
Authoring the "Intelligence" of an Educational Game

M. Zancanaro, A. Cappelletti, C. Sjgnorini, C. Strapparava

{zancanalcappellelsignorilstrappa@irst.itc.it}

ITC-irst

Pant6 di Povo - 38050 Trento Italy

Abstract

In this paper, we describe a frame-based

production rule system that works as the Artificial

Intelligence Engine of an educational computer

game. We discuss the need of an authoring

environment clearly separated by the game in

order to allow a technical staff without any skills

in either AI or Computer Science to encode the

"intelligence" of the game. Finally, we briefly

introduce two graphical interface for authoring

and testing frame hierarchies and production

rules.

The production rule system and the authoring

tools have been developed in the context of a

project funded by the European Community to

develop a prototypical educational computer

game.

Introduction

Today, there is a wide acceptance on the role of

AI to build more compelling computer games

([Laird and van Lent, 2000]), yet very little

concern has been shown on letting content experts

rather than programmers design the "intelligence"

of the system. The authoring issue gains

dramatically importance in the design of

educational (and yet engaging!) computer games,

where you would like to let content experts or an

editorial technical staff to define and test the rules

of the game. Indeed, in the near future it might be

valuable to hire professional script writers even

for non-educational games.

In this paper, we briefly discuss our experience in

the design and implementation of a rule-based

engine to be used in a 3D on-line educational

computer game and its authoring environment.

This work is part of a project called

RENAISSANCEl funded by the European

Community in the action line of "access to

scientific and cultural heritage". The project was

officially started in January 2000 and therefore

what is discussed here must be considered a work

in progress.

The RENAISSANCE Project

The aim of the RENAISSANCE project is to

develop a computer game that makes use of high

quality 3D graphics and engaging interaction

while still able to deliver scientifically validated

contents. The long term goal is to experiment with

an innovative pedagogical approach: delivering

J The partners of the RENAISSANCE project (IST-

1999-12163) other than ITC-irst are Giunti

Multimedia, one of the biggest Italian publishing

companies, as the main contractor; Blaxxun Interactive

a german-based company whose main business is 3D-

based virtual environments over the Internet and Iridon

Interactive a Swedish company that produces and

distributes computer games.

82

From: AAAI Technical Report SS-01-02. Compilation copyright © 2001, AAAI (www.aaai.org). All rights reserved. 



culture in an effective and amusing way at the

same time.

The game is conceived as a 3D-based multi-user

role-playing virtual community over the Internet.

The game environment is the renaissance court of

Urbino in central Italy around the first half of the

fourteenth century. The term Renaissance

describes the period of European history from the

early 14th to the late 16th century, the name

comes from the French word for rebirth and

referred to the revival of the values and artistic

styles of classical antiquity during that period,

especially in Italy. This scenario was chosen

because life in that period was subject to complex

and subtle behavioral rules so precisely defined

that have been codified in handbooks, in particular

the famous "Book of Courtier" by Baldassarre

Castiglione, published in 1528.

The players, as courtiers, have to increase their

social positions and compete to obtain the Duke

and Duchess’ favors. The ultimate goal is to

enable users to experience, as realistically as

possible, the complexity of social life during that

fascinating historical period while having the

same fun of playing a "state of the art" video

game.

The score of each player is expressed in terms of

his fame, tbrtune, faith and force which can vary

according to his "opportunistic" behavior in

different situations. The "intelligence" of the

games resides in a rule-based system (called the

Evaluation Engine) that computes the "effect" of

the players actions in the virtual world.

In the next section, we briefly introduce the

system architecture focusing on the internal

structure of the Evaluation Engine. Then, in the

last section, we will describe the authoring

environment actually used by an editorial staff to

encode the rules of life in our virtual renaissance

court.

The game architecture

The RENAISSANCE game is a 3D-based multi-

user role-playing game over the Internet. The 3D

rendering engine is local to each client and a

Virtual Community Server (VCS) is in charge 

maintaining the synchronization among the

different clients. At each user action, the VCS

computes the visible effects (in terms of

rendering) and communicates the changes to the

other clients. The Evaluation Engine, instead, is in

charge of maintaining the coherence of the world

from a semantic point of view: at each user action,

it computes the "pragmatic" effects both for the

user that performed the action and for the rest of

the world. The Evaluation Engine is updated and

queried by the VCS through a message protocol

based on KQML [Labrou, 1997].

The Evaluation Engine

The Evaluation Engine is based on a frame system

called CLOS-i built on top of CLOS (the

Common Lisp Object System) exploiting the

meta-object capabilities of this language. In

designing CLOS-i our aim was to develop a

"light" knowledge representation system yet

efficient enough to be used in complex scenarios.

The production rules system employs an

implementation of the RETE algorithm [Forgy

1982] modified to be used together with a

hierarchy of frames.

Rules and frames are two complementary

knowledge representation schemes. There are

several attempts to integrate these two

approaches, but few efforts (in particular,

[MacGregor, 1988] [Yen, 1991]) have been made

to incorporate the terminological knowledge of

frame-base systems into a rule-based paradigm.

83



We think that this approach improves

conventional ruled-based programming from

many points of view. In particular, the pattern

matching operation is based on terminological

definitions, not just on symbols (like in OPS5, for

example) and conflict resolution can be based on

well-defined specificity relationship among rules.

Moreover, this approach encourages the

development of a large and coherent knowledge

base that is shared among the rules.

Example of a situation

We discuss here an example of a situation

modeled in the very first KB of the

RENAISSANCE game: every day at 10 a.m. an

evening dinner with the Duke is organized. Each

courtier with more than 500 points of fame

receives an invitation. The dinner starts at 7pm.

Courtiers who received an invitation and do not

attend the dinner loose 100 points of "fame". In

order to model the organization of the dinner, the

more general frame of activity has been defined

so that the starting and finishing of activities can

be implemented as general rules. The dinner

frame is defined as a sub-frame of activity, it has

no slots because it has no special properties.

Indeed, we need this new frame in order to write a

more specific rule: every day at 10am the dinner

(but not necessarily all the other activities) 

scheduled; the rule dinner_organization is fired

every time an instance of set_time is received

with 10 as value of the hour slot; the action is the

creation of a new instance of dinner.

The rule dinner_invitation is triggered by the

creation of an instance of dinner, the other

condition is that there should exist a courtier with

more than 500 points of fame. An action for the

creation of an instance of invitation is built for

any such courtier. The rule invitation_notify

takes care of communicating the events.

Once the dinner starts (according to the general

rule actlvity_start), the rule dinner_attendance

will fire on each courtier for which an instance of

invitation exists and it will decrease his/her fame.

The Evaluation Engine Authoring
Environment

We decided to employ a frame-based production

rule system because our main concern was to

allow a staff of technical editors of writing the

"intelligence" of the system. Other researchers

showed that production rules are a tool powerful

enough for describing human cognition (see for

example, Newell 1991) and simple and intuitive

enough to be understood by naive users (see for

example, Anderson 1993). Yet we realized that

we had to provide interactive tools to allow the

editors to graphically manipulate the frame-based

system and interactively test the rules

independently from the game engine in order to

let the editorial work proceed parallel to the work

of the programmers and to the work of the

designers.

We implemented two graphical interfaces: the

Knowledge Base Editor and the Knowledge Base

Shell.

The Knowledge Base Editor allows to graphically

manipulate the frame hierarchies, to define and to

edit frames and slots and to write rules. It exports

the knowledge-bases as XML files.

Figure 1 depicts a snapshot of the KBE. The main

window is divided into two parts, on the left

window the user can choose whether to work on

the frame hierarchy or on the set of rules; the right

window is used to edit the particular

frame/instance/rule selected on the left window.

In the snapshot, the frame courtier is selected on

84



the leR window. Each frame has a number of

slots that represent the attributes of the concept. A

frame automatically inherits the slots of its parent

frame2.

Figure 1.

Editing the flame hierarchy means editing frames

and slots (i.e. working on the terminological part)

or editing the instances of an already defined

frame (usually, instances are created, modified

and deleted at run time by the Evaluation Engine,

yet it can be useful to have some pre-defined

instances, for example non-player characters,

furniture, etc.). These two activities can be

interleaved, KBE is able to maintain the whole

knowledge base consistent (for example, deleting

a frame means removing all its instances; more

subtly, it sometimes requires removing a slot from

another frame and in turn all the corresponding

slot values from its instances). Usually, KBE

performs silently these operations, yet when the

amount of deletions is big it warns the users

before continuing. Moreover, the interface has

been designed to minimise the likelihood of

having inconsistent knowledge bases. For

example, the user can never create a dangling

frame (that is a frame without a parent): the only

At present, multiple inheritance is not allowed. This

feature can be dealt with in the present evaluation of

the Evaluation Engine yet it may led to very inefficient

and confuse knowledge bases.

way to create a new frame using the interface is to

add a child frame to an existing frame.

0~ qlelmn

* .... :~,°0. i

Figure 2.

KBE supports the rules writing task as well (see

figure 2). The task of writing rules logically

occurs after the creation of the knowledge base

(because the left-hand side of a rule is expressed

in terms of frames and possibly instances.) In our

experience, however, the two tasks are highly

interleaved: a first sketch of the frame hierarchy

is necessary before any rule can ever be

conceived, yet the actual writing of rules usually

suggests new frames or even a different

organisation of the hierarchy. Therefore, we

designed the interface with the goal of making it

easy for the user to interleave the two tasks. In

order to avoid inconsistencies as much as possible

the rules are composed by direct manipulation:

before using a concept in a rule, the corresponding

frame has to be defined in the hierarchy. As in the

task of knowledge base editing, a lot of checks are

performed automatically to maintain consistency:

for example, if a frame is deleted, all the rules that

use the corresponding concept are deleted as well.

The second tool of the authoring environment is

the Knowledge Base Shell (or KBS, for short). 

communicates with the Evaluation Engine in the

very same way as the game does (i.e. KQML

messages). The technical staff can therefore

3 The very first frame is automatically created by the

system and it’s name is always top.

85



perform the operations that the game engine will

perform during a game session, namely creating

modifying and removing instances or querying the

state of the knowledge base. Moreover, the actual

rules fired at each interaction can be monitored.

Figure 3.

Figure 3 shows a snapshot of the graphical

interface. The application is composed by five

windows: (1) the "KB Box" window, above 

the left, displays the frame hierarchy and the

instances created so far; (2) the "Control Box"

window, displays detailed information on the

selected element (i.e. either a frame, an instance, 

message etc.); (3) the "Operation Packages Box"

window, bottom on the left, stores the operations

on instances already defined but not yet sent to the

Evaluation Engine; (4) the "Retrievals" window,

bottom middle, stores the queries to be submitted

to the Evaluation Engine; and finally (5) the

"Message Box" window, stores all the

messagessent to and received from the Evaluation

Engine.

KBS actually interprets the KQML messages

received by the Evaluation Engine and it

maintains the consistency in the windows, in

particular in the "KB Box" where the instances

created, deleted, and removed by either an user

operation or the effect of a rule application are

properly displayed. Yet, we decided to maintain

visible the message exchanged to help the

technical staff in better visualizing what is going

on during a game session.

Conclusions

In this paper, we introduced a first attempt to

build an authoring environment for the AI of

(educational) computer games targeted to 

technical editors staff. We think that in providing

support of this kind of user testing is as much

important as editing, in particular if the editorial

works has to be made in parallel with the

graphical design and with the programming, as it

is usually the case.

This work is still in progress and it has been

conduct in the context of a project funded by the

European Community to develop a prototypical

educational computer game, we would like to

acknowledge the support of the other partner of

the project for their suggestions and fruitful

discussions.

Bibliography

J. R. Anderson. Rules of the Mind. Lawrence
Erlbaum Associated, Hillsdale NJ, 1993.

Forgy "PETE: a Fast Algorithm for the Many
Pattern/Many Object Pattern Match Problem",
Artificial Intelligence, 19, 1982.

Y. Labrou, Semantics for an Agent
Communication Language, PhD Thesis,
University of Baltimore MA, 1997

J. Laird and M. van Lent, "Human-level AI’s
Killer Application: Interactive Computer Games~’,

AAAI2000 Invited Talk, Austin TX, 2000.

A. Newell. Unified Theories of Cognition.
Cambridge University Press. Cambridge MA,
1991.

R.M. MacGregor. "A Deductive Pattern
Marcher". In Proceedings of the Seventh
National Conference on Artificial Intelligence,
(AAAI 88), pp. 403-408, 1988.

Yen, "CLASP: Integrating Term Subsumption
System and Production Systems" IEEE
Transaction on Knowledge and Data
Engineering, 3(1) 1991.




