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Abstract 
The Open Mind Common Sense project is an attempt to 
construct a database of commonsense knowledge through 
the collaboration of a distributed community of thousands of 
non-expert netizens. We give an overview of the project, 
describe our knowledge acquisition and representation 
strategy of using natural language rather than formal logic, 
and demonstrate this strategy with a search engine 
application that employs simple commonsense reasoning to 
reformulate problem queries into more effective solution 
queries. 

Introduction   
Workers in artificial intelligence have long sought to teach 
computers enough about our world so that they could 
reason about it like we do, to give them the capacity for 
"common sense". However, the scale of the problem has 
been discouraging, for people seem to need a tremendous 
amount of knowledge of a very diverse variety to 
understand even the simplest children's story. As a result 
there have been few efforts to try to encode a broad range 
of human commonsense knowledge. 
 We believe that today this problem of scale can be 
addressed in a new way. The critical observation is that 
every ordinary person has common sense of the kind we 
want to give our machines. Given the advent of the World 
Wide Web, artificial intelligence projects now have access 
to the minds of millions. If we can find good ways to 
extract common-sense from people by prompting them, 
asking them questions, presenting them with lines of 
reasoning to confirm or repair, and so on, we may be able 
to accumulate many of the knowledge structures needed to 
give our machines the capacity for commonsense reasoning. 
 The Open Mind Initiative was created to support such 
large-scale collaborative efforts to build components of 
intelligent systems (Stork 1999). As part of this effort, we 
built a Web site called Open Mind Common Sense1 to make 
it easy and fun for non-expert netizens to collaborate to 

                                                 
Copyright © 2002, American Association for Artificial Intelligence  
 (www.aaai.org). All rights reserved. 
 
1 http://www.openmind.org/commonsense 

construct a database of commonsense knowledge. Open 
Mind Commonsense is in the vein of projects like The 
Open Directory Project, The Mars Crater Mapping project, 
and similar "distributed human projects" where difficult 
problems are solved by distributing the work across 
thousands of volunteers across the Internet. Our purpose 
was to explore whether the commonsense knowledge 
acquisition problem could be cast in a way that non-experts 
could participate in supplying data, rather than having a 
small team doing careful knowledge engineering, as in 
Doug Lenat's well-known Cyc project (Lenat 1995). 
 This paper reports on our results so far. We give an 
overview of the project, describe our knowledge acquisition 
and representation strategy of using natural language rather 
than formal logic, and demonstrate this strategy with a 
search engine application that employs simple 
commonsense reasoning to reformulate problem queries 
into more effective solution queries. 

The Diversity of Commonsense Knowledge 
There is much disagreement over what kinds of knowledge 
are needed to build systems capable of commonsense 
reasoning. One popular view is that we need to encode 
general axiomatic formulations of different facets of the 
commonsense world (Hayes 1979). Others have argued that 
story-like and other forms of "concrete" representations are 
the right way to represent commonsense (Schank and 
Abelson 1977). Still others have argued that much of 
commonsense is less about deliberative cognition than it is 
routine behavioral activity that operates using purely 
procedural representations (Agre and Chapman 1987). 
Some have argued that new concepts are built through 
composition and specialization of lexical semantic 
primitives (Jackendoff 1983). And there are many who 
believe that representations should be constructed by 
analogy to representations grounded in the physical and 
social world (Lakoff and Johnson 1980). 
 Our view is that when it comes to commonsense 
reasoning, diversity is the secret to success. To do 
commonsense reasoning one needs many kinds of 
representations. The more variety in representation, the 
more likely it is you will have the appropriate units of 
knowledge to solve whatever commonsense problem you 
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are faced with at the moment. It is not so much a matter of 
choosing between such representations as it is a matter of 
finding way for them to work together in one system. 
 To this end we constructed a variety of activities for 
gathering knowledge. Each activity tries to make it simple 
for the user to teach a certain kind of knowledge. At present 
we have about 25 activities. Some of the kinds of 
knowledge we collect include: 
•  Spatial. Describe a simple movie of a spatial event. 
•  Relation. Explain relation between pair of words. 
•  Images. Describe a photo of typical scene. 
•  Stories. Supply a story given a story title. 
•  Verbs. Supply typical arguments of a verb. 
•  Objects. List objects that tend to appear together. 
•  Explanation. Explain an aspect of a short story. 
•  Teleology. Provide the functions of an object. 
•  Causality. Give the likely effects of an action. 
Each activity has its own special interface for knowledge 
elicitation. We regularly add new activities that gather new 
kinds of knowledge. 

Users prompted with story: 

Bob had a cold. 
Bob went to the doctor. 

Users enter many kinds of knowledge in response: 

Bob was feeling sick 
Bob wanted to feel better 
The doctor made Bob feel better 
People with colds sneeze 
The doctor wore a stethoscope around his neck 
A stethoscope is a piece of medical equipment 
 The doctor might have worn a white coat 
A doctor is a highly trained professional 
You can help a sick person with medicine 
A sneezing person is probably sick 

Table 1: Typical Knowledge Entry Activity 
Table 1 illustrates a typical knowledge entry activity, which 
gathers several kinds of background knowledge that would 
be useful for understanding the presented story: the likely 
prior situation, the likely posterior situation, some general 
facts about the characters involves and general rules about 
the domain. The result is a large amount of related 
knowledge about a specific kind of event. 

Using natural language input 
When we seek to obtain the greatest possible audience, we 
cannot assume from our users any special background in 
artificial intelligence or knowledge engineering. We 
considered using the Cyc representation language for our 
web-based effort, but because our target audience is the 
average layperson, we could not expect our users to learn a 
complex formal language like CycL and its associated vast 
ontology of terms. 

 We decided instead to allow our users to enter 
knowledge in plain English. English gives us a convenient 
representation which many people already understand, and 
much commonsense knowledge can be expressed in terms 
of simple generic English sentences. We encouraged our 
users to enter sentences that "even a child could 
understand". As a result, we have accumulated a large set of 
sentences in relatively simple English. Some of the kinds of 
knowledge our users have supplied include: 
•  Taxonomic: Cats are mammals 
•  Causality: Eating a sandwich makes you less hungry 
•  Goals: People want to be warm 
•  Spatial: You often find a hairdryer in a bathroom 
•  Functional: Chairs are for sitting on 
•  Planning: To become less hungry, eat a sandwich 
•  Grammatical. "is not" is the same as "isn't" 
Improvements in the basic techniques of natural language 
processing over the past decade further suggested to us that 
a modern attempt to build a commonsense knowledgebase 
might reasonably be based on natural language input. 
Modern part-of-speech taggers claim over 99% accuracy on 
text (Voutilainen 1995). Dependency grammars achieve an 
attachment accuracy of 93% (Eisner 1996). Syntactic 
parsers achieve 90% average precision/recall when tested 
on text from the Wall Street Journal (Charniak 1999). 
Further arguments for using English for knowledge entry 
are also made in (Fuchs and Schwitter 1996) and (Pulman 
1996), where it is suggested that using a controlled subset 
of English makes it far easier for domain experts to supply 
knowledge to systems in a way that is still computer 
processable. 
 In addition to free-form English, many of our activities 
use a template-based input system in which users are 
restricted to entering knowledge into narrow fields. These 
templates were designed to reflect the primitive concepts 
out of which many of the most useful representations could 
be built: goals, scripts, plans, structural descriptions, causal 
models for diagnostic reasoning, explanations for 
explanation-based reasoning, and others. For example: 
•  Functional. A hammer is for ________ 
•  Goals. People want ________ 
•  Scripts. The effect of eating a sandwich is ________ 
•  Location. Somewhere you find a bed is ________ 
•  Ontology. A typical activity is ________ 
While these sorts of clearly formed knowledge templates 
are often easier to parse than free form English, we worried 
using only this kind of input would restrict us to gathering 
only a tiny slice of the kinds of knowledge people could 
express. We wanted to avoid imposing too strongly our own 
notions of what kinds of knowledge were important, and 
instead try to learn from our users more about what sorts of 
commonsense people could actually express. So while we 
find that knowledge from templates is often clearer and 
easier to parse, we continue to use both forms of entry. 



Gathering scripts and frames 
In addition to simple sentences we also gather several kinds 
of larger structures: 
Concrete episodes. We believe much reasoning is done not 
only with abstract logical inferences, but also by reasoning 
by analogy to concrete episodes. Therefore we have our 
users supply stories, either to illustrate some existing fact 
like "flashlight light up places" or in response to a given 
title like "going outside at night". Example: 

It was too dark to see. I went and got my flashlight. I 
turned on my flashlight. I could see much better. 

Concrete situations. In case-based reasoning, rather than 
inferring relationships from first principles one simply 
"looks and sees". This sort of knowledge is different from a 
fact or a rule in that it is simply a description of a partial 
state of the world. Therefore we have people supply 
descriptions of photos in plain English. Example: 

A mother is holding her baby.  The baby is smiling.  
They are looking into each other's eyes. The baby is 
happy. The mother is happy. 

Visual events. To allow more sophisticated forms of spatial 
reasoning, we allow users to annotate movies of simple 
iconic spatial events. Our goal is to eventually learn 
translation rules that let us produce event descriptions from 
movies and vice-versa. This is a first step towards reasoning 
using multimodal representations. Example: 

The small red ball rolls past the big blue ball. 

Breakdown of collection knowledge 
So far we have collected about 400,000 pieces of 
knowledge from about 8,000 users. For analysis we 
manually decomposed this knowledge into a set of about 90 
groups, each extracted using a particular regular expression 
pattern. We have organized these groups into a small set of 
families, whose distribution in the database is shown in 
below in Table 2. 

Class of Knowledge % Collected 

Scripts/Plans     
Causal/Functional    
Spatial/Location    
Goals/Likes/Dislikes 
Grammatical 
Photo descriptions       
Properties of people 
Explanations 
Story events   
Other 

14.4 
11.9 
10.18 
5.5  
5.5 
5.4 
4.8 
2.6 
1.8  
33.7 

Table 2: Breakdown of Collected Knowledge 

Many of these patterns resulted from our initial set of input 
templates, but others just seems to be patterns that seem to 
occur naturally when people are asked to produce facts. 
About a third of the collected knowledge does not seem to 
fit into any of the patterns we have constructed, but we are 
presently working on decomposing these into further 
patterns. Our hope is to build a large set of inference rules 
based on these patterns. 

Distribution of knowledgebase 
Our goal is for this database to be a free resource for 
helping study how to build systems capable of 
commonsense reasoning. We have made the data publicly 
available for download at our web site in several formats. 

Reasoning in English 
The problem still remains that knowledge supplied by users 
in English must be parsed into a target representation that is 
as expressive as English itself, if we want to make use most 
of that knowledge. At this point we once again considered 
using the Cyc ontology, but we needed a way to parse 
natural language into that commonsense ontology, which 
has proven daunting even for the Cyc project. 
 We believe there is an option that has been largely 
overlooked within the field of knowledge representation, 
which is to use English itself as the knowledge 
representation. As observed in (Szolovitz, Hawkinson, and 
Martin 1977), "The greatest attraction of this approach is 
that it almost trivially satisfies our need for expressive 
power." The idea is that English can perhaps serve as itself 
the representation over which reasoning is done. The value 
of this approach is three-fold: 
•  We can avoid having to impose a novel ontological 

structure on the universe beyond that which English has 
already supplied us. 

•  There is no need to create and learn a massive ontology. 
We can just use familiar English words and expressions. 

•  We can avoid having to do difficult and error prone 
“semantic interpretation” before reasoning can begin. 

Inference by Natural Language Reformulation 
In this section we describe a first attempt at using some of 
the knowledge we have collected. Our goal was to develop 
a reasoning system that could operate on natural language 
expressions directly, without having to go through a 
difficult semantic interpretation stage where the sentences 
were converted to logical form. 
 REFORMULATOR is an inference system that operates 
on simple English sentences. It is a forward chaining rule-
based system that pattern matches shallow parses of English 
sentences to produce new English sentences. 
REFORMULATOR uses English expressions to represent 
knowledge. For example, instead of the symbol 
$PresidentOfUnitedStates it simply uses the phrase 
president of the united states. Similarly for predicates, 



instead of ($kissevent $John $Mary), it simply uses John 
kissed Mary.  We now explain how REFORMULATOR 
can operate on natural language, by supplying it with five 
special kinds of reformulation rules: paraphrase, 
disambiguation, splitting, merging, and inference. 

Reformulation Rules 
We supply inference rules to REFORMULATOR by 
example, by first eliminating determiners and replacing 
words with their root forms, and then substituting with 
variables parenthesized phrases that match across the 
sentences of the pattern. For instance, the example 

(A door) is a portal  
(Bob) opens (the door) 
→ (Bob) can go through (the door) 

generalizes to the following syntactic pattern 

(S (NP ?x) (VP is (NP ?y))) 
(S (NP ?z) (VP opens (NP ?x))) 
→ (S (NP ?z) 
   (VP can go (PP through (NP ?x)))) 

For conciseness, in the following sections we give examples 
of reformulation rules rather than the rules themselves.
Disambiguation rules.  When it comes to domains as 
broad as the world of human concerns, it is very hard to pin 
down the meanings of terms with ultimate precision. In 
REFORMULATOR, ambiguity within an expression is 
dealt with by reformulating it to less ambiguous forms. This 
can be done in several ways, including replacing an 
ambiguous word with a less ambiguous word or multi-word 
expression, by elaborating the expression with additional 
text, or by making structural modifications to the sentence. 
For example, the lexical ambiguity of the word president 
might be dealt with by reformulating to reasonably 
unambiguous multiword expressions: 

President 
→ president of the united states 
→ president of a corporation 

The structural ambiguity of the sentence The chicken is 
ready to eat can be dealt with by reformulating the sentence 
so that it uses a less ambiguous structure: 

The chicken is ready to eat 
→ The chicken is ready to eat something 
→ The chicken is ready to be eaten 

We call these disambiguation rules. In the case of lexical 
ambiguity we do word sense disambiguation by correlating 
the word's surrounding context with the terms in co-location 
vectors found for each of the word senses. These co-
location vectors can be obtained through supplying the 
disambiguated item (e.g. "president of the united states") to 
a typical web search engine, and extracting content words 
correlated across the result pages. For the above examples, 
we might obtain: 

 president of the united states: America, Bush, election 
 president of a corporation: stock, CEO, investors 

This disambiguation method is far from perfect, and for 
structural ambiguity the disambiguation problem is even 
more difficult. In general, more context and general 
common sense reasoning is required to do sense 
disambiguation. 
Paraphrase rules.  English is also ambiguous in a different 
sense, in that, unlike the Cyc ontology, there are generally 
many ways to say the same thing. One might try to 
formulate a "canonical English" in which there would be 
exactly one expression to correspond to any given idea. For 
instance, one could say only A cat is a mammal, and 
alternative forms like Cats are mammals or A cat is a kind 
of mammal would be ruled out. We decided that people 
would probably be nearly as unwilling to learn a canonical 
English as they would to learn a vast logical ontology. 
 REFORMULATOR avoids canonical expressions 
through the use of paraphrasing rules that allow it to move 
between similar ideas expressed in different ways. These 
different formulations need not be precisely identical in 
their meanings, and may each supply a slightly different 
viewpoint and emphasis, as in the following example: 

Bob likes to eat apples. 
↔ If Bob eats an apple, then he will enjoy it. 
↔ Eating an apple will make Bob happy. 
↔ If I were Bob, then I would like apples. 

Paraphrasing rules are important because, lacking canonical 
forms, different inference rules supplied by different people 
may require different formulations of an expression to 
match. 
Splitting and Merging Rules.  While we ask our users to 
enter knowledge in simple ways, it is sometimes easiest to 
enter sentences of intermediate complexity, in order to 
convey the most information in fewest words. However, this 
makes inference difficult because expressions will not 
match if knowledge is spread across multiple sentences. 
Therefore REFORMULATOR allows complex sentences to 
be broken apart and recombined in many ways through the 
application of splitting and merging rules. For example: 

•  Splitting: 

A tiger is a ferocious cat that lives in the jungle 
→ Tigers are ferocious 
  A tiger is a kind of cat 
  Tigers live in the jungle 

•  Merging: 

Tigers are ferocious 
A tiger is a kind of cat 
→  Tigers are ferocious cats 

These two kinds of rules are the special case of 
paraphrasing between complex sentences and their sets of 
constituent phrases expressed as full sentences. 



General Inference rules.  The syntactic complexity of 
English prevents us from using uniform proof procedures 
such as resolution theorem proving. REFORMULATOR 
operates instead through the application of heuristic 
inference rules. Examples of such rules are listed below.  

•  Taxonomic inference: 

Cats are mammals 
Mammals are animals 
→ Cats are animals 

•  Inference about requirements: 

You need air to live 
There is no air in space 
→ You cannot live in space 

•  Inference about effects: 

Pushing a door will open the door 
Bob pushed the door 
→ Bob opened the door 

•  Default inferences: 

Bob drove 
→ Bob drove in a car 
  Bob owns the car 

One advantage of this approach is that we can easily read 
off the inference trace, which could lead to an improved 
ability to maintain and debug the knowledgebase. 

A Search Engine with Common Sense 
Let us now demonstrate how these ingredients can be 
combined to solve a real world problem in the area of web 
search. Using REFORMULATOR, we have built a simple 
search engine application that reformulates problem queries 
into more effective action queries. 
 For example, let us imagine the problem that your pet cat 
is ill. Our experience is that when faced with a search 
engine for the first time, a person not familiar with the 
limits of computer technology is likely to enter not an 
efficient query like I want a veterinarian but rather a 
statement of their problem, such as My cat is sick. They 
treat the search engine as if it were capable of making the 
commonsense inference that a sick cat requires a 
veterinarian. 
 REFORMULATOR acts to make this inference. It 
reformulates a user query which describes a problem into a 
more focused query that is a step towards solving the 
problem. Given a search query, it forward chains on its 
knowledge, until it encounters the following pattern: 

I want ?VP 
?VP is a concrete action 

The following is the chain of reasoning that results from 
entering the search query My cat is sick, given the initial 
database contents supplied below. 

Query: My cat is sick 

Initial database contents: 

(a)  My cat is sick 
(b)  People care about their pets 
(c)  I am a person 
(d)  A cat is a kind of pet 
(e)  A veterinarian helps sick animals 
(f)  A cat is a kind of animal 
(g)  A veterinarian is a kind of person 

Chain of inference: 

 People care about their pets         (b) 
 I am a person               (c) 
 → (h) I care about my pets          (1) 

 My cat is sick               (a) 
 A cat is a kind of pet            (d) 
 → (i) My pet is sick            (2) 

 A veterinarian helps sick pets         (e) 
 → (j) A veterinarian heals sick pets       (7) 

 A veterinarian heals sick pets         (j) 
 → (k) A veterinarian makes sick pets healthy  (4) 

 A veterinarian is a kind of person       (g) 
 → (l) Calling a veterinarian is a concrete action (6) 

 I care about my pets            (h) 
 → (m) I want my pets to be healthy      (3) 

 I want my pets to be healthy         (m)
 My pet is sick               (i) 
 A veterinarian makes sick pets healthy     (k) 
 → (n) I want to call a veterinarian      (5) 

 I want to call a veterinarian         (n) 
 Calling a veterinarian is a concrete action   (l) 
 → Search for "call a veterinarian"      (8) 

The system was endowed with the following set of 
reformulation rules. 

 (1) People ?P their ?Q        (Inference) 

   I am a person 
   → I ?P my ?Q 

(2)  A ?NOUN1 is a kind of ?NOUN2  (Inference) 

   ?P ?NOUN1 ?Q 
   → ?P ?NOUN2 ?Q 

(3)  I care about ?NOUN       (Reformulation) 

   → I want ?NOUN to be healthy 

(4)  A ?P heals ?Q          (Reformulation) 
   → A ?P makes ?Q healthy 

(5)  I want my ?NOUN1 to be ?ADJ1  (Inference) 

   my ?NOUN1 is ?ADJ2 



   A ?NOUN2 makes ?ADJ2 ?NOUN1 ?ADJ1 
   → I want to call a ?NOUN2 

(6)  A ?NOUN is a kind of person    (Inference) 

   → Calling a ?NOUN is a concrete action 

(7)  A ?P helps ?Q          (Disambiguation) 
   → A ?P heals ?Q 

(8)  I want to ?VP          (Goal) 

   ?VP is a concrete action 
   → Search for ?VP 

The end result is that the system reformulates the query My 
cat is sick into Call a veterinarian, in effect guessing at the 
real purpose behind the user’s search query. 

Conclusions 
Open Mind Commonsense has gathered hundreds of 
thousands of small pieces of commonsense knowledge, and 
it continues to grow. We hope that the ideas in this paper 
will help us build an inference system capable of reasoning 
with this knowledge, and that we will find new ways to 
make available the full expressive power of a natural 
language for commonsense reasoning. We feel we have 
explored only the very surface of ways to extract 
commonsense knowledge from the general public, and hope 
that others will be inspired to follow with new approaches. 
We have received much feedback from our users saying 
how they very much enjoy entering knowledge and working 
with our system. We can only speculate that we are drawing 
on some basic human instinct to pass on our commonsense 
to our progeny. 
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