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The Unified Modeling Language (UML) (OMG 2001)
provides a standardized collection of notations for describ-
ing artifacts in a software-intensive system. Each UML no-
tation represents a particular viewpoint of a software (sub-
)system. For example, UML sequence diagrams describe
system behavior in terms of the interaction scenarios be-
tween multiple objects. UML statecharts, on the other hand,
describe the behavior of a single object. The UML con-
straint language, OCL, (Warmer & Kleppe 1999), describes
model entities in a declarative fashion. Software develop-
ers typically use a variety of notations for behavioral mod-
eling but currently have no way to maintain the consis-
tency between viewpoints. Ultimately, if behavioral mod-
els are going to be used in simulation or implementation,
the various notations must be merged together. (Whittle
& Schumann 2000) presents an algorithm for synthesizing
UML statecharts from a (possibly conflicting) set of scenar-
ios (sequence diagrams) and propositional OCL constraints.
This algorithm is a step towards the goal of semi-automated
merging of model viewpoints.

The importance of generating behavioral descriptions di-
rectly from expected scenarios of system behavior was noted
as early as 1987 in Harel’s original paper on statecharts
(Harel 1987):

many of the people that were involved in the avionics
project [...] were able to state many desirable scenar-
ios, such as firing a missile or updating the aircraft’s
location, in precise detail [...] it would seem beneficial
to be able to derive a reasonable statechart description
from a large set of scenarios [...].

Despite recent work on this synthesis problem (see e.g.,
(Syst~ 2000; Harel & Kugler 2000, Uchitel, Kramer, 
Magee 2001)), only limited consideration has been given 
what kind of synthesis machinery can produce a reasonable
statechart. Since scenarios are in general partial, the gener-
ated statechart will most likely be modified by the system
designer. Hence, it must be concise and readable. (Whittle
& Schumann 2000) addresses this question of what makes
a "good" synthesis engine by incorporating the following
points:
¯ scenarios may be inconsistent with each other-- any syn-
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thesis engine should detect (at least partially) these incon-
sistencies;

, scenarios will likely duplicate behaviors -- these should
be merged during synthesis, thus leading to an optin-dzed,
concise statechart representation;

¯ generated statecharts should be readable- in terms of
state.charts, this implies the introduction of hierarchy;

¯ generated statecharts will be hand modified -- the syn-
thesis machine should support iterative refinements by
checking the original scenarios against the modified stat-
echarts.

The algorithm in (Whittle & Schumann 2000) first com-
pares each scenario (i.e., sequence diagram) to the proposi-
tional constraints. Pre/post conditions on the events in the
scenario can be used to check that event sequences are valid.
Each event is annotated with partial information from these
pre/post conditions which is then propagated throughout the
diagram using the frame axiom. This results in an annotated
sequence diagram which is then translated into a set of finite
state machines, one for each scenario object. Once all se-
quence diagrams have been considered, the state machines
for each object are merged using the annotations as a guide
to merge states where possible. Hierarchy can be introduced
automatically into the resulting state machines by partition-
ing the states according to instantiations of significant mode
variables.

A prototype for this algorithm has been implemented in
Java and has been linked to commercial UML tools using
XML as an interchange format. Case studies are being un-
dertaken on examples from air traffic control software cur-
rently under development at NASA Ames.
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