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Abstract 

The principal-agent problem concerns delegation 
in the absence of trust. Given a principal and an 
agent with different value structures, the 
principal wants to motivate the agent to address 
the principal’s aims by providing appropriate 
incentives.  We address this problem in the 
context of a real-world complication, where the 
principal and agent lack a common problem 
frame. This context is especially relevant when 
the principal is a user, and the agent is a 
technological artifact with a limited repertoire of 
percepts and actions. We identify necessary 
conditions for establishing trust between such 
disparate actors, and we show, via a constructive 
proof, that it is always possible to create these 
necessary conditions. We conclude with several 
distinctions that let the principal rank the 
expected quality of agent behavior. 

1 INTRODUCTION 

The principal-agent problem can arise in any situation that 
calls for the delegation of responsibility.  If the principal 
and agent hold different values, the task is to develop 
incentive structures (e.g., to build contractual relations) 
that ensure the agent serves the principal’s interests while 
acting outside the principal’s supervision. For example, 
when a homeowner (as principal) employs a contractor 
(as agent) to put on a new roof, a reasonable contract 
would penalize schedule delays and thus mediate the 
homeowner’s concern with time against the contractor’s 
desire to take on more work.  The straight-forward, but 
implicit assumption is that contractor and the homeowner 

perceive time and dollars in comparable ways, as a 
backdrop for building the necessary incentives.  

This assumption breaks down on deeper inspection.  As 
an expert in roof work, the contractor possesses skills and 
distinctions that the homeowner lacks, and carries a value 
structure over those distinctions that will guide a variety 
of choices while conducting the work. The contractor’s 
functional and aesthetic decisions will affect the 
principal’s value, outside any contractual relationship that 
addresses time to completion and cost.  To dramatize this 
point, imagine a color-blind interior decorator. This agent 
cannot even perceive things that matter to the principal. 
How can we establish trust in a situation of this kind?  
How well can any agent perform in the face of such a 
barrier?  Current principal-agent theory lacks tools for 
bridging this gap. 

The same issues commonly arise in the interaction 
between people and machines.  For example, while a 
cruise control (as agent) maintains a desired vehicle 
speed, the driver (as user) cares about the distance to the 
car in front. Since this distinction lies outside the cruise 
control’s ken, the driver has to monitor it very carefully. 
However, we would like to build more autonomous tools.  
Consider an autopilot for a car on an automated freeway; 
when you climb into this vehicle for a ride to the airport, 
you ask an artifact to make decisions in your stead.  It will 
choose routes, select maneuvers, and react to traffic, 
while you would like to arrive safely, relatively unruffled, 
and on time for your flight.   You care about the agent’s 
methods and its end result, but you might have very little 
insight into its observations and actions, even if you could 
see through its eyes.  The gap between agent and user 
reference frames acts as a barrier to trust that decreases 
our willingness to deploy such systems.  

This paper provides a framework for establishing trust 
between such disparate actors.  We identify necessary 
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conditions for aligning the value structures of a user and 
an agent despite a gap in reference frames, and we show 
that it is always possible to create these conditions. This 
produces harmony; an aligned and cooperative agent will 
provably maximize the user’s utility as a byproduct of 
maximizing its own reward, so the user will be as happy 
as possible with the agent’s behavior. 

2 THE PROBLEM FRAME 

We address these questions in the context of a decision 
theoretic problem frame.  We represent the principal’s 
concerns by a utility function, and the agent’s by an 
analogous function called its reward. We treat the 
principal as a passive evaluator of the agent’s behavior, 
and cast the agent as the sole active participant in the 
scenario. Thus, we give the agent a set of mutually 
exclusive and collectively exhaustive observations about 
state, which it obtains before choosing from a set of 
actions that impact the principal’s preferences.  

We illustrate this framework in Figure 1. Here, U is 
utility, R is agent reward, and x and y are feature vectors 
sensed by the agent and principal respectively.  R and U 
are deterministic functions of x, and y.  D represents agent 
decisions, and o stands for the agent observations used to 
select D. In this influence diagram (Howard & Matheson, 
1984) arcs between uncertainties represent possible 
conditional dependence, while the absence of such arcs 
denote conditional independence. Arcs to decision nodes 
represent information available at the time of decision, 
and arcs downstream from decision nodes represent the 

effects of actions.  

Figure 1.  The joint principal-agent problem frame. 

In order to establish trust between the principal and the 
agent, we want to align R with U such that the agent’s 
decisions, D, maximize the principal’s utility.  The task is 
difficult for two reasons.  First, R and U can be based on 
different feature sets, meaning that the agent cannot sense 
y, and it cannot necessarily represent U.  Its decisions can 
therefor diverge from the ones the principal would have it 

employ.  Second, since the agent’s behavior can impact 
utility via multiple pathways over time, the agent can 
adversely (and inadvertently) effect the principal’s utility 
in the process of pursuing its own goals. 

In general, U is predetermined, while R is fashioned to 
balance the agent’s interests in its decisions with 
incentives that encourage cooperation with the principal.  
If, however, the agent is an artifact and the principal is a 
human user, we can engineer the agent’s reward to 
capture the user’s intent.  We can also construct the 
agent’s action suite (its decisions) such that it has the 
capacity to perform well in the user’s eyes. The notion of 
incentives is irrelevant in this case, since the agent will do 
the user’s bidding by design.  Instead, the problem is 
communication; we need to provide a reward function and 
a decision frame that let the agent maximize U. 

The remainder of this paper will focus on the case where 
the agent is an artifact serving the interests of a human 
user.  We will employ the principal-agent vocabulary 
when the agent can be either human or a machine. 

3 VALUE ALIGNMENT 

In order to establish trust between a user and an agent, we 
need to ensure that the agent is motivated by the user’s 
concerns, and that the agent’s actions will not impact the 
user in adverse ways.   We address these concerns in two 
parts.  First, we define a conditional independence 
relationship between the agent and user problem frames 
called graphical value alignment.  In its presence, the 
agent can recognize all ways its actions affect user utility. 
Given graphical value alignment, we identify a numerical 
manipulation of agent reward that produces functional 
value alignment, a situation in which the agent chooses an 
action that would have been preferred by the user.  We 
will show that is always possible to establish graphical 
value alignment, and thus that we can achieve functional 
value alignment between any user and any agent. 

3.1 Graphical value alignment 

One way to ensure that an agent will address the user’s 
concerns is to give it an exact copy of the user’s utility 
function.  If R≡U (and therefore x≡y), the agent will 
obviously perform as well as it possibly can for the user.  
However, we cannot achieve this unity because users and 
artificial agents perceive the world in decidedly different 
terms.   To make this concrete, assume a human driver 
cares about safety (an element of y).  When we try to 
construct an agent with the ability to perceive safety we 
discover that the transformation from accessible measures 
like distance and velocity is apparently easy for people 
but difficult for machines.  Other percepts (like a precise 
measure of time to impact) will be easier for machines to 
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acquire.  Some such asymmetry will apply for any 
conceivable artificial entity because it is a consequence of 
available technology. Thus, the mechanism for aligning 
artifacts with humans must bridge reference frames. 

Our solution is to define agent-held surrogates for user 
concerns.  In particular, we look for a set of distinctions 
that can function as a sufficient (versus a complete) 
surrogate for the features underlying user utility, such that 
the agent can only effect user utility through features the 
agent cares about as well.   

Figure 2 illustrates this condition.  It states that agent 
action can only effect user utility via a change in x.  More 
formally, it says that y is conditionally independent of D 
and o given x, and that user utility is caused by x with 
respect to the agent’s decisions (Heckerman & Shachter, 
1995).  We call this relation graphical value alignment, 
and assume it holds across time periods.  That is, yt is 

conditionally independent of past history, D
→

, o
→

, given xt. 

Figure 2.  Graphical value alignment. 

3.2 Functional value alignment 

If all interaction between the agent and the user passes 
through x, we can motivate the agent to address user 
concerns.  In particular, we can choose the agent’s reward 
function so that the policy that produces the highest 
expected reward stream for the agent also produces the 
highest possible expected utility stream for the user. We 
call this condition functional value alignment.  That is, if 
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expresses this condition. 

Theorem (Functional value alignment): If graphical 
value alignment holds, we can choose the agent’s reward 
function R(xt) such that functional value alignment holds. 

Proof (by construction): We simply define R as the 
expected utility for the agent’s observations.  That is, 
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graphical value alignment.  Given this construction, 
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Thus, the agent’s optimal policy also maximizes user 
expected reward.  An analogous theorem applies if the 
object is to maximize the average reward stream as 
opposed to a discounted sum. ♦ 

Functional value alignment guarantees the optimality of 
the agent’s policy in human eyes no matter how x, D, and 
o are related within or across time periods.  Moreover, the 
relationship between agent and the user can be quite 
broad. The user can care about features outside the 
agent’s ken (elements of y can be independent of x, o, and 
D), and the agent can care about features that are 
irrelevant to the user (elements of x can be independent of 
y).  However, anything the user cares about that the agent 
can observe or effect must be visible in x.  

Note that it may be difficult to discover the agent’s 
optimal policy in practice if the relations between o, D, 
and x are unconstrained.  However, many reinforcement 
learning algorithms solve this task after imposing 
additional Markov assumptions.  Note, also, that we can 
generate the desired R via an assessment process: we ask 
the agent and user to make simultaneous observations, x 
and y, and we set the reward for x equal to the expected 
utility of the corresponding y’s.  In principle, we do this 
for every possible value of x, yielding R as defined above. 

3.3 Positive and negative examples 

The concept of alignment may become clearer if we 
examine positive and negative examples. Figure 3 
illustrates the positive case.  Here, we assume that the 
agent decides whether to slow down or cruise after 
observing the car in front of it, and that its action in the 
given situation may alter the time to impact.  Graphical 
alignment holds if either: (1) the agent can only affect 
safety by changing the time to impact; or (2) the user 
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knows the time to impact, and knowledge of the agent’s 
action (or observations) cannot alter his/her assessment of 
safety.  That is, time to impact is a sufficient surrogate for 
the user’s concern with safety. 

Figure 3. A positive example of value alignment. 

Given graphical alignment, we can produce functional 
alignment by giving the agent a reward function that 
mirrors human utility. We can do this empirically via an 
assessment process.  We ask the agent to report the time 
to impact, x, and ask the user to simultaneously assess the 
utility of the current situation.  This results in a feature 
vector, x, and a utility U(y) given x.  Since the user may 
observe many feature vectors, y, when the agent sees a 
specific x, we repeat the experiment to extract an 
expected utility.   We set  

R(time to impact) = E[U(safety | time to impact)] 

and repeat this process (in concept) for all values of time 
to impact.  In practice, we would rely on approximation 
functions instead of this exact, tabular form.  When we 
equate the agent’s reward function to the user’s expected 
utility, we motivate the agent to achieve against the 
human-held standard on the basis of available measures.  
This lets the agent focus on increasing time to impact with 
the side effect (known to us) that its actions will increase 
user safety.   

Figure 4. Side-effects can undo graphical alignment. 

Alignment fails when the agent can impact user utility 
without altering features the agent cares about as well. 
Figure 4 provides an example of this situation.  Here, we 

assume the user has preferences over the motions of the 
car (perhaps he is a queasy passenger), implying that the 
agent can make the user arbitrarily ill in the process of 
increasing time to impact.  So, actions that do not affect 
time to impact can effect the user nonetheless.  To capture 
this effect, the influence diagram includes an arc between 
the agent’s decision and the feature set that determines 
user utility.  Here, the agent is unaware its actions have an 
undesirable side effect and it is not motivated to correct 
the problem.  This conflict cannot be removed by any 
change to R within this problem structure. 

Figure 5 illustrates how graphical value alignment can fail 
if the agent makes additional observations.   Here, we 
begin with the problem structure of Figure 3, but assume 
that the agent can also sense the maneuver frequency of 
the car in front.  This observation is relevant to user safety 
because it provides insight into the likely future behavior 
of that vehicle.  (High values suggest an erratic driver.) It 
is a direct effect because a change to maneuver frequency 
plausibly alters the perception of safety even if time to 
impact is known.  

The agent’s optimal policy may not maximize user utility 
in this situation.  In particular, the user might prefer the 
agent to slow down in the presence of an erratic driver 
because of the safety implications, while the agent’s focus 
on time to impact could lead it to maintain speed (i.e., to 
“cruise”).  Note that the agent’s optimal policy in Figure 5 
would be identical to its optimal policy in Figure 3.  (The 
agent would observe and simply ignore maneuver 
frequency.)  The difference is that in Figure 5 the user is 
aware the agent has access to a better mapping from 
situation to action (better for the user), and would like the 
agent to incorporate those observations into its policy. 

Figure 5. Observations can destroy graphical alignment. 

3.4 The value alignment theorem 

We have shown that we can align agent reward with user 
utility whenever the conditional independence relation 
called graphical value alignment holds.  This permits 
functional value alignment: the happy situation where the 
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agent’s best policy simultaneously maximizes user 
reward.  We have also shown, by example, that we cannot 
produce functional value alignment in the absence of 
graphical value alignment.  We summarize these results in 
a single theorem, which we state without proof. 

Let p be any probability distribution over x, y, and o that 
is consistent with the model.  In this case, graphical value 
alignment is a necessary and sufficient condition for 
functional value alignment.  That is, graphical value 
alignment ⇔ ∀p, U, D, ∃ R s.t. functional value 

alignment holds.  Moreover, R x( )≡ Ey U y( )| x[ ]. 

Theorem (Value alignment): Graphical value alignment 
holds if and only if functional value alignment can be 
satisfied for all problem frames consistent with the 
diagram. 

4 ESTABLISHING ALIGNMENT 

Surprisingly, we can always establish graphical, and 
therefore functional value alignment where none would 
appear to exist.  We discuss two methods.  The first (and 
less general technique) revolves around the invention of 
clever surrogates for user concerns.  The second applies in 
general, but requires a potentially extensive procedure for 
defining R.  

4.1 The explicit method 

We can create alignment by inventing additional 
surrogates for user-held concerns.  Consider the example 
in Figure 6.  If acceleration is a sufficient surrogate for the 
user’s concern with maneuvers, we can address the user’s 
queasiness by giving the agent an accelerometer, and 
including acceleration in the agent’s reward function.  
This reestablishes graphical value alignment, since the 
agent can only affect the utility-laden features of safety 
and maneuver by changing conditions that also matter to 
the agent.  We create functional value alignment by 
tuning the numeric values of the agent’s reward function 
to reflect the user’s expected utility, as before.  

Figure 6. Explicit alignment requires surrogates features. 

It may not always be possible to establish explicit 
alignment because the process can require new sensors 
and perceptual software.  In addition, the environment has 
to support the desired conditional independence relation 
between the agent’s actions and their effect on user utility, 
given the agent-held distinctions we are able to invent and 
instrument.  The next section discusses a method of 
establishing alignment that circumvents these concerns. 

4.2 The implicit method  

The second method of creating alignment applies without 
the need to invent new surrogates for user concerns.  We 
simply include the agent’s actions and observations as 
features in its reward function, and implicitly incorporate 
their effects on user utility during the assessment process.  
This approach transforms Figure 4 into Figure 7. 
However, the path to functional value alignment from this 
base now requires us to assess the utility of many 
combinations of agent perceptions and maneuver choice: 
What was the time to impact?  Did the agent slow down, 
or cruise?  Given these measures, how safe and/or queasy 
did the user feel? 

Figure 7. Implicit alignment requires no new features. 

This assessment may require a large quantity of effort.  If 
m agent-held features influence n user features, we need 
to assess m∗n feature pairs with all their associated 
degrees of distinction.  Well-chosen surrogates will tend 
to decouple this problem, as in Figure 6, where time to 
impact influenced safety and acceleration influenced 
queasiness, with no cross-effects.  That assessment 
required m one-to-one mappings.  In practice, the actual 
size of the assessment problem is open to test.  Although 
the combinatorics argue against large m and n, we can 
expect to define some useful surrogates, and we will still 
build agents for constrained domains, even while agent 
autonomy increases.  Users may also bring a limited set of 
concerns to particular agent applications.  In addition, 
since the agent’s value structure is only relevant where its 
plans offer a choice, we can constrain the dimension of 
the agent’s reward function by limiting its options.  
Finally, we can imagine agents that employ user feedback 
to learn which features affect utility, and which do not.  
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Taken together, these factors act to reduce the size of the 
feature sets m and n, and the complexity of the 
interactions between them. 

If good surrogates are hard to find, it is important to 
notice that we can always include the agent’s actions and 
observations as features in its reward function.  This 
approach produces graphical value alignment through a 
kind of default path, since every agent action and 
observation must affect agent reward en route to altering 
user utility.  The consequent, suprisingly, is that we can 
always produce the conditions satisfying the value 
alignment theorem. 

5 RANKING AGENTS 

Although functional value alignment ensures maximally 
good agent behavior, it says nothing about how good that 
behavior will be in absolute terms.   As a simple 
illustration, consider the null agent (a stone), that has no 
action options and makes no observations about its world.  
Although this agent does nothing it meets the criteria of 
the value alignment theorem, since it never takes actions 
different from those preferred by the user.  At the 
opposite extreme, consider a perfect user clone.  This 
agent is also value aligned, and it serves the user in a 
more or less ideal way (although some agents could do 
better).  In general, we would like to know how to rank 
agents in the user’s eyes. 

We offer a few simple results towards this end.  The first 
compares aligned agents with each other, while the 
second compares aligned and unaligned agents.   

Given two agents, A and B, we say that A is at least as 
capable as B if A possesses a superset (⊇) of B’s 
observations and decision options.  That is, A's 
observations and decision options are at least as fine-
grained as B's.  We use the notation A�B to mean “A is 
weakly preferred to B”. Under these definitions: 

Proposition (Aligned preference): If A and B are 
functionally value aligned agents, A�B if A is at least as 
capable as B. 

Proof: For any situation observed by B, the choice that A 
would make carries at least as much expected user utility 
as the choice that B would make. ♦ 

In particular, if A’s extra knowledge and capabilities 
provide no added user utility, A can employ the same 
optimal policy found by B.  If A can do better, as a result 
of making more observations, or applying different 
actions, it will.  

Proposition (Unaligned preference): If A is a 
functionally value aligned agent and B is not, A�B if A is 
at least as capable as B. 

Proof: By definition, A will employ a policy that 
maximizes expected user utility, yet A has access to any 
policy B chooses. ♦ 

A might appear superior to B if the feature set for its 
reward function is more fine-grained.  In this case, we 
might be able to establish functional value alignment for 
A and not for B.  However, whenever B is functionally 
aligned, A will be as well, and the user will be indifferent 
between them if they are equally capable. 

In summary, the user should always pick an aligned agent 
over any less capable agent.  In other words, you should 
always employ a more skilled individual that has your 
interests at heart.  In contrast, the propositions offer no 
advice for a choice among unaligned agents, or on the 
interesting problem of comparing an aligned agent against 
an unaligned one that is at least as capable.  This is a 
practical concern, since it represents the choice between 
an unskilled (but dutiful) worker, and a skilled, but 
independent practitioner.  Our analysis makes it clear that 
dutiful workers will address our aims, while skilled but 
unaligned practitioners have the potential to impact our 
utility in many ways (intentionally and unintentionally) 
and they have the capacity to select actions that diverge 
from the ones we would have them choose. Motivational 
differences may also play a role. In short, delegation 
without trust carries risk. 

6 RELATED WORK 

The principal-agent problem concerns delegation in the 
absence of trust (Varian, 1992).  The theory typically 
assumes that the principal and agent share a common 
perceptual base, and thus (in our terms) that their value 
structures can be functionally aligned by incorporating 
monetary incentives.  More broadly, work in principal-
agent theory is based on the expectation that the agent is 
inherently motivated not to address the principal’s aims, 
but rather to pursue its own separate agenda (e.g., to steal 
all the office furniture).  In contrast, our model is deeply 
cooperative: an aligned agent will do even more for you if 
only you can communicate your values more exactly.   
Principal-agent theory provides very little advice on how 
to surmount the key barrier, which is the gulf between 
reference frames.  Collard’s work (1978) on the 
economics of altruism provides the closest match.  He lets 
one person’s utility depend upon another’s consumption, 
or directly upon their utility.  If we call the user the 
‘principal’, and the agent the ‘agent’, we can capture this 
model by incorporating a user-supplied term into the 
agent’s reward function.   Collard’s setting, however, is 
unconcerned with the design of utility functions (which 
are taken as given in economics) and it assumes no gulf 
between agent and user perceptions. 



We need to look in the literature of the computing 
sciences to find other formal bridges between agent and 
user reference frames. Here, the motivation is to place 
some form of guarantee on artificial agent behavior.   
Planning systems often promise that execution will 
produce the desired ends, assuming the action models are 
accurate, and (typically) that no changes take place to the 
world outside of agent action.  These theorems examine 
the soundness and completeness of agent plans taken in 
isolation.  In contrast, very little research strives to 
explicitly connect agent and user perceptual frames. 
Rosenschein and Kaelbling (1986) consider the issue in 
their paper on provable epistemic properties; they assume 
a relationship between agent knowledge and human 
concerns, and they show that the agent will never 
knowingly act in a way that will destroy that relationship.  
(For example, if the agent holds a one in memory 
whenever a lamp is on the table in the physical world, the 
agent will never build a plan that it knows will cause that 
bit to be set to zero, even by inference from its physical 
actions.)  Our work complements this line of reasoning 
because we engineer the desired relation between agent 
perceptions and user concerns.  

Schoppers and Shapiro (1997) are among the few authors 
who attempt to build an explicit bridge between agent and 
human reference frames. They use simultaneous 
observations to resolve a probabilistic relation between 
agent and user perceptions of state.  Given this relation, 
and a Markov model that represents agent behavior, they 
can compute and then ascend the gradient of user utility 
with respect to design decisions deep within the agent 
model.  Our work preserves this concept of a probabilistic 
relation between agent and user perceptions, although we 
use it to cleave the agent design problem: we separate the 
task of constructing a well-aligned value function from 
the problems of composing agent skills and finding 
optimal policies. 

Wolpert, New, and Bell (1999) share our interest in 
constructing agent-held utility functions.  However, our 
goal is to construct a reward function that embodies user 
concerns, while their work treats reward as a coordination 
tool; they manipulate and factor the functions passed to 
multiple agents so that they can learn to achieve against a 
single, global utility function.  This concept of 
coordination will become relevant as we address multiple 
agent domains.   We note that Wolpert et al.’s work is 
unconcerned with practical guarantees.  While they model 
an agent’s ability to acquire reward with a single number 
(called its ‘intelligence’), we have invented a 
programming language (Shapiro & Langley, 1999), 
implemented executable skills (Shapiro & Langley, 2001) 
and developed a learning algorithm that finds optimal 
agent policies after imposing additional Markov 
assumptions on the domain (Shapiro & Shachter, 2000). 
As a result, our development of user-agent value 

alignment includes both empirical methodology and 
theoretical tools.  

7 DISCUSSION 

Given a principal-agent problem, we would like to know 
if the agent is willing, able, and competent to address the 
principal’s desires.  Here, a willing agent will choose to 
pursue the principal’s aims, and able agent can represent 
those aims and know what to do, and a competent agent 
has the skills to perform well in the principal’s eyes. 

Our framework sheds light on each of these issues.  While 
a human agent generally has to be enticed with incentives 
to address the principal’s desires, artifacts are willing by 
design.  Given that an agent is willing, functional value 
alignment establishes that it is able.  Thus, an aligned 
agent recognizes all the ways its actions can effect user 
utility, and it will not knowingly choose actions that harm 
the principal’s interests.  This formalizes a popular theme 
(Asimov, 1950).  Finally, the preference propositions rank 
agents by their competence to deliver user utility.  The 
concept of alignment underlies this capacity.  

The value alignment theorem also clarifies several 
reasons for incentive failures. In particular, graphical 
value alignment fails when agent actions carry 
unexpected consequences for the principal, or when the 
agent lacks a sufficient means of representing the 
principal’s utility (either because of poor communication 
or incommensurate perceptions).   When this happens, the 
optimal policies for the principal and agent can diverge. 
We can view moral hazard in the same light, as a case 
where features of agent reward function that are not 
functionally aligned come into play.  This will lead the 
agent to act in its own interests and not the principal’s.  
Finally, the preference propositions expose a new reason 
for being annoyed at agent behavior: while a skilled, non-
aligned agent may perform quite well for us (as 
principals), we will know the agent had access to better 
options. In contrast, we are often more tolerant of poor 
results produced by a good-willed agent with lesser skills, 
since we know that an aligned agent is doing the best job 
for us it possibly can.  Note that it might be harder to 
establish alignment with more competent agents because 
their skills afford many more pathways for adverse 
effects. This is a somewhat troubling thought. 

The concept of alignment raises interesting questions 
about the design of practical systems.  For example, 
Horvitz, Jacobs, and Hovel (1999) describe an artificial 
agent that identifies and reacts to emails, by taking actions 
that include discarding a message, paging the user, and 
augmenting his/her calendar. This agent serves the user’s 
interests given a rich basis of observations and action 
options.  (In theory, it has access to all of the same 
observations and actions its user can make online).   The 



question is, what does the email reader have to understand 
about its user in order to represent the user’s interests? 
How perceptive does it have to be to serve the user’s 
needs?  With such a rich repertoire, it is indeed a 
challenge to construct an aligned agent. 

In summary, value alignment is a very desirable property 
because of the power it provides.  It supports harmony, it 
ensures the agent’s best efforts, and it creates trust, which 
in turn enables autonomy.  This motivates an empirical 
question: while we know we can always establish 
alignment in theory, what will it take to do so in practice? 
It may or may not be difficult to invent surrogates for user 
utility, and the complexity of the required assessment 
process is open to test.  However, we know that it is 
plausible to build agents that discover their optimal 
policy.  In particular, Shapiro (2001) describes an 
architecture for value-driven agents that employ learning 
to optimize their own reward functions, and alignment to 
relate those optimal policies to user objectives.  This 
yields a “be all you can be” guarantee, which ensures 
practical agents will do all they can to address human 
utility.  Curiously, this work obtains high levels of 
performance through a symmetric act of trust that gives 
agents the autonomy to act in our stead.  In other words, 
we can increase utility by offering agents the opportunity 
to make value-based choice.  This is the art of delegation. 
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