
Synthesizing UML Statecharts From
Requirements Scenarios + Propositional Constraints

Position Statement

Jon Whittle
Qss Inc.

NASA Ames Research Center
Moffett Field, CA, 94035

The Unified Modeling Language (UML) (OMG 2001)
provides a standardized collection of notations for describ-
ing artifacts in a software-intensive system. Each UML no-
tation represents a particular viewpoint of a software (sub-
)system. For example, UML sequence diagrams describe
system behavior in terms of the interaction scenarios be-
tween multiple objects. UML statecharts, on the other hand,
describe the behavior of a single object. The UML con-
straint language, OCL, (Warmer & Kleppe 1999), describes
model entities in a declarative fashion. Software develop-
ers typically use a variety of notations for behavioral mod-
eling but currently have no way to maintain the consis-
tency between viewpoints. Ultimately, if behavioral mod-
els are going to be used in simulation or implementation,
the various notations must be merged together. (Whittle
& Schumann 2000) presents an algorithm for synthesizing
UML statecharts from a (possibly conflicting) set of scenar-
ios (sequence diagrams) and propositional OCL constraints.
This algorithm is a step towards the goal of semi-automated
merging of model viewpoints.

The importance of generating behavioral descriptions di-
rectly from expected scenarios of system behavior was noted
as early as 1987 in Harel’s original paper on statecharts
(Harel 1987):

many of the people that were involved in the avionics
project [...] were able to state many desirable scenar-
ios, such as firing a missile or updating the aircraft’s
location, in precise detail [...] it would seem beneficial
to be able to derive a reasonable statechart description
from a large set of scenarios [...].

Despite recent work on this synthesis problem (see e.g.,
(Syst~ 2000; Harel & Kugler 2000, Uchitel, Kramer,
Magee 2001)), only limited consideration has been given
what kind of synthesis machinery can produce a reasonable
statechart. Since scenarios are in general partial, the gener-
ated statechart will most likely be modified by the system
designer. Hence, it must be concise and readable. (Whittle
& Schumann 2000) addresses this question of what makes
a "good" synthesis engine by incorporating the following
points:
¯ scenarios may be inconsistent with each other-- any syn-

Copyright (~ 2002, American Association for Artificial IntelU-
gence (www.anaLorg). All rights reserved.

thesis engine should detect (at least partially) these incon-
sistencies;

, scenarios will likely duplicate behaviors -- these should
be merged during synthesis, thus leading to an optin-dzed,
concise statechart representation;

¯ generated statecharts should be readable- in terms of
state.charts, this implies the introduction of hierarchy;

¯ generated statecharts will be hand modified -- the syn-
thesis machine should support iterative refinements by
checking the original scenarios against the modified stat-
echarts.

The algorithm in (Whittle & Schumann 2000) first com-
pares each scenario (i.e., sequence diagram) to the proposi-
tional constraints. Pre/post conditions on the events in the
scenario can be used to check that event sequences are valid.
Each event is annotated with partial information from these
pre/post conditions which is then propagated throughout the
diagram using the frame axiom. This results in an annotated
sequence diagram which is then translated into a set of finite
state machines, one for each scenario object. Once all se-
quence diagrams have been considered, the state machines
for each object are merged using the annotations as a guide
to merge states where possible. Hierarchy can be introduced
automatically into the resulting state machines by partition-
ing the states according to instantiations of significant mode
variables.

A prototype for this algorithm has been implemented in
Java and has been linked to commercial UML tools using
XML as an interchange format. Case studies are being un-
dertaken on examples from air traffic control software cur-
rently under development at NASA Ames.

Acknowledgements

Johann Schumann was involved in the development and im-
plementation of the algorithm. Jyoti Saboo wrote the XML
interface.

References

Harel, D., and Kugier, H. 2000. Synthesizing state-based
object systems from LSC specifications. In Fifth Interna-
tional Conference on Implementation and Application of

75

From: AAAI Technical Report SS-02-05. Compilation copyright © 2002, AAAI (www.aaai.org). All rights reserved.

Automata (CIAA2000), Lecture Notes in Computer Sci-
ence. Springer-Verlag.
Harel, D. 1987. Statecharts: A visual formalism for com-
plex systems. Science of Computer Programming 8:231-
274.
2001. Unified Modeling Language specification version
1.4. Available from The Object Management Group
(http:l/www.omg.org).
Systi, T. 2000. Incremental construction of dynamic mod-
els for object oriented software systems. JournalofObject
Oriented Programming 13(5): 18-27.
Uchitel, S.; Kramor, J.; and Magee, J. 2001. Detecting im-
plied scenarios in message sequence chart specifications.
In Proceedings of the 9th European Software Engineering
Conference (ESECO 1).
Wanner, J., and Kleppe, A. 1999. The Object Constraint
Language: Precise Modeling with UML. Addison-Wesley
Object Technology Series. Addison-Wesley.
Whittle, J., and Schumann, J. 2000. Generating Statechart
Designs From Scenarios. In Proceedings of International
Conference on Software Engineeering (ICSE 2000), 314-
323.

76

