),
trans(W,Te1,Te).

trans(W,Tb,Tb):- time(Tb),
while(W,F,P), not holds_formula(F,Tb).

trans(S, Tb, Te):-
time(Tb), time(Te), Tb <= Te,
choiceArgs(S,F,P), holds_formula(F, Tb),
trans(P, Tb, Te).

Just as these constructs can be used to write non-
deterministic programs for dynamical systems in GOLOG,
so too can they be used to write non-deterministic programs
within our answer set programming paradigm. As noted pre-
viously, these constructs serve to constrain the possible evo-
lutions of a dynamical system, and hence the possible trajec-
tories. As such they can be used in the context of answer set
planning to specify domain-specific control knowledge that
constrains the possible plans under consideration. Domain-
specific control knowledge has been shown to by Bacchus
and Kabanza and others (e.g., (Bacchus & Kabanza 2000))
to be an effective way of speeding up planning.



Example

In this section, we present our encoding of the canonical
elevator example, as described in (Levesque et al. 1997),
and show the results of some queries.

% Elevator example %%%%%%%%%%%%%%%%%%%%%%
floor(0..5).

% action declarations
action(up(N)):- floor(N).
action(down(N)):- floor(N).
action(turnoff(N)):- floor(N).
action(open). action(close). action(null).

% fluents declarations
fluent(currentFloor(N)):- floor(N).
fluent(on(N)):- floor(N).
fluent(opened).

% actions
causes(up(N), currentFloor(N), nil):-

floor(N).
causes(down(N), currentFloor(N), nil):-

floor(N).
causes(turnoff(N), neg(on(N)), nil):-

floor(N).
causes(open, opened, nil).
causes(close, neg(opened), nil).

% executable conditions of actions
executable(up(N), list1(N)):- floor(N).
executable(down(N), list2(N)):-
floor(N).
executable(turnoff(N), list3(N)):-

floor(N).
executable(open, nil).
executable(close, nil).
executable(null, nil).

set(list1(N)):- floor(N).
set(list2(N)):- floor(N).
set(list3(N)):- floor(N).

in(above(N), list1(N)):- floor(N).
in(below(N), list2(N)):- floor(N).
in(on(N), list3(N)):- floor(N).

% defined fluents
holds(neg(currentFloor(N)), T):-

time(T), floor(N), floor(M),
holds(currentFloor(M), T), neq(N,M).

holds(below(N), T):-
time(T), floor(N), floor(M),
holds(currentFloor(M), T), N < M,
holds(neg(opened),T).

holds(above(N), T):-
time(T), floor(N), floor(M),

holds(currentFloor(M), T), N > M,
holds(neg(opened),T).

% initial situation
initially(on(3)). initially(on(5)).
initially(currentFloor(2)).
initially(neg(opened)).

The following procedures were provided in (Levesque et al.
1997).

proc(serve(N),
[go(N),turnoff(N),open,close]).

proc(go(N),
up(N)|down(N)|in(currentFloor(N)).

proc(serve_a_floor,
pick(N, on(N), serve(N))).

proc(control,[while(on(N),serve_a_floor),
if(currentFloor(0),

open, [down(0), open]).

We encode these procedures with the following rules.

% procedure serve(N)
proc(serve(N)):- floor(N).
head(serve(N), h1(N)):- floor(N).
tail(serve(N), t1((N)):- floor(N).

proc(t1((N)):- floor(N).
head(t1((N), turnoff(N)):- floor(N).
tail(t1((N), t2):- floor(N).

proc(t2). head(t2, open). tail(t2, close).

proc(h1(N)):- floor(N).
head(h1(N), p(N)):- floor(N).
tail(h1(N), null):- floor(N).
choiceAction(p(N)):- floor(N).

in(up(N), p(N)):- floor(N).
in(down(N), p(N)):- floor(N).
in(currentFloor(N), p(N)):- floor(N).

% procedure serve_a_floor
proc(serve_a_floor).
head(serve_a_floor, s(N)):- floor(N).
tail(serve_a_floor, null).

choiceArgs(s(N), on(N), serve(N)):-
floor(N).

%procedure control
proc(control).
head(control, wloop).
tail(control, park).

while(wloop, existOn, serve_a_floor).

exists(existOn, on(N)):- floor(N).

%procedure park



proc(park).
head(park, if0). tail(park, null).

if(if0, currentFloor(0),
open, elsePark).

proc(elsePark).
head(elsePark, down(0)).
tail(elsePark, open).

To find a trace of a programwith the length less than or equal
���
��, we add the following rule to ��.

goal(T):- time(T), trans(Program, 0, T).
goal(T+1):- time(T), T < length, goal(T).
:- not goal(length).

Sample runs:

� For (��
��� � ������� and ���
�� � ��, asking for
one solution, the program returns:

occ(up(5),0) occ(turnoff(5),1)
occ(open,2) occ(close,3) occ(down(3),4)
occ(turnoff(3),5) occ(open,6)
occ(close,7) occ(down(0),8) occ(open,9)

� For (��
��� � ���)� � ����� and ���
�� � ��, ask-
ing for all solutions, the program returns:

occ(up(5),0) occ(turnoff(5),1)
occ(open,2) occ(close,3)

occ(up(3),0) occ(turnoff(3),1)
occ(open,2) occ(close,3)

Comparison to GOLOG

In this section, we compare our implementation with
PROLOG-based implementations of GOLOG. The follow-
ing points differentiate our implementation from other
GOLOG-interpreters3:

1. Our implementation is done in a purely declarative logic
programming language while other GOLOG-interpreters
use PROLOG. One advantage of using a purely declara-
tive logic programming language over PROLOG is that
it avoids the many non-declarative features of PROLOG
such as left to right ordering of literals in the body of a
rule, top to bottom processing of rules in a file, or infinite
loops even in finite domains etc.

2. Our implementation can be used only with finite action
theories. On the other hand, PROLOG-based GOLOG-
interpreters could in principle be applied to infinite situ-
ation calculus theories, provided that the successor state

3We are aware of at least two interpreters: one is written in
Eclipse Prolog and the other in Quintus Prolog. A proof for
the soundness and completeness of a PROLOG-based ConGolog-
interpreter can be found in (De Giacomo, Lespérance, & Levesque
2000).

axioms of fluents can be encoded in such a way that loops
can be avoided4.

3. Our implementation is elaboration tolerant with respect to
the addition of temporal constraints to the planning prob-
lem. PROLOG implementation are not as elaboration tol-
erant. This can be attributed to the difference between an-
swer set planning/programming and the PROLOG query
answering procedure. Answer set programming/planning
uses the generate-test algorithm to solve a planning prob-
lem. Thus, adding a constraint does not require extra work
other than its specification. In PROLOG, the query an-
swering procedure is goal-directed. As such, looking for a
plan satisfying some additional constraints would require
a query reformulation or a change to the problem specifi-
cation. Discussions of the inclusion of simple constraints
in GOLOG can be found in (McIlraith 2000b), however to
the best of our knowledge, none of the current PROLOG-
based GOLOG interpreters supports this feature.

4. Our action formalization is more elaboration tolerant with
respect to the addition of state constraints than situation
calculus formalizations. This is because state constraints
are specified separately and can be added/removed easily.
On the other hand, state constraints generally have to be
incorporated into successor state axioms of fluents in the
situation calculus framework. As such, adding/removing
a state constraint would generally require a (simple)
rewrite of the successor state axioms. For a treatment
of state constraints in solitary stratified situation calculus
theories, see (McIlraith 2000a).

5. By adding the cut operator at appropriate choice points,
a PROLOG-based GOLOG interpreter can be easily con-
verted into an online interpreter. This is not the case with
our implementation. The main reason is again the differ-
ence between answer set planning and PROLOG query
answering procedure.

As a final point in our comparison between our answer set
programming implementation and Golog, we prove that for
action theories without static causal laws, the logic program-
ming implementation of the previous section can be viewed
as a sound and complete GOLOG-interpreter.
Let ����� be an action theory without a static causal law

and a complete initial state. It has been shown in (Kartha
1993) that there exists a situation calculus theory�� which
is equivalent to �����. It is easy to see that a program
wrt. an action theory ����� defined in the previous section
could be viewed as a GOLOG-program in �� . Vice versa,
if a GOLOG-program contains only constructs mentioned in
this paper then it can be viewed as a program in this paper
too. Let �� be the logic program consisting of

4E.g., it is not clear whether the infinite situation calculus the-
ory consisting of an action �, the fluents � and ���� for inte-
ger �, the initial situation axioms ������, �������� ����, and
the successor state axioms ���	��� ��� � ��������� ���� �����
and ���� �	��� ��� � ���� �� can be encoded in PROLOG such
that the query �	����� ������ ��� �� yields the correct answer,
� � �	������.



� the set of domain-independent rules (Section 2) in which
the domain of � is ��� � � � � �
,

� the set of atoms describing� and �, and

� the set of �����-rules in which the domain of � is
��� � � � � �
.

The following theorems summarize the relationship between
stable models of�� and valid instantiations of a program (
in�� .

Theorem 2 For every program ( and a sta-
ble model 	 of ��, if ������(� �� �� � 	 then
�� �� ���(� 	�� ����	�� �
� 	���

5.

Theorem 3 For every program ( and
action sequence ��� � � � � �� such that
�� �� ���(� 	�� ���	��� � � � � ��
� 	���, there exists a
stable model 	 of �� such that ������(� �� �� � 	 and
������� �� � 	.

Conclusions
In this paper, we extended answer set programming of dy-
namical systems, as proposed for answer set planning, by
introducing ALGOL-like constructs. These constructs can
be used to provide domain-specific information that con-
strains the evolution of a dynamical system, as might be
done in writing a non-deterministic program, or in specify-
ing domain-specific control knowledge in a planning prob-
lem. In addition to extending the answer set programming
paradigm, we also presented an SMODELS implementation
of these constructs. The implementation can be used as a
GOLOG-like interpreter for the class of GOLOG programs
which are expressible by the constructs defined in this pa-
per. This shows that GOLOG programming can be easily
integrated into answer set programming/planning. One of
our main goals in the future is to study the integration of
other planning techniques into answer set planning.
There are many extensions to the original GOLOG de-

scribed in 1997. These extensions include the concur-
rent actions, interrupts, and priorities of ConGolog (De Gi-
acomo, Lespérance, & Levesque 2000), partial order-
ing (Baral & Son 1999), continuous change (cc-Golog)
(Grosskreutz& Lakemeyer 2000), knowledge-producingac-
tions (SGOLOG) (Lakemeyer 1999), and the probabilis-
tic actions and decision-theoretic notions of DTGOLOG
(Boutilier et al. 2000). In future work, we intend to extend
our implementation of answer set programming of dynam-
ical systems to include these additional features. We also
plan to develop a better interface that converts programs in
their standard form into eligible input of SMODELS.

5The intuitive meaning of

�
� �� �	��� ��� �	����� � � � � ���� ���

is that the program � , starting execution in situation �� will legally
terminate in situation �	����� � � � � ���� �� which is a shorthand
of the situation �	���� �	�� � � � �	���� �����. More on GOLOG
axioms and definitions can be found in (Levesque et al. 1997;
Reiter 1998) etc.
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