
The Public Acquisition of Commonsense Knowledge

Push Singh

MIT Media Lab
20 Ames St.

Cambridge, MA 02139 USA

push@mit.edu

Abstract
The Open Mind Common Sense project is an attempt to
construct a database of commonsense knowledge through
the collaboration of a distributed community of thousands of
non-expert netizens. We give an overview of the project,
describe our knowledge acquisition and representation
strategy of using natural language rather than formal logic,
and demonstrate this strategy with a search engine
application that employs simple commonsense reasoning to
reformulate problem queries into more effective solution
queries.

Introduction
Workers in artificial intelligence have long sought to teach
computers enough about our world so that they could
reason about it like we do, to give them the capacity for
"common sense". However, the scale of the problem has
been discouraging, for people seem to need a tremendous
amount of knowledge of a very diverse variety to
understand even the simplest children's story. As a result
there have been few efforts to try to encode a broad range
of human commonsense knowledge.
 We believe that today this problem of scale can be
addressed in a new way. The critical observation is that
every ordinary person has common sense of the kind we
want to give our machines. Given the advent of the World
Wide Web, artificial intelligence projects now have access
to the minds of millions. If we can find good ways to
extract common-sense from people by prompting them,
asking them questions, presenting them with lines of
reasoning to confirm or repair, and so on, we may be able
to accumulate many of the knowledge structures needed to
give our machines the capacity for commonsense reasoning.
 The Open Mind Initiative was created to support such
large-scale collaborative efforts to build components of
intelligent systems (Stork 1999). As part of this effort, we
built a Web site called Open Mind Common Sense1 to make
it easy and fun for non-expert netizens to collaborate to

Copyright © 2002, American Association for Artificial Intelligence
 (www.aaai.org). All rights reserved.

1 http://www.openmind.org/commonsense

construct a database of commonsense knowledge. Open
Mind Commonsense is in the vein of projects like The
Open Directory Project, The Mars Crater Mapping project,
and similar "distributed human projects" where difficult
problems are solved by distributing the work across
thousands of volunteers across the Internet. Our purpose
was to explore whether the commonsense knowledge
acquisition problem could be cast in a way that non-experts
could participate in supplying data, rather than having a
small team doing careful knowledge engineering, as in
Doug Lenat's well-known Cyc project (Lenat 1995).
 This paper reports on our results so far. We give an
overview of the project, describe our knowledge acquisition
and representation strategy of using natural language rather
than formal logic, and demonstrate this strategy with a
search engine application that employs simple
commonsense reasoning to reformulate problem queries
into more effective solution queries.

The Diversity of Commonsense Knowledge
There is much disagreement over what kinds of knowledge
are needed to build systems capable of commonsense
reasoning. One popular view is that we need to encode
general axiomatic formulations of different facets of the
commonsense world (Hayes 1979). Others have argued that
story-like and other forms of "concrete" representations are
the right way to represent commonsense (Schank and
Abelson 1977). Still others have argued that much of
commonsense is less about deliberative cognition than it is
routine behavioral activity that operates using purely
procedural representations (Agre and Chapman 1987).
Some have argued that new concepts are built through
composition and specialization of lexical semantic
primitives (Jackendoff 1983). And there are many who
believe that representations should be constructed by
analogy to representations grounded in the physical and
social world (Lakoff and Johnson 1980).
 Our view is that when it comes to commonsense
reasoning, diversity is the secret to success. To do
commonsense reasoning one needs many kinds of
representations. The more variety in representation, the
more likely it is you will have the appropriate units of
knowledge to solve whatever commonsense problem you

From: AAAI Technical Report SS-02-09. Compilation copyright © 2002, AAAI (www.aaai.org). All rights reserved.

are faced with at the moment. It is not so much a matter of
choosing between such representations as it is a matter of
finding way for them to work together in one system.
 To this end we constructed a variety of activities for
gathering knowledge. Each activity tries to make it simple
for the user to teach a certain kind of knowledge. At present
we have about 25 activities. Some of the kinds of
knowledge we collect include:
• Spatial. Describe a simple movie of a spatial event.
• Relation. Explain relation between pair of words.
• Images. Describe a photo of typical scene.
• Stories. Supply a story given a story title.
• Verbs. Supply typical arguments of a verb.
• Objects. List objects that tend to appear together.
• Explanation. Explain an aspect of a short story.
• Teleology. Provide the functions of an object.
• Causality. Give the likely effects of an action.
Each activity has its own special interface for knowledge
elicitation. We regularly add new activities that gather new
kinds of knowledge.

Users prompted with story:

Bob had a cold.
Bob went to the doctor.

Users enter many kinds of knowledge in response:

Bob was feeling sick
Bob wanted to feel better
The doctor made Bob feel better
People with colds sneeze
The doctor wore a stethoscope around his neck
A stethoscope is a piece of medical equipment
 The doctor might have worn a white coat
A doctor is a highly trained professional
You can help a sick person with medicine
A sneezing person is probably sick

Table 1: Typical Knowledge Entry Activity
Table 1 illustrates a typical knowledge entry activity, which
gathers several kinds of background knowledge that would
be useful for understanding the presented story: the likely
prior situation, the likely posterior situation, some general
facts about the characters involves and general rules about
the domain. The result is a large amount of related
knowledge about a specific kind of event.

Using natural language input
When we seek to obtain the greatest possible audience, we
cannot assume from our users any special background in
artificial intelligence or knowledge engineering. We
considered using the Cyc representation language for our
web-based effort, but because our target audience is the
average layperson, we could not expect our users to learn a
complex formal language like CycL and its associated vast
ontology of terms.

 We decided instead to allow our users to enter
knowledge in plain English. English gives us a convenient
representation which many people already understand, and
much commonsense knowledge can be expressed in terms
of simple generic English sentences. We encouraged our
users to enter sentences that "even a child could
understand". As a result, we have accumulated a large set of
sentences in relatively simple English. Some of the kinds of
knowledge our users have supplied include:
• Taxonomic: Cats are mammals
• Causality: Eating a sandwich makes you less hungry
• Goals: People want to be warm
• Spatial: You often find a hairdryer in a bathroom
• Functional: Chairs are for sitting on
• Planning: To become less hungry, eat a sandwich
• Grammatical. "is not" is the same as "isn't"
Improvements in the basic techniques of natural language
processing over the past decade further suggested to us that
a modern attempt to build a commonsense knowledgebase
might reasonably be based on natural language input.
Modern part-of-speech taggers claim over 99% accuracy on
text (Voutilainen 1995). Dependency grammars achieve an
attachment accuracy of 93% (Eisner 1996). Syntactic
parsers achieve 90% average precision/recall when tested
on text from the Wall Street Journal (Charniak 1999).
Further arguments for using English for knowledge entry
are also made in (Fuchs and Schwitter 1996) and (Pulman
1996), where it is suggested that using a controlled subset
of English makes it far easier for domain experts to supply
knowledge to systems in a way that is still computer
processable.
 In addition to free-form English, many of our activities
use a template-based input system in which users are
restricted to entering knowledge into narrow fields. These
templates were designed to reflect the primitive concepts
out of which many of the most useful representations could
be built: goals, scripts, plans, structural descriptions, causal
models for diagnostic reasoning, explanations for
explanation-based reasoning, and others. For example:
• Functional. A hammer is for ________
• Goals. People want ________
• Scripts. The effect of eating a sandwich is ________
• Location. Somewhere you find a bed is ________
• Ontology. A typical activity is ________
While these sorts of clearly formed knowledge templates
are often easier to parse than free form English, we worried
using only this kind of input would restrict us to gathering
only a tiny slice of the kinds of knowledge people could
express. We wanted to avoid imposing too strongly our own
notions of what kinds of knowledge were important, and
instead try to learn from our users more about what sorts of
commonsense people could actually express. So while we
find that knowledge from templates is often clearer and
easier to parse, we continue to use both forms of entry.

Gathering scripts and frames
In addition to simple sentences we also gather several kinds
of larger structures:
Concrete episodes. We believe much reasoning is done not
only with abstract logical inferences, but also by reasoning
by analogy to concrete episodes. Therefore we have our
users supply stories, either to illustrate some existing fact
like "flashlight light up places" or in response to a given
title like "going outside at night". Example:

It was too dark to see. I went and got my flashlight. I
turned on my flashlight. I could see much better.

Concrete situations. In case-based reasoning, rather than
inferring relationships from first principles one simply
"looks and sees". This sort of knowledge is different from a
fact or a rule in that it is simply a description of a partial
state of the world. Therefore we have people supply
descriptions of photos in plain English. Example:

A mother is holding her baby. The baby is smiling.
They are looking into each other's eyes. The baby is
happy. The mother is happy.

Visual events. To allow more sophisticated forms of spatial
reasoning, we allow users to annotate movies of simple
iconic spatial events. Our goal is to eventually learn
translation rules that let us produce event descriptions from
movies and vice-versa. This is a first step towards reasoning
using multimodal representations. Example:

The small red ball rolls past the big blue ball.

Breakdown of collection knowledge
So far we have collected about 400,000 pieces of
knowledge from about 8,000 users. For analysis we
manually decomposed this knowledge into a set of about 90
groups, each extracted using a particular regular expression
pattern. We have organized these groups into a small set of
families, whose distribution in the database is shown in
below in Table 2.

Class of Knowledge % Collected

Scripts/Plans
Causal/Functional
Spatial/Location
Goals/Likes/Dislikes
Grammatical
Photo descriptions
Properties of people
Explanations
Story events
Other

14.4
11.9
10.18
5.5
5.5
5.4
4.8
2.6
1.8
33.7

Table 2: Breakdown of Collected Knowledge

Many of these patterns resulted from our initial set of input
templates, but others just seems to be patterns that seem to
occur naturally when people are asked to produce facts.
About a third of the collected knowledge does not seem to
fit into any of the patterns we have constructed, but we are
presently working on decomposing these into further
patterns. Our hope is to build a large set of inference rules
based on these patterns.

Distribution of knowledgebase
Our goal is for this database to be a free resource for
helping study how to build systems capable of
commonsense reasoning. We have made the data publicly
available for download at our web site in several formats.

Reasoning in English
The problem still remains that knowledge supplied by users
in English must be parsed into a target representation that is
as expressive as English itself, if we want to make use most
of that knowledge. At this point we once again considered
using the Cyc ontology, but we needed a way to parse
natural language into that commonsense ontology, which
has proven daunting even for the Cyc project.
 We believe there is an option that has been largely
overlooked within the field of knowledge representation,
which is to use English itself as the knowledge
representation. As observed in (Szolovitz, Hawkinson, and
Martin 1977), "The greatest attraction of this approach is
that it almost trivially satisfies our need for expressive
power." The idea is that English can perhaps serve as itself
the representation over which reasoning is done. The value
of this approach is three-fold:
• We can avoid having to impose a novel ontological

structure on the universe beyond that which English has
already supplied us.

• There is no need to create and learn a massive ontology.
We can just use familiar English words and expressions.

• We can avoid having to do difficult and error prone
“semantic interpretation” before reasoning can begin.

Inference by Natural Language Reformulation
In this section we describe a first attempt at using some of
the knowledge we have collected. Our goal was to develop
a reasoning system that could operate on natural language
expressions directly, without having to go through a
difficult semantic interpretation stage where the sentences
were converted to logical form.
 REFORMULATOR is an inference system that operates
on simple English sentences. It is a forward chaining rule-
based system that pattern matches shallow parses of English
sentences to produce new English sentences.
REFORMULATOR uses English expressions to represent
knowledge. For example, instead of the symbol
$PresidentOfUnitedStates it simply uses the phrase
president of the united states. Similarly for predicates,

instead of ($kissevent $John $Mary), it simply uses John
kissed Mary. We now explain how REFORMULATOR
can operate on natural language, by supplying it with five
special kinds of reformulation rules: paraphrase,
disambiguation, splitting, merging, and inference.

Reformulation Rules
We supply inference rules to REFORMULATOR by
example, by first eliminating determiners and replacing
words with their root forms, and then substituting with
variables parenthesized phrases that match across the
sentences of the pattern. For instance, the example

(A door) is a portal
(Bob) opens (the door)
→ (Bob) can go through (the door)

generalizes to the following syntactic pattern

(S (NP ?x) (VP is (NP ?y)))
(S (NP ?z) (VP opens (NP ?x)))
→ (S (NP ?z)
 (VP can go (PP through (NP ?x))))

For conciseness, in the following sections we give examples
of reformulation rules rather than the rules themselves.
Disambiguation rules. When it comes to domains as
broad as the world of human concerns, it is very hard to pin
down the meanings of terms with ultimate precision. In
REFORMULATOR, ambiguity within an expression is
dealt with by reformulating it to less ambiguous forms. This
can be done in several ways, including replacing an
ambiguous word with a less ambiguous word or multi-word
expression, by elaborating the expression with additional
text, or by making structural modifications to the sentence.
For example, the lexical ambiguity of the word president
might be dealt with by reformulating to reasonably
unambiguous multiword expressions:

President
→ president of the united states
→ president of a corporation

The structural ambiguity of the sentence The chicken is
ready to eat can be dealt with by reformulating the sentence
so that it uses a less ambiguous structure:

The chicken is ready to eat
→ The chicken is ready to eat something
→ The chicken is ready to be eaten

We call these disambiguation rules. In the case of lexical
ambiguity we do word sense disambiguation by correlating
the word's surrounding context with the terms in co-location
vectors found for each of the word senses. These co-
location vectors can be obtained through supplying the
disambiguated item (e.g. "president of the united states") to
a typical web search engine, and extracting content words
correlated across the result pages. For the above examples,
we might obtain:

 president of the united states: America, Bush, election
 president of a corporation: stock, CEO, investors

This disambiguation method is far from perfect, and for
structural ambiguity the disambiguation problem is even
more difficult. In general, more context and general
common sense reasoning is required to do sense
disambiguation.
Paraphrase rules. English is also ambiguous in a different
sense, in that, unlike the Cyc ontology, there are generally
many ways to say the same thing. One might try to
formulate a "canonical English" in which there would be
exactly one expression to correspond to any given idea. For
instance, one could say only A cat is a mammal, and
alternative forms like Cats are mammals or A cat is a kind
of mammal would be ruled out. We decided that people
would probably be nearly as unwilling to learn a canonical
English as they would to learn a vast logical ontology.
 REFORMULATOR avoids canonical expressions
through the use of paraphrasing rules that allow it to move
between similar ideas expressed in different ways. These
different formulations need not be precisely identical in
their meanings, and may each supply a slightly different
viewpoint and emphasis, as in the following example:

Bob likes to eat apples.
↔ If Bob eats an apple, then he will enjoy it.
↔ Eating an apple will make Bob happy.
↔ If I were Bob, then I would like apples.

Paraphrasing rules are important because, lacking canonical
forms, different inference rules supplied by different people
may require different formulations of an expression to
match.
Splitting and Merging Rules. While we ask our users to
enter knowledge in simple ways, it is sometimes easiest to
enter sentences of intermediate complexity, in order to
convey the most information in fewest words. However, this
makes inference difficult because expressions will not
match if knowledge is spread across multiple sentences.
Therefore REFORMULATOR allows complex sentences to
be broken apart and recombined in many ways through the
application of splitting and merging rules. For example:

• Splitting:

A tiger is a ferocious cat that lives in the jungle
→ Tigers are ferocious
 A tiger is a kind of cat
 Tigers live in the jungle

• Merging:

Tigers are ferocious
A tiger is a kind of cat
→ Tigers are ferocious cats

These two kinds of rules are the special case of
paraphrasing between complex sentences and their sets of
constituent phrases expressed as full sentences.

General Inference rules. The syntactic complexity of
English prevents us from using uniform proof procedures
such as resolution theorem proving. REFORMULATOR
operates instead through the application of heuristic
inference rules. Examples of such rules are listed below.

• Taxonomic inference:

Cats are mammals
Mammals are animals
→ Cats are animals

• Inference about requirements:

You need air to live
There is no air in space
→ You cannot live in space

• Inference about effects:

Pushing a door will open the door
Bob pushed the door
→ Bob opened the door

• Default inferences:

Bob drove
→ Bob drove in a car
 Bob owns the car

One advantage of this approach is that we can easily read
off the inference trace, which could lead to an improved
ability to maintain and debug the knowledgebase.

A Search Engine with Common Sense
Let us now demonstrate how these ingredients can be
combined to solve a real world problem in the area of web
search. Using REFORMULATOR, we have built a simple
search engine application that reformulates problem queries
into more effective action queries.
 For example, let us imagine the problem that your pet cat
is ill. Our experience is that when faced with a search
engine for the first time, a person not familiar with the
limits of computer technology is likely to enter not an
efficient query like I want a veterinarian but rather a
statement of their problem, such as My cat is sick. They
treat the search engine as if it were capable of making the
commonsense inference that a sick cat requires a
veterinarian.
 REFORMULATOR acts to make this inference. It
reformulates a user query which describes a problem into a
more focused query that is a step towards solving the
problem. Given a search query, it forward chains on its
knowledge, until it encounters the following pattern:

I want ?VP
?VP is a concrete action

The following is the chain of reasoning that results from
entering the search query My cat is sick, given the initial
database contents supplied below.

Query: My cat is sick

Initial database contents:

(a) My cat is sick
(b) People care about their pets
(c) I am a person
(d) A cat is a kind of pet
(e) A veterinarian helps sick animals
(f) A cat is a kind of animal
(g) A veterinarian is a kind of person

Chain of inference:

 People care about their pets (b)
 I am a person (c)
 → (h) I care about my pets (1)

 My cat is sick (a)
 A cat is a kind of pet (d)
 → (i) My pet is sick (2)

 A veterinarian helps sick pets (e)
 → (j) A veterinarian heals sick pets (7)

 A veterinarian heals sick pets (j)
 → (k) A veterinarian makes sick pets healthy (4)

 A veterinarian is a kind of person (g)
 → (l) Calling a veterinarian is a concrete action (6)

 I care about my pets (h)
 → (m) I want my pets to be healthy (3)

 I want my pets to be healthy (m)
 My pet is sick (i)
 A veterinarian makes sick pets healthy (k)
 → (n) I want to call a veterinarian (5)

 I want to call a veterinarian (n)
 Calling a veterinarian is a concrete action (l)
 → Search for "call a veterinarian" (8)

The system was endowed with the following set of
reformulation rules.

 (1) People ?P their ?Q (Inference)

 I am a person
 → I ?P my ?Q

(2) A ?NOUN1 is a kind of ?NOUN2 (Inference)

 ?P ?NOUN1 ?Q
 → ?P ?NOUN2 ?Q

(3) I care about ?NOUN (Reformulation)

 → I want ?NOUN to be healthy

(4) A ?P heals ?Q (Reformulation)
 → A ?P makes ?Q healthy

(5) I want my ?NOUN1 to be ?ADJ1 (Inference)

 my ?NOUN1 is ?ADJ2

 A ?NOUN2 makes ?ADJ2 ?NOUN1 ?ADJ1
 → I want to call a ?NOUN2

(6) A ?NOUN is a kind of person (Inference)

 → Calling a ?NOUN is a concrete action

(7) A ?P helps ?Q (Disambiguation)
 → A ?P heals ?Q

(8) I want to ?VP (Goal)

 ?VP is a concrete action
 → Search for ?VP

The end result is that the system reformulates the query My
cat is sick into Call a veterinarian, in effect guessing at the
real purpose behind the user’s search query.

Conclusions
Open Mind Commonsense has gathered hundreds of
thousands of small pieces of commonsense knowledge, and
it continues to grow. We hope that the ideas in this paper
will help us build an inference system capable of reasoning
with this knowledge, and that we will find new ways to
make available the full expressive power of a natural
language for commonsense reasoning. We feel we have
explored only the very surface of ways to extract
commonsense knowledge from the general public, and hope
that others will be inspired to follow with new approaches.
We have received much feedback from our users saying
how they very much enjoy entering knowledge and working
with our system. We can only speculate that we are drawing
on some basic human instinct to pass on our commonsense
to our progeny.

Acknowledgements
The Open Mind Common Sense web site could not have
been built without the efforts of the many undergraduate
students: Jesse Cox, Catherine Havasi, Andrew Hogue,
Jonathan Kennell, Thomas Lin, David Lipsky, Satwik
Seshasai, Matt Weber, and Alex Wissner-Gross. We
extend our thanks to Erik Mueller for making available the
contents of his ThoughtTreasure database, David Stork for
organizing the larger Open Mind effort, and especially to
the many thousands of members of the general public who
contributed their knowledge to our database. This project
was supported by the sponsors of the MIT Media Lab.

References

Agre, P. and Chapman, D. 1987. Pengi: An implementation
of a theory of activity. In Proceedings of the Sixth National
Conference on Artificial Intelligence, 268-272. Menu Park,
Calif.: AAAI Press.
Charniak, E. 1999. A maximum-entropy-inspired parser.
Technical Report CS-99-12, Brown University.

Eisner, J. M. 1996. An empirical comparison of probability
models for dependency grammar. Technical report IRCS-
96-11, Institute for Research in Cognitive Science, Univ. of
Pennsylvania.
Fuchs, E. & Schwitter, R. 1996. Attempto Controlled
English (ACE). In Proceedings of The First International
Workshop On Controlled Language Applications.
Katholieke Universiteit Leuven, pages 124-136, Belgium.
Hayes, P. J. The Naïve Physics Manifesto, in D. Michie
(ed.), Expert Systems in the Micro-Electronic Age
(Edinburgh University Press, 1979), pp. 242-70.
Jackendoff, R. 1983. Semantics and Cognition. The MIT
Press, Cambridge, MA.
Lakoff, G. and Johnson, M. 1980. Metaphors We Live By.
The University of Chicago Press. Chicago.
Lenat, D. B. 1995. CYC: A large-scale investment in
knowledge infrastructure. Communications of the ACM
38(11):33-38.
Marcus, M. P., Santorini, B., and Marcinkiewicz, M. A.
1993. Building a large annotated corpus of english: The
penn treebank. Computational Linguistics, 19:313--330.
Pulman, S. 1996. Controlled language for knowledge
representation. In Proceedings of the first international
workshop on controlled language applications, Katholieke
Universiteit Leuven, Belgium.
Schank, R. C., and Abelson, R. P. 1977. Scripts, Plans,
Goals, and Understanding. Lawrence Erlbaum Associates,
Hillsdale, New Jersey.
Sleator, D., and Temperley, D. 1991. Parsing English with a
link grammar. Technical Report CMU-CS-91-196, Dept. of
Computer Science, Carnegie Mellon University.
Stork, D. 1999. The OpenMind Initiative. IEEE Intelligent
Systems & their applications 14(3):19-20.
Szolovits, P., Hawkinson, L. B., Martin, W. A. 1977. An
overview of Owl, a language for knowledge representation.
Technical Memo TM-86, Laboratory for Computer
Science, MIT.
Voutilainen, A. 1995. A syntax-based part-of-speech
analyser. In Proceedings of the Seventh Conference of the
European Chapter of the Association for Computational
Linguistics, Dublin.

