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Abstract 

Complex dynamical systems, such as aircraft, chemical 
processes, power plants, shipboard equipment, etc., are 
required to maintain an acceptable level of operational 
integrity and availability.  Current research aims to 
maximize uptime by maintaining such systems only when 
required. A viable and cost-effective diagnostic/prognostic 
system architecture must integrate a number of 
functionalities while exhibiting attributes of flexibility and 
scalability.  It must account for fault modes that are inherent 
to the current operating state of the system and its usage 
patterns (Hadden et al. 1999).  Furthermore, it must be able 
to predict accurately the remaining useful lifetime of failing 
components and manage effectively uncertainty (Hadden et 
al. 1999).  This paper introduces an integrated 
diagnostic/prognostic architecture that builds upon means to 
identify the system’s operating mode and usage pattern 
using concepts from hybrid system theory and Petri networks 
as decision support tools, mechanisms to extract an optimum 
feature vector based on data-mining and 
diagnostic/prognostic algorithms that are designed 
employing a fuzzy logic expert system paradigm and 
static/dynamic wavelet neural network constructs for fault 
detection/isolation and for estimation of the remaining 
useful lifetime of a failing component. Essential elements of 
the architecture are implemented and validated on a 
laboratory scale process consisting of multiple tanks, control 
equipment, sensors and actuators. 

 
1. State of the Art 

A number of approaches to the diagnostic/prognostic 
problem have been reported in the technical literature.  
Stochastic Auto-Regressive Integrated Moving Average 
(ARIMA) models were used on a computerized numerical 
control (CNC) monitoring and prognosis system to 
investigate quality of conformity related to the supervision 
of process control in manufacturing during machining 
tasks and its implications in the enhancement of the 
system’s efficiency (Jardim-Goncalve et al. 1996).  Based 
on fuzzy pattern recognition principles, a prognostic 
adaptive system was designed in which the fault detection 
is achieved by fuzzy classification rules for which a multi-
step adaptive Kalman filter updates membership vectors 
that are suitable for prognosis (Frelicot 1996).  
CASSANDRA, a knowledge-intensive expert system 
incorporating shallow knowledge, was designed to 
continuously monitor the condition/health of industrial 
equipment through a sensor suite and to predict on-line 
equipment faults (Lembessis et al. 1989).  A nonlinear 
stochastic model of fatigue crack dynamics was introduced 
for real-time computation of the time-dependent damage 
rate and accumulation in mechanical structures so as to 
estimate the current damage status and predict the 
remaining service life (Ray and Tangirala 1996).  The 
National Information Infrastructure (NII), a distributed 
system architecture for electronic delivery of on-line 
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equipment monitoring, diagnostics and prognostics 
(MD&P) services, was used for predicting the remaining 
life-time and for real-time constraining of operational 
parameters for life extension of operating machines (Proha 
1996).  Polynomial neural networks were employed to 
construct a generic fault detection, isolation, and 
estimation (FDIE) algorithm for analysis of normal and 
defective vibration signatures in helicopter transmissions 
(Parker et al. 1993).  A prognostic maintenance system in 
which the Hough transform was adopted to extract linear 
trend features from monitored data was proposed to 
diagnose incipient fault conditions and to predict the time 
for the system to reach a critical fault condition (Flint 
1994).  Based on measurements of operating characteristics 
and frequency response data of transformers, a number of 
prognostic methods were investigated for estimation of 
their coupled overvoltages.  An Integrated Diagnostic 
Support System (IDSS) was initiated by the US Navy, 
which includes adaptive diagnostics, feedback analysis-
precursors and fault prognostic capability.  However, these 
methods have yet to produce a systematic, efficient and 
robust approach to the prognostic problem.  More recently, 
two main approaches have emerged as potential candidates 
for prognosis.  The first one relies on system models and 
state estimation techniques (Kalman and Alpha-Beta-
Gamma tracking filters) to determine the remaining useful 
lifetime.  The second uses a feature extractor and a learned 
association method, typically a neural network construct.  
The first category is hampered by the need for accurate 
system models while the second requires a sufficient 
database that covers the dynamic range of the machine or 
process for training and validation purposes.  Model-based 
state estimation methods were suggested in (Begg 1999).  
The model-based prognostic framework and an example of 
a gear tooth crack growth are reported in (Li and Yoo 
1998).  In (Peebles, Essawy, and Fein-Sabatto 1999), a 
probabilistic technique called ‘symptom reliability’ and an 
empirical, conditional probability argument are called upon 
to estimate the remaining useful lifetime.  A computational 
example is used to support the thesis of the approach.  The 
authors in [12] are introducing an “intelligent” 
methodology to the prognostic problem that involves 
gathering three sources of data, extracting features from 
the data and developing neural network algorithms based 
on the extracted features to estimate the RUL.  Gearbox 
test data are used to illustrate the concepts.  More recently, 
testing, monitoring and advanced diagnostic/prognostic 
activity has been underway regarding helicopter fault 
modes.  The H53 and Commanche programs, among 
others, conducted by the military involve vibration legacy 
data and their correlation to flight data recordings such as 
altitude, air speed, position, etc.  The H53 program has 

been designed to accommodate 23 stations on the vehicle’s 
airframe while a vibralog data acquisition system is 
collecting vibration data every 120 seconds with a 1 to 2 
sec. time window.  Probabilistic methods and intelligent 
techniques are being applied for fault detection and 
trending purposes. [personal communication] 

Critical systems of interest are characterized as large-scale 
consisting of multiple components. For such systems, 
traditionally, machine diagnostics/prognostics begins by 
decoupling the system. This strategy is not always useful, 
especially when the system is tightly coupled. Moreover, it 
compromises the diagnostic and prognostic quality even 
when it considers coupling dynamics. In this paper, a novel 
integrated architecture is proposed to address these 
challenges and improve the performance of CBM systems. 
  A complex dynamic system typically consists of 
continuous-time dynamics and discrete-event dynamics 
[13]. It operates in different operating modes, such as 
startup, normal running mode, shutdown mode, etc. Some 
fault modes may occur in a specific operating state only. It 
is instructive, therefore, if failure modes are associated 
with the system’s different operating states. Also, the 
system’s operational history includes a variety of usage 
patterns. For example, heavy load or unloaded, high 
charged or low charged, etc. Failure modes may vary in 
their features from one usage pattern to another. 
Considering different operation modes and usage patterns, 
the system may be divided into several sub-systems in 
order to implement efficiently and effectively CBM 
architecture. This paper introduces a flexible, scalable, 
integrated, and generic architecture for diagnostic and 
prognostic systems to detect and identify different fault 
modes and then predict the time-to-failure of critical 
components. In this architecture, an operating mode and 
usage pattern detector constitute essential modules. Data 
mining is used to extract features; fuzzy logic and wavelet 
neural networks (WNN) function as classifiers; a dynamic 
wavelet neural networks (DWNN) performs as the 
prognosticator; a new construct called Confidence 
Prediction Neural Network (CPNN) represents and 
manages uncertainty; a Fuzzy Analytic Hierarchy Process 
(FAHP) adjusts the effects of causal information on the 
predicted trend. The integrated architecture is implemented 
and demonstrated on a laboratory scale three-tank process 
known as the Process Demonstrator.  

 
2. System architecture 

 
2.1 Integrated Diagnostic/Prognostic System 
(IDPS) Architecture  



The role of the diagnostic and prognostic algorithms is to 
provide continuous on-line fault detection, fault isolation, 
time-to-failure information, and certainty bounds or 
prediction intervals. Classical fault detection and isolation 
(FDI) and prognostic algorithms extract features from raw 
data, use specific classifiers to identify the fault modes, 
and accordingly prognose the machine components’ 
remaining useful lifetime. In current diagnostic/prognostic 
application domains, the focus is on either diagnostics or 
prognostics, but not both. Also, most of them are interested 
in continuous dynamics only, which are not well suited for 
complex systems that have different dynamics related to 
different operating modes and usage patterns. 
  The IDPS architecture is illustrated in Figure 1. In this 

novel system architecture, complete diagnostics and 
prognostics are implemented. Also, hybrid system theory is 
employed for different dynamics in different operating 
modes and usage patterns. A dynamic system is divided 
into several sub-systems according to the operating modes 
and usage patterns, so that more than one classifier or 
prognosticator is used in this architecture. For each sub-

system, a fuzzy/WNN classifier and a DWNN/CPNN 
prognosticator serve in sequence to provide a more 
accurate trending while bounding uncertainty.  
The sub-systems are running in “parallel”. The number of 
inputs to each classifier are limited, contributing to 
improved speed for failure isolation and detection, thereby 
reducing not only the number of neurons in the network, 
but also the run time and training time required for the 
network. It also reduces the system resource consumption 
and improves the compuational complexity. Moreoever, 
rather than training a single classfier for the whole system, 
by using separate classifiers for each operating mode or 
usage pattern, additional classifiers may be easily added to 
the central database as new features are derived or devices 

are inserted without retraining the existing networks. This 
feature makes IDPS an open and scalable architecture. 
A brief description of the modules integrated into HDPS 
follows: 
1) Discrete-event model: employs hybrid automata and 

Petri networks to model the discrete-event dynamics.  

Hybrid Dynamic System 

Feature Extractor 

Operating Mode / Usage Pattern Detector 

Figure 1. System diagrams. 
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2) Feature extractor: receives raw sensor data and 
relevant historical data, and extracts useful 
information in the form of a feature vector according 
to requirements imposed by the diagnostic and 
prognostic modules. 

3) Operating mode / usage pattern detector: decides upon 
the specific operating mode and usage pattern and 
directs all the appropriate input to the corresponding 
classifier. 

4) Classifier: employs a fuzzy inference engine and static 
wavelet neural networks to decide on-line the 
occurrence of a fault mode and to identify the fault 
mode.   

5) Prognosticator: capitalizes upon a virtual sensor to 
provide fault dimensions and a dual approach to 
prediction empolying a DWNN for fault trending and 
a CPNN assisted by FAHP aimed primarily at 
accommodating causal adjustments to the prediction 
curve and managing uncertainty bounds.  

 
2.2 Overview of IDPS Main Modules 

2.2.1 Operating Mode and Usage Pattern Detector 
Fault modes are often related to specific operating or usage 
patterns. To diagnose the faults and prognose the time-to-
failure of such systems, requires dividing them into several 
subsystems according to distinct operating modes and 
usage patterns. An operating mode and usage pattern 
detector is thus required to accomplish the CBM tasks.  
The operating mode and usage pattern detector is 
implemented using hybrid system theory and Petri 
networks. In this architecture, the system is divided into 
several sub-systems according to the prevailing operating 
state and usage pattern. This reduces the system’s 
complexity, and allows for the design of fault classifiers 
and prognosticators on the sub-system basis.  

2.2.2 Feature Extractor 
Measurements of industrial processes are divided into two 
broad categories: low-bandwidth measurement and high-
bandwidth measurements. The former, such as 
temperature, pressure, level, etc. may propagate slowly and 
data can be sampled at relatively slow rates without loss of 
historical significance. On the other hand, the latter, such 
as vibrations, or current spikes, require fast sampling rates 
in order to capture a reasonable signature of the failure 
mode. 
Component faults can not be readily identified by simply 
monitoring such measurements. Raw data must be 
transformed into features, which contain meaningful 
information in a compressed form. However, since not all 
features may be applicable in identifying a specific fault 
mode, a process of recognizing relevant features, which 
form a feature vector, from all possible features, known as 
feature selection, is required.  

Fault Detection and Identification (FDI) or diagnosis can 
be viewed as a mapping from a set of given features into 
one of the predefined fault classes, where irrelevant and 
redundant features may result in a serious degradation of 
the efficiency of the fault classifiers.  
Different level features act as the main inputs to the other 
modules of the architecture. Features, such as mean, 
variance, standard deviation, etc., are extracted from raw 
data and constitute the first level of the feature vector. 
“Features of features” are also extracted, and form higher 
levels of the feature vector. Such derived features as the 
slope of the mean value, 2nd order moments, etc., are 
assisting to improve the classification task and increase the 
signal-to-noise ratio [14].  

2.2.3 Diagnostician [15] 
To detect and classify the faults, two different methods are 
implemented. The first one is based on a fuzzy logic 
paradigm while the second uses a wavelet neural network 
construct. 
The Fuzzy Diagnostic Module 
The fuzzy diagnostic module is utilized to detect process 
fault modes from feature data, i.e. faults, resulting from 
low-bandwidth events and exhibiting low-frequency 
signatures. An initiation event begins the fuzzy diagnostic 
module calculations if receives feature inputs from the 
database and reports to the database any indications that a 
fault mode may have occurred, as shown in Figure 2.  The 
Dempster-Shafer module returns a Degree of Certainty 
(DOC) for detected faults.  If a fault mode is detected, the 
diagnostic output event is triggered with relevant 
information such as the fault mode name, time of 
detection, DOC, etc.  This output event is used for the 
initiation of various prognostic modules. 
 
 

 
Figure 2. The Fuzzy Diagnostic Module 

The fuzzy logic system structure is composed of four 
blocks: fuzzification, the fuzzy inference engine, the fuzzy 
rulebase, and defuzzification, as shown in Figure 3. 
 



 
 
Figure 3.  The Fuzzy Logic System Structure 

The fuzzification block converts features to degrees of 
membership within a linguistic label set such as pressure 
low, pressure high, etc.  The fuzzy membership functions 
are designed through classification techniques from the 
feature set such as the fuzzy c-Means method.  The fuzzy 
rulebase is constructed from symptoms that indicate a 
potential fault mode.  Two example fuzzy rules for 
diagnostic detection are shown in Figure 4. 

 
Figure 4.  A graphical representation of two rules in a 

fuzzy rulebase. 
 
The fuzzy rulebase can be developed directly from user 
experience, simulated models, or experimental data.  Fuzzy 
values are aggregated through a fuzzy inference engine to 
determine the degree of fullifillment for each rule 
corresponding to a failure mode (Mandani approach).   The 
defuzzification block outputs between 0 and 100 using the 
centroid method, as shown in Figure 5.  These values are 
compared to a threshold to determine whether or not a fault 
mode should be declared as having been detected. 

 
 
Figure 5.  Graphical representation of the fuzzy inference 

engine and defuzzification. 
 
 
The Dempster-Shafer Theory of Evidence module is 
incorporated into the system for uncertainty management 
purposes.  Each input feature has fuzzy membership 
functions associated with it representing the possibility of a 
fault mode.   Each feature, therefore, represents an expert 
in this setting.  These possibility values are then converted 
to basic probability assignments for each feature.  
Dempster’s rule of combination is then used to assimilate 
the evidence contained in the mass functions and to 
determine the resulting degree of certainty for detected 
fault modes. 
The Wavelet Neural Network Module 
The WNN (Figure 6) is used also as one component of the 
classifier. Potential advantages of the WNN approach 
include: The resulting neural network is a universal 
approximator; the time - frequency localization property of 
wavelets leads to reduced networks at a given level of 
performance; WNNs offer a good compromise between 
robust implementations and efficient functional 
representations; the multi-resolution organization of 
wavelets provides a heuristic for neural network growth. 
Furthermore, WNNs may be optimized with respect to 
structure (number of nodes) and their parameters using a 
Genetic Algorithm as the optimization tool.  The WNN is 
trained, thus, as a two-step process:  the structure and the 
parameters of the network are determined iteratively until a 
performance metric is satisfied.  The WNN construct 
suggests a means to parallel-process multiple signals in a 
multi-tasking environment, thus expediting considerably 
processing times. Finally, it offers an easy and user-
friendly way to "learn" new signal patterns, as long as 
training data is available. 
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Figure 6. WNN structure. 
These classifiers repeatedly scan the incoming feature 
values. Considering a typical process, the fault modes may 
include leakage, errosion, crack, etc. It is generally 
possible to break down the sensor values into two 
categories: low-bandwidth data, such as temperature data, 
flow rate data, etc., and high-bandwidth data, such as 
vibration data, acoustic data, etc.  The data from the first 
category may vary slowly while those from the second 
category may change rapidly. The fuzzy logic classifier 
operates on the incoming low-bandwidth sensor data, while 
the WNN classifies the fault modes with high-bandwidth 
data. If one set of data is classified as other than “normal”, 
the classifiers create a fault event and notify the GUI that a 
fault currently occuring.  

2.2.4 Prognosticator 
It is well understood that prognostics is the most difficult 
component of the CBM scheme since it requires prediction 
in the presence of uncertainty of the remaining useful 
lifetime of a failing component. It is, therefore, the 
“Achilles’ heel” of the overall system and an effective 
breakthrough towards its solution may lead to viable CBM 
implementations and improved equipment uptime. The 
prognosticator consists of two components: DWNN [16] 
and CPNN [17, 18].  
DWNN module 
The DWNN is based on a static “virtual sensor” and a 
predictor. The static virtual sensor relates known 
measurements to difficult to acquire failure measurements. 
The predictor attempts to project the current state of the 
faulted component into the future thus revealing the time 
evolution of the fault mode and allowing the estimation of 
the component’s remaining useful lifetime. Both 
components upon a dynamic wavelet neural network 
model acting as the mapping tool.  
CPNN module 
The CPNN represents uncertainties as multiple trends and 
confidence distributions, and the FAHP adjusts the effects 
of causal information on the predicted trend.  
Classical statistical models for prediction, such as ARIMA, 
do not provide means to compute uncertainty bounds or 
prediction intervals.  The simple concept of standard 
deviation of prediction errors is frequently applied to 

provide such bounds.  While this approach works well for 
single step prediction, it raises serious concerns when 
applied to multi-step prediction problems.  While the 
benefits of the uncertainty representation or confidence 
measure are well understood and have motivated much 
research, little attention has been paid to an uncertainty 
distribution of the prediction. We developed a neural 
network, called Confidence Prediction Neural Network 
(CPNN) to address this problem (Figure 7).  The CPNN 
accomplishes the goal of representing uncertainty in the 
form of a confidence distribution by employing a 
confidence distribution approximator node as shown in 
Figure 6.  Details of this novel development can be found 
in the cited references [26,27]. 
 
2.2.5 Interfacing / Database modules 
A central database access management module has been 
developed to serve the crucial role of storing and accessing 
raw data, fault features, diagnostic and prognostic results. 
All CBM modules are built into a COM/DCOM 
infrastructure in order to be accessed and used in an open 
and flexible manner accommodating a variety of 
development languages. The communication between 
modules is event-based and does not require an overall 
scheduler to manage all the modules. Each module could 
be developed separately and independently. This open 
architecture can be expanded to include additional modules 
without changing the existing ones. A user-friendly 
human-machine interface displays all sensor and feature 
data as real time values and historical records. Thus, the 
diagnostic/prognostic functions can be accessed through 
this interface. The software architecture is shown in Figure 
8. 
 

Input layer

Pattern
layer

Summation
layer

output

Numerator Denominator

Confidence
distribution

approximator

Figure 7. Structure of the Confidence Prediction Neural 
Network (CPNN) 



3. Implementation on a Process 
Demonstrator 

3.1 Testbed Description 
The process is a model of a continuous fluid process 
typical of demonstrator those found in industry (Figure 9).  
The demonstrator consists of tanks, pipes, valves, pumps, 
mixers and electric heaters.  By activating these devices, 
fluid can be stirred, heated, and circulated among the tanks.  
Honeywell Smart Transmitters installed in the system 
monitor fluid level, fluid flow and fluid temperature. 
There are three tanks in the system: two 25-gallon tanks 
and one 50-gallon tank.  Each tank has a pump on the 

output line.  There are flow valves and flow meters on the 
lines into and out of tanks 1 and 2.  In addition, there is a 
flow valve and flow meter on the line from tank 1 to tank 
2.  A solenoid on/off valve is located on the output side of 
the main tank’s pump. There are hand valves into tanks 1 
and 2 for introducing disturbances into the system. Tank 1 
& Tank 2 have a mixer to stir the fluid in the tank.  Finally, 
there are four heating elements located at the bottom of 
Tank 1.  

3.2 Problem Statement 
To simplify the problem, two fault modes are examined: 
“tank1 leakage” and “stuck outgoing valve FV108” in 
Tank 1. The fault modes and associated features are shown 
in Table 1. 
The mode detector detects two operating modes in this 
simulation. Following these two operating modes, two sets 
of classifiers and prognosticators employed to reduce the 
system resource consumption and speed up the wavelet 
training and prediction process.  
 
Table1: Failure modes and features to be examined 
Failure 
Mode 

Feature 1 Feature2 Feature3 Operating 
Mode 

Tank1 
leakage 

Tank1 
level slope 

Tank2 
level 
slope 

Main 
Tank 
level 
slope 

System 
idle 

Stuck 
in 
FV108 

Flow rate 
between 
tank 1 and 
tank 2 

  Transfer 
water 
from 
tank1 to 
tank2 

 
3.3 Simulation Results and Analysis 

3.3.1 Startup mode  

During this period, the system is running normally: the 
pumps are off, the valves are in their closed position. The 
tanks’ level is stable (Figure 10). The simulator does not 
give any warning message.  

3.3.2 Operating mode 1 with incipient failure (Figure 
11)  
At this point, a failure was seeded and detected and an 
alarm was provided, an alarm message was prompted.  
Since a failure was detected, the prognostic routine 
(DWNN) was initiated. The DWNN accessed the fault 

 
Figure 9. Process Demonstrator. 
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Figure 10: Normal system state. 



information from the database and provided the remaining 
useful lifetime of the failing component, as shown in 
Figure 12. In this example, 40 seconds is the remaining 
useful lifetime. 

 
4. Conclusions 

This paper introduces an open, generic, scalable, and 
integrated diagnostic / prognostic architecture. The 
architecture was applied to a 3-tank process where faults 
were seeded, detected and the remaining useful lifetime  of 
the failing component trended. The results demonstrated 
that our architecture is useful in obtaining better diagnostic 
and prognostic results with improvements in speed and 
reduction in consumption of system resources. 
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