
Synthesis-Specific Verification
(Extended Abstract)

David J. Musliner and Robert P. Goldman
Automated Reasoning Group
Honeywell Technology Center
3660 Technology Drive
Minneapolis, MN 55418

{musliner,goldman}@htc.honeywell.com

Overview

To build robust, reliable autonomous systems, we have

been developing the CIRCA approach to real-time

intelligent control. Our goal is to give a CIRCA-

controlled autonomous system models of what it can

do, what its goals are, and what the environment can

do. From those models, we want CIRCA to automat-

ically generate and execute hard-real-time controllers

that are guaranteed to avoid failure and achieve the

system’s goals whenever possible.

A key component of our approach is the integration

of formal verification into the synthesis process. We

use formal verification to ensure that the controllers

CIRCA builds are guaranteed to avoid system failure

states. This abstract briefly describes the current sta-

tus of our verification system, and the motivation for

a set of improvements we are making to form a new

verifier system (the Synthesis-Specific Verifier (SSV))

specialized to the controller synthesis process.

Brief Review of CIRCA

CIRCA was designed to integrate complex algorithms

for intelligent control with a hard real-time control ex-

ecution environment (Musliner, Durfee, & Shin 1995;

Musliner et al. 1999). CIRCA generates controllers by

reasoning about models of the system to be controlled,

its primitive functions, and the goals to be achieved.

As illustrated in Figure 1, CIRCA’s controller synthe-

sis and execution subsystems operate in parallel. The

Controller Synthesis Module (CSM) reasons about an

internal model of the world and dynamically gener-

ates discrete-event controllers. Within the CSM, as

shown in Figure 2, the State-Space Planner (SSP)

and Scheduler modules cooperate to develop controllers

that will ensure system safety and attempt to achieve

system goals when executed by the Real-Time Subsys-

(reaction schedules)

feedback data

sensor datacontrol
signals

Real-Time Subsystem

System/Environment

AI Subsystem

Module
Controller Synthesis

Mission Planner
Adaptive

controllers,
feedback

control
problemscontrollers

Figure 1: The Cooperative Intelligent Real-Time
Control Architecture.

tem (RTS). The separate RTS reactively executes the

SSP-generated controller and enforces guaranteed re-

sponse times. While the RTS is executing this con-

troller, maintaining system safety and stability, the

SSP is able to continue executing controller synthesis

methods to find the next appropriate controller. When

the new controller has been developed, it can be down-

loaded to the RTS. CIRCA’s dynamic controller syn-

thesis helps address the problem of large state spaces:

dynamic synthesis permits CIRCA to use a sequence

of smaller, situation-specific controllers rather than a

single, much larger controller that can handle all even-

tualities.

The Role of Verification

CIRCA’s State-Space Planner builds controllers based

on a world model and a set of formally-defined safety

conditions (Musliner, Durfee, & Shin 1995). To de-

scribe a domain to CIRCA, the system designer in-

puts a set of transition descriptions capturing the sig-

nificant events that can occur in the uncontrolled sys-

tem/world. These transition descriptions implicitly de-

fine the set of reachable states. The SSP plans by

generating a clocked finite state machine (FSM) from

these transition descriptions. The SSP assigns to each

From: AAAI Technical Report SS-01-06. Compilation copyright © 2001, AAAI (www.aaai.org). All rights reserved.

Figure 2: The CSM uses search and verification to
build controllers.

Emergency NIL FAILURE

preempted

emergency-alert
Emergency T

(event)

cancel-emergency

(action)

emergency-failure

Figure 3: Preemption is the basis for automatic syn-
thesis of guaranteed safe/stable real-time
discrete-event controllers.

reachable state either an action transition or no-op. It

selects actions to drive the system towards goal states

and to preempt transitions that lead to failure. Fig-

ure 3 shows a trivial preemption example in which the

SSP has recognized the reachability of a failure state

(potentially representing an undesirable instability or

a real catastrophic failure) and has selected a suitable

action that is guaranteed to definitely occur before the

transition to failure can possibly occur.

System safety is guaranteed by planning action tran-

sitions that preempt all transitions to failure, making

the failure state unreachable (i.e., constructing a sta-

ble set of states). In order to verify that the CIRCA

SSP’s plans are safe, we must project what will hap-

pen when they are executed. To do this, the SSP

uses a separate verifier module, employing techniques

developed in the computer-aided verification research

community to check the plans it generates. Specifi-

cally CIRCA uses techniques for verifying properties

of timed automata (Alur 1998). Initially, we used an

off-the-shelf, general-purpose timed automaton verifier,

Kronos (Yovine 1998). We have since moved to using

one of our own.

During synthesis, if the verifier detects that a fail-

ure state is reachable, it returns a path (an execution

trace) from an initial state of the system to the failure

state. The SSP uses the verification system’s output to

identify and repair the problem. The SSP maps entries

in the execution trace into entries in its search stack.

Each search stack entry corresponds to the assignment

of a control action to a reachable state.1 Thus for each

location that appears in an execution trace, there is a

corresponding decision in the SSP’s stack. This set of

decisions, taken together, make up a nogood : a set of

search decisions that, taken together, is inconsistent.

When encountering a verification failure, the SSP uses

a backjumping search method (Gaschnig 1979) to re-

vise the most recent search decision that appears in the

corresponding nogood. For this application, backjump-

ing is much more efficient than chronological backtrack-

ing. Indeed, for all but the simplest examples, chrono-

logical backtracking is simply infeasible, taking days of

compute time.

Note that the ability to automatically exploit the

execution trace is a substantial advantage of our ap-

proach. The execution traces provided by verification

systems are not minimal in any sense of the word. This

means that designers using a verification tool by hand

to evaluate a design must locate errors by extensive in-

spection of a program trace leading to failure. CIRCA

automates this process.

The use of the verifier in the synthesis process

means that CIRCA controllers are “correct by con-

struction.” That is, if the model, the SSP and the

verifier are correct, the controller they generate will be

correct. In turn, the RTS will ensure that the correctly-

constructed controller will execute correctly.

Synthesis-Specific Verification

Our current integration of the controller synthesis and

verification processes is simple and uses existing ver-

ification techniques. Unfortunately, interfacing our

search-based synthesis methods to off-the-shelf verifi-

cation systems is not an ideal solution, for several rea-

sons:

Inefficient representations — While synthesis sys-

tems such as CIRCA reason about factored repre-

sentations of state spaces, verification systems such

as Kronos and HyTech (Henzinger, Ho, & Wong-Toi

1This is a slight oversimplification, but sufficient to

grasp the essentials.

Figure 4: Using a synthesis-specific verifier will
avoid model translation costs.

1997) do not. CIRCA does not generate the entire

state space of a system it is trying to control; instead,

it uses a factored “generator” representation of tran-

sitions to lazily create its representation of each state

only when that state is found to be reachable. As

a result, the huge number of system states that are

either innately unreachable or unreachable because

of designed controller actions are never generated,

explored, or reasoned about in any way. Standard

verification systems have no similar ability to lazily

generate representations of system states. Instead,

they must suffer the enormous exponential cost, in

both computation time and space, of representing

every possible state. Leveraging our experience with

the factored representation approach, we will build

this more efficient behavior into the SSV.

Data replication —

Translating state machine models from the synthesis

representation into the input language required by

a verifier (e.g., timed automata for Kronos) is both

time-consuming and wasteful, as it extensively dupli-

cates the synthesis model to form the verifier model,

which is promptly discarded after verification. The

costs are incurred on the state representations (as

above) and also on the representation of transitions.

Each CIRCA-style model of a transition is actually a

description of many possible instantiated edges in a

standard verifier model. Since the verifier is used re-

peatedly to verify partial controllers during the syn-

thesis process, this overhead is very significant. By

driving the new Synthesis-Specific Verifier module

directly off the synthesis models, our new CIRCA

system will avoid this inefficiency.

Inability to exploit discrete structure —

Existing verifiers for hybrid systems are very good at

exploiting structure in the continuous domains they

model. For example, timed automata verifiers such

as Kronos are designed to reason efficiently about

temporal information; they provide very powerful

automated techniques to recognize useful abstrac-

tions in time values (e.g., “clock-zones” and “re-

gions”), but they are not so cunning with discrete

information such as state features. If a verification

system could have more in-depth knowledge of the

behavioral structure of a state space (i.e., how the

states can be connected by transitions), it could use

that information to computational advantage. The

SSV will have access to precisely that information,

through the factored representation of the synthesis

engine.

To avoid these pitfalls and provide highly efficient,

scalable hybrid systems verification services tailored to

the needs of CIRCA’s controller synthesis algorithms,

we are designing a new SSV with features including:

Close integration with CIRCA — By

sharing modeling languages with the CIRCA syn-

thesis engine, the SSV will avoid translation costs

and storage penalties.

Factored state space handling —

Working directly off the CIRCA system model, the

SSV will take advantage of the built-in facilities to

reason about connectivity without pre-enumerating

all states.

Efficient dual abstractions — The SSV will ex-

ploit the same types of temporal abstractions used by

other verifiers, with the added benefit of also exploit-

ing discrete-space abstractions provided by Dynamic

Abstraction Planning (Goldman et al. 1997).

Optimized verification functions — Because the

SSV is not intended to be a completely general pur-

pose verifier, we can restrict the scope of its func-

tionality and optimize the verification queries it does

support. Specializing to supporting controller syn-

thesis may, for example, avoid the need to maintain

certain types of bookkeeping information.

SSV Status

We have completed a preliminary implementation of

the SSV concept that addresses some of the concerns

described above. In particular, the current version is

able to lazily generate discrete states, and it works di-

rectly off the synthesis model. However, the SSV has

not yet been integrated and tested with the Dynamic

Abstraction Planning version of the SSP, which we ex-

pect to result in very large performance improvements.

Despite these limitations, preliminary experiments

show that the performance of the unoptimized SSV is

� Old verifier
� New SSV

|

|0.01

|0.10

|1.00

|10.00

 Verifier call index

 V
er

if
ic

at
io

n
 t

im
e

(s
ec

o
n

d
s,

 lo
g

 s
ca

le
)

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

� �

�

�

�

�

�

�

�

�

Figure 5: Scatter plot of verification times for the
old verifier and the new SSV.

a dramatic improvement over the prior version. Run-

ning the old and new verifiers on a variety of different

domains, the cumulative verification time was 31.4 sec-

onds for the old verifier and just 13.2 seconds for the

SSV, a 58% improvement. Figure 5 shows a scatter

plot contrasting the verification time for 14 different

calls to the verifiers, showing the consistent improve-

ment in performance. We expect further improvements

as we take advantage of more of the synthesis-specific

characteristics noted above.

Acknowledgments

This material is based upon work supported by

DARPA/ITO and the Air Force Research Laboratory

under Contract No. F30602-00-C-0017.

References

Alur, R. 1998. Timed automata. In NATO-ASI Sum-
mer School on Verification of Digital and Hybrid Sys-
tems.

Gaschnig, J. 1979. Performance measurement and
analysis of certain search algorithms. Technical Re-
port CMU-CS-79-124, Carnegie-Mellon University.

Goldman, R. P.; Musliner, D. J.; Krebsbach, K. D.;
and Boddy, M. S. 1997. Dynamic abstraction plan-
ning. In Proceedings of the Fourteenth National Con-
ference on Artificial Intelligence, 680–686. Menlo
Park, CA: American Association for Artificial Intelli-
gence.

Henzinger, T. A.; Ho, P.-H.; and Wong-Toi, H. 1997.
HyTech: A model checker for hybrid systems. Soft-
ware Tools for Technology Transfer 1:110–122.

Musliner, D. J.; Goldman, R. P.; Pelican, M. J.; and
Krebsbach, K. D. 1999. SA-CIRCA: Self-adaptive
software for hard real time environments. IEEE In-
telligent Systems 14(4):23–29.

Musliner, D. J.; Durfee, E. H.; and Shin, K. G. 1995.
World modeling for the dynamic construction of real-
time control plans. Artificial Intelligence 74(1):83–
127.

Yovine, S. 1998. Model-checking timed automata. In
Rozenberg, G., and Vaandrager, F., eds., Embedded
Systems. Springer Verlag.

