
Programming Methodology for Biologically-Inspired Self-Assembling Systems

Radhika Nagpal, Attila Kondacs, Catherine Chang
MIT Technology Square, NE43-432

Cambridge MA 02114
contact: radhi@mit.edu

Abstract

We present a programming methodology for self-assembling
complex structures from vast numbers of locally-interacting
identically-programmed agents, using techniques inspired
by developmental biology. We demonstrate this approach
through two examples: shape formation on a reconfig-
urable sheet, and self-assembling two dimensional structures
through replication. In each case, the desired global shape is
specified using an abstract geometry-based language, and the
agent program isdirectly compiledfrom the global specifica-
tion. The resulting self-assembly processes are versatile, ana-
lyzable, and reliable in the face of random agent distributions,
varying numbers of agents and random death. This approach
takes advantage of traditional computer science techniques
for managing complexity, while relying on biological models
for achieving robustness at the local level.

Introduction
Emerging technologies are making possible novel applica-
tions that integrate computation into the environment: smart
materials, self-reconfiguring robots, self-assembling nanos-
tructures. We are faced with the challenge of achieving co-
herent and robust behavior from the interactions of multi-
tudes of elements and their interactions with the environ-
ment. These new environments fundamentally stress the
limits of our current engineering and programming tech-
niques, which depend on precision parts and strongly reg-
ulated environments to achieve fault-tolerance. By contrast,
the precision and reliability of embryogenesis, in the face of
unreliable cells, variations in cell numbers, and changes in
the environment, is enough to make any engineer green with
envy. We would like to build novel applications from these
technologies that achieve the kind of complexity and relia-
bility that biological systems achieve. This requires solving
two problems:

• How do we take aparticular global goal and translate
it into local interactions between identically-programmed
agents?

• How do we engineer robust and predictable behavior from
vast numbers of unreliable parts?

Copyright c© 2002, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

Our approach is to use morphogenesis and developmental
biology as inspiration for robust mechanisms and general
principles for organizing local behavior. However unlike
current approaches to emergent systems, the general princi-
ples are formalized asprogramming languages— with ex-
plicit primitives, means of combination, and means of ab-
straction — thus providing a framework for the design and
analysis of self-organizing systems.

In this paper we present two examples of applying this
methodology to the design of self-assembling systems. The
first system provides a language for specifying shape for-
mation on an intelligent reconfigurable sheet composed of
thousands of identically-programmed but locally-interacting
flexible agents (Nagpal 2001; 2002). The system uses a
novel approach: the desired global shape is specified at
an “abstract” level as a folding construction on a continu-
ous sheet of paper, which is thenautomatically compiled
to produce the program run by the identically-programmed
agents. All agent behavior is constructed from a set of five
general purpose robust primitives, inspired by epithelial cell
morphogenesis and cell differentiation in multicellular or-
ganisms such as theDrosophila. The global-to-local com-
pilation is achieved by composing these primitive building
blocks in a principled way, using a set of geometry axioms
taken from paper-folding mathematics. The resulting pro-
cess is versatile and reliable in the face of random agent
distributions, varying numbers of agents and random agent
death, without relying on global coordinates, a global clock,
or centralized control. The process also exhibits interesting
biological traits; for example, it isscale-independent— the
shape scales to the number of agents and proportions of the
initial sheet without any modification to the agent program.

The second system, currently under development, applies
the same approach to a different domain: the synthesis of
arbitrary 2D shapes, inspired by cell growth. The goal is
to compile a predetermined global shape to produce a pro-
gram for a seed agent that then “grows” the structure through
replication. We can compile a graphical description of an
arbitrary connected 2D shape into a network of covering-
circles, using techniques borrowed from computer graphics.
Neighboring circles are linked using local reference points
relative to each circle. This circle-representation permits the
formation of the entire structure by agents recursively ex-
ecutingonly two simple primitives:growing a circle, and

From: AAAI Technical Report SS-03-02. Compilation copyright © 2003, AAAI (www.aaai.org). All rights reserved. 



triangulating the centers of adjacent circles. Locally the
agents use replication, gradients and competition to achieve
these primitives robustly. This system has the potential for
self-repair and regeneration: agents can replicate to replace
dead neighbors and the circle-representations allows agents
to recreate entire structures that may be lost. We are cur-
rently evaluating the robustness of this system and extend-
ing it to 3 dimensions. We intend to extend this model to
self-assembling robots, replacing cell growth and death with
mobile agents that selectively attach and detach.

The power of the programming language approach is that
it allows us to take advantage of traditional computer science
techniques for managing complexity, while relying on bio-
logical models for achieving robustness at the local level. In
both systems, a high-level shape representation was chosen
such that the shape could be formed using a small set of sim-
ple primitives, with simple means of combination. This has
many advantages: (1) We can rely on results from other dis-
ciplines, such as origami mathematics and computer graph-
ics, to determine the classes of shapes that can be formed (2)
The primitives themselves can be made robust by relying on
mechanisms inspired by biological systems (3) The analysis
of a complex system becomes tractable because it is built in
understood ways from smaller parts (4) The compiler makes
it possible to easily specify complex behavior.

This programming methodology will impact emerging
fields such as reconfigurable robots, smart matter, and self-
assembling systems, where we are trying to program specific
global structure and function from vast numbers of parts. In
the long run we believe these ideas will help achieve coher-
ent behavior from aggregates of genetically-modified bio-
logical cells.As we build artificial systems that replicate bi-
ological robustness, we will inevitably develop insights into
how complex morphology can arise at the global level from
the local behavior of biological cells. We believe that this
research will improve our understanding of morphogenesis
and how development functions at a systems level.

Motivation

The motivation for this work comes from technologies such
as MEMS1 devices, that are making it possible to bulk-
manufacture millions of tiny computing elements integrated
with sensors and actuators and embed these into materi-
als, structures and the environment. Applications include
computing elements that can be “painted” onto a surface
(Butera 2001; Williams & Nayak 1996), an airplane wing
that changes shape to resist shear (Folk & Ho 2001), a pro-
grammable assembly line of air valves (Cheunget al. 1997),
a reconfigurable robot that morphs into different shapes
to achieve different tasks (Hogg, Bojinov, & Casal 2000;
Butler, Byrnes, & Rus 2001). Emerging research in biocom-
puting may even make it possible to harness the many sen-
sors and actuators in agents and create programmable tissues
(Knight & Sussman 1998; Weiss, Homsy, & Knight 1999;
Ingber 1998).

1Micro-electronic Mechanical Devices. Integrates mechanical
sensors and actuators with silicon based integrated circuits.

These new computational environments pose many chal-
lenges to our current programming techniques. These appli-
cations will require the coherent coordination of vast num-
bers of elements, where the individual will have limited
resources and reliability and the interconnects between el-
ements will be irregular, local and possibly time-varying.
In addition the physical embodiment of these elements is
strongly intertwined with the individual behavior of the ele-
ments and the global goal. Not only are we concerned with
topology, but also geometry and physics.

Current engineering paradigms rely heavily on precisely
functioning parts and strictly managed interactions in or-
der to achieve robustness (Berlin & Gilbert 1999; Lynch
1996). Programming strategies within the MEMs commu-
nity have for the most part been centralized applications
of traditional control theory, or decentralized versions that
have access to global knowledge of the system (Berlin 1994;
Hall et al. 1991; Williams & Nayak 1996; Pottie & Kaiser
1999) which are not scalable. The tendency to depend on
centralized information, such as global clocks or external
beacons for triangulating position, puts severe limitations
on the types of applications and environments, and exposes
easily attacked points of failure. In the modular robotics
community, motion planning and heuristic searches are most
common. These approaches quickly become intractable for
large numbers of modules and are not robust to the fail-
ure of modules during the formation process. In addition
they often require untenable assumptions such as explicitly
defining the final position of every element and access to
global position (Pamecha, Ebert-Uphoff, & Chirikjian 1997;
Yim et al. 2000; Fukuda & Nakagawa 1988). In general,
our engineering methodologies do not easily adapt to errors
or unpredictable changes, and adding such fault-tolerance
is very costly. These strategies put pressure on system de-
signers to build complex, precise (and thus expensive) ele-
ments and interconnects rather than cheap, unreliable, mass-
produced computing elements that one can conceive of just
throwing at a problem.

Currently few alternatives exist. Approaches based on
cellular automata have been difficult to generalize; local
rules for agents are constructed by hand with insight and
ingenuity; there is no general framework for construct-
ing local rules to obtain a desired goal (Resnick 1994;
Deneubourget al. 1990; Mataric 1995; Butleret al. 2002).
Evolutionary and genetic approaches produce local rules for
prespecified goals, but the correctness and robustness of the
evolved system is difficult to verify because of a lack of
understanding of the local-to-global relationship (Forrest &
Mitchell 1993).

By contrast, biological systems achieve incredible robust-
ness in the face of constantly dying and replacing parts. The
plethora of error-tolerant systems in biological systems, in
contrast to our non-robust engineering paradigms, suggests
that fundamentally different paradigms are used by biolog-
ical systems to achieve this robustness. In recent decades,
there has been significant progress in understanding how
agents produce complex pattern and shape during develop-
ment (Slack 1991; Wolpert 1998). Morphogenesis (creation
of form) in developmental biology can provide insights for



embedding computation in the environment. Epithelial cells,
for example, generate a wide variety of structures: skin, cap-
illaries, and many embryonic structures (gut, neural tube),
through the coordinated effect of many agents changing their
individual shape (Odellet al. 1981). We believe that impor-
tant organizational lessons can be learned from these bio-
logical systems. This research is builds on previous work in
the Amorphous Computing project, on exploring program-
ming paradigms for collective behavior(Abelsonet al. 2000;
Coore 1999).

A Programmable Reconfigurable Sheet
The first system provides an example of how this approach
can be used to specify shape formation on an intelligent re-
configurable sheet, composed of thousands of identically-
programmed but locally-interacting flexible agents (Nagpal
2001; 2002).

Our model for a programmable sheet is inspired by fold-
ing in epithelial cell sheets — the programmable sheet con-
sists of a single layer of thousands of randomly and densely
distributed agents that can coordinate to fold the sheet along
straight lines. All agents have theidenticalprogram, but ex-
ecute it autonomously based on local communication and
internal state. Communication is strictly local: an agent
can communicate only with a small local neighborhood of
agents within a fixed distance, or through physical contact
as a result of folding. The sheet starts out with a few sim-
ple initial conditions, but apart from that the agents have
no knowledge of global position or interconnect topology.
An example application could be a reconfigurable sheet for
deploying in space, that can fold compactly for storage but
then unfolds into a chair or a shelter depending on how it is
programmed.

In our system, the self-assembly works as follows: The
desired global shape is specified as a folding construction
on a continuous sheet, using a language called the Origami
Shape Language (OSL). The language is based on a set of
six paper-folding axioms (Huzita & Scimemi 1989), that can
be used to construct a large class of flat folded shapes. The
program for an individual agent is automatically compiled
from the global shape description. All agents execute the
same program and differ only in a small amount of local
dynamic state. The agent program is composed from a small
set of primitives: gradients, neighborhood query, cell-to-cell
contact, polarity inversion and flexible folding. When the
agent program is executed by all the agents in the sheet, the
sheet is configured into the desired shape.

The language and primitives are presented in detail in
(Nagpal 2002; 2001) along with many examples and theo-
retical and experimental results. Here we illustrate this ap-
proach through an example. Figure 1 shows a diagram for
constructing a cup from a piece of paper using the paper-
folding axioms. This diagram can be represented as an OSL
program. The basic elements of the language are points,
lines and regions. Initially, the sheet starts out with four cor-
ner points (c1-c4 ) and four edge lines (e12-e41 ). The
axioms generate new lines from existing points and lines,
while new points are created by intersecting lines. For exam-
ple, the first cup operation constructs the diagonald1 from

the pointsc1 andc2 by using axiom 2 (which essentially
folds the sheet so thatc1 lies onc2 and then unfolds the
sheet). Lines can be used to create regions and regions can
be used to restrict folds to certain layers. The fold is always
a flat fold, and hence the structures created by OSL are flat,
but layered.

Figure 2 shows a programmable sheet differentiating to
fold into a cup. Initially the surface is mostly homogeneous,
with only the agents on the border having special local state.
This is analogous to the presence of a small number of ma-
ternal determinants in an embryo, which determine the origi-
nal axes of the embryo (Nusslein-Volhard 1996). The overall
globalview of this process is very close to what the diagram
of the continous sheet suggest. This is because each global
operation is translated into a local operation. But instead
of folding, the axioms are implemented using biologically-
inspired primitives.

For example, one of the key primitives is agradient. A
gradient is analogous to the gradient of a chemical concen-
tration from a source. This primitive can be used for mea-
suring distance as well as ascertaining local direction. It ex-
ploits the spatial locality of communication to make crude
geometric inferences. Gradients themselves can be quite
complex based on the location of sources, however a agent
program for creating and propagating gradients is very sim-
ple. An agent creates a gradient by sending a message to its
local neighborhood with the gradient name and a value of
zero. The neighboring agents forward the message to their
neighbors with the value incremented by one and so on, until
the gradient has propagated over the entire sheet. Each agent
stores the minimum value it has heard for a particular gra-
dient name, thus the gradient value increases away from the
source. Because agents communicate with only neighboring
agents within a small radius, the gradient provides an esti-
mate of distance from the source. The source of a gradient
could be a group of agents, in which case the gradient value
reflects the shortest distance to any of the sources. If a single
agent emits a gradient then the value increases as one moves
radially away from the agent but if a line of agents emit a
gradient then the gradient value increases as one moves per-
pendicularly away from the line.

In order to implement the first line creation, the agents
belonging toc1 andc2 create two distinct gradients. The
remaining agents test if the gradient values are equal; if so
then they lie on the new line. This is the local rule cor-
responding to axiom 2. Gradients also serve as a form of
barrier synchronization, so that agents can determine when
it is safe to move on to the next fold operation.

This work has several interesting features:

1. Global-to-local Compilation: The compilation process
confers significant advantages: not only can the de-
sired global goal be described at an abstract level, but
results from paper-folding mathematics can be used to
reason about what kinds of shapes can and cannot be
self-assembled by the agents. Huzita has proven that
the axioms can construct all plane Euclidean construc-
tions(Huzita & Scimemi 1989). Lang(Lang 1996) has
shown that tree-based folded shapes can be automatically



;; OSL Cup program
;;---------------------
(define d1 (axiom2 c3 c1))
(define front (create-region c3 d1))
(define back (create-region c1 d1))
(execute-fold d1 apical c3)

(define d2 (axiom3 e23 d1))
(define p1 (intersect d2 e34))
(define d3 (axiom2 c2 p1))
(execute-fold d3 apical c2)

(define p2 (intersect d3 e23))
(define d4 (axiom2 c4 p2))
(execute-fold d4 apical c4)

(define l1 (axiom1 p1 p2))
(within-region front

(execute-fold l1 apical c3))
(within-region back

(execute-fold l1 basal c1))

Figure 1:

Figure 2: Simulation images from folding a cup



generated by computer and methods exist for constructing
scaled polygonal shapes. There is a large practical liter-
ature of shapes that can be constructed using these tech-
niques. As the relationship between paper-folding con-
structions and geometry is explored further, the results
will directly impact this work.

2. General-purpose Local Primitives: This work uses a
small set of powerful but general primitives for local or-
ganization. For example, we have used gradients for topo-
logical pattern formation language, the design of ad-hoc
networks for distributed sensors, and discovery of global
coordinates without the use of external beacons (Coore
1999; Butera 2001). Complexity comes from the effect
of the interactions between the elements and their interac-
tions with the environment.

3. Robustness:The agent programs are robust, without re-
lying on regular agent placement, global coordinates, or
synchronous operation, and can tolerate a small amount of
random agent death. Robustness is achieved by depend-
ing on large and dense agent populations, using average
behavior rather than individual behavior, trading off pre-
cision for reliability, and avoiding any centralized control.
The robustness of the system can be analyzed by sepa-
rately analyzing the primitives and the means of combi-
nation. We have shown that 15–20 agents is sufficient for
gradients to produce reliable distance estimates, and the
axioms compose to minimize error.

4. Analogies to Biology: The system also provides many
insights into the relationship between local behavior and
global morphology, that have analogies to biological sys-
tems. For example, the agent program isscale indepen-
dentwhich implies it can create the same shape at many
different scales without modification, simply by increas-
ing the size of the agent sheet. Scalability is an extremely
attractive feature: not only does the agent program work
correctly over varying numbers of agents, but the function
(goal) itself scales with the number of agents. This system
can also generate many different related shapes without
any modification to the agent program. This has signif-
icant implications for biology: if the agent programs do
not differ, then methods such as genetic analysis are not
likely to reveal much information. Instead observations
of the process of development and comparisons between
processes in closely related species may give us better in-
sights into how morphology is created.

Self-Assembly 2D shapes based on growth
Our preliminary work has focused on 2D pattern formation
and shapes produced through epithelial agent based folding.
However this only scratches the surface of what is possible.
Biology suggests many different metaphors for constructing
complex structure: growth, mobility, death, material deposi-
tion, etc. Growth is fundamental to the creation of structure
in embryos, from folding in the chick eye to limb generation.
It is important not only for creating structure but also for
repairing structure, such as regeneration of limbs (Wolpert
1998).

The second system, currently under development, applies
the programming language approach to a different domain:
the synthesis of arbitrary 2D shapes from cell growth. The
goal is to compile a predetermined global shape to produce a
program for a single seed agent that then “grows” the struc-
ture through replication.

In this case, we chose a very different shape representa-
tion from the sheet. A 2D connected shape is represented
asnetwork of overlapping circles. Neighboring circles are
linked using local reference points relative to each circle; a
circle can use its internal reference points to triangulate the
location of all of its neighboring circles centers. A rooted
spanning tree in this network represents a process for draw-
ing the structure starting from a particular circle.

This work goes a step further than the previous work:
we can compile such a shape description directly from a
graphical description of an arbitrary connected 2D shape,
using techniques borrowed from computer graphics. Figure
3 shows the circle-network for a cross shape, compiled from
a drawing program rendition.

This circle-network representation is key because it per-
mits the formation of the entire structure by agents recur-
sively executingonly twohigh-level operations: growing a
circle via agent replication, and triangulating target agents
which will become reference points and centers of adjacent
circles.

The model for an agent is similar to an agent in the pro-
grammable sheet, except instead a fixed number of agents,
there is a single agent that can produce more agents through
replication. At the lowest level, the agent can:

1. Create gradients

2. Exchange messages with immediate neighbors

3. Reproduce, by placing the child agent in a random po-
sition within a fixed small radius. If the location is oc-
cupied then the replication is considered failed, and the
agent may try again.

4. Die, after death an agent is removed from the substrate.

These primitives are then combined to allow the agent to
execute the high-level operations.

Agents can assume different roles, and their role deter-
mines what behavior they will have. For example, an agent
with the role of circle center induces replication of agents
outward to a certain radius, thereby causing a circle to form
around itself. Reference points are agents that have been
designated as “coordinates” of a local grid; these agents cre-
ate gradient messages that allow nearby agents to triangulate
their relative positions.

As agents begin to form circles, four agents in each cir-
cle designate themselves as cardinal reference points— that
is, they mark the north, south, east, and west poles of a cir-
cle. Agents with reference-point roles create distinct gradi-
ent messages, from which a nearby agent may extract infor-
mation about its relative orientation. This, in effect, estab-
lishes a local coordinate system that aids agents in determin-
ing where the next circle must be grown. The gradients do
not travel outside the circle, but within the circle they are
modeled as direct diffusion and therefore provide a better



Figure 3:

Figure 4:



distance estimate than gradients simulated by message pass-
ing.

How do agents determine who should assume a reference
point role, or who should become the center of a new circle?
The triangulation question is settled by acompetition mech-
anism. The circle-network representation specifies an ideal
ratio of gradient strengths that a agent should receive in or-
der to be the optimal holder of a role. Agents that perceive
that they are receiving a set of sufficiently strong gradients
enter a competition for this role. Agents communicate their
fitness to their immediate competing neighbors; eventually,
the agent with the greatest fitness is selected as a leader. If
this agent remains the leader for a certain number of time-
steps, it stabilizes as the holder of the reference point role.
Once a agent stabilizes, the other competing agents enter a
passive state for the duration of the leader’s existence. Fail-
ure of the stable leader signals the passive agents to resume
active competition until a new leader stabilizes.

Figure 4 shows the process of a single agent creating the
cross shape. The agent program is generated from the circle-
network representation.

We have many simulations of 2D shapes. We are currently
evaluating the robustness of the system. The preliminary
qualitative results suggest that the system can produce good
replications of the target shape give a high density of cells
within a single circle. The higher the density the more likely
there is an agent that is well placed to be a reference point.
However qualitative results are needed to place bounds on
the error that results from insufficient density. We are also
evaluating the robustness of the competition mechanisms,
which are likely to be applicable to many different applica-
tions. Extending the shape representation to 3D is relatively
straightforward however it does add a significant amount of
complexity in the number of additional reference points that
must be created.

Self-repair

A key feature of this system is that it has the potential for
both self-repair and regeneration after the formation process
is over.

The first method of self-repair is based on awareness of
neighboring agents. In the process of growing a circle, ev-
ery agent that hears a growth message from the circle center
attempts to reproduce and place daughter agents randomly
around itself within a ring. This agent only succeeds in re-
producing if there is room at the chosen location for another
neighboring agent. Agents are aware of their neighbors, and
they resume replication when a neighbor disappears. Hence
the structure never really stops growing and constantly re-
places dying parts.

The role-competition among agents also allows the sys-
tem to recover when an agent holding a reference point role
disappears. The competition for this role among the agents
in the local neighborhood resumes. However with very high
probability, a neighbor’s descendant will fill the space left
by the dead agent in time to become the new role-holder.

The system is also capable ofregenerationafter a large
part of the shape is destroyed. This is a feature of the shape

representation chosen. Each circle contains enough informa-
tion to generate its neighbors, and this process can occur re-
cursively. As a result agents can rely on their original grow-
ing procedure to regenerate. Our most recent compilation
specifies multiple ways in which any single reference point
can be regenerated and each circle can be regrown from mul-
tiple neighbors. Therefore any part of the structure, that has
at least a circle center and enough reference points to orient
itself, can regenerate the rest.

Conclusion
This research represents a different approach to engineering
self-organizing systems. Rather than trying to map a desired
goal directly to the behavior of individual agents, the prob-
lem is broken up into two pieces: (a) how to decompose the
goal globally (b) how to map the construction steps to lo-
cal rules. In both examples, we take advantage of current
understanding in other disciplines of how to decompose a
problem. This approach suggests that exploring new global
paradigms is at least as important as experimenting with lo-
cal rules. The choice of shape specification language deter-
mines to a large degree the decomposition of the problem.
For example, paper folding is a natural process for describ-
ing shape formation on a sheet and the axioms provide the
decomposition. Choosing the right decomposition will be
necessary in order to translate abstract notions of shape to
local processes. We will need to discover new models to
describe goals in new domains, and this will require cross-
disciplinary thinking.

Biology gets tremendous mileage by using vast numbers
of cheap and unreliable components to achieve complex
goals reliably. Our current research has focussed on self-
assembly, however the same approach could be applied to
distributed robots or sensor networks. Developmental biol-
ogy can teach us how to make complex shapes, with well-
defined topological and functional structure. Study of social
insects can teach us how to achieve robust behavior from
ant-like robots. The global-to-local compilation is the key
to achieving complexity while still being able to analyze the
behavior of the system. By encoding these processes as pro-
gramming languages we can combine principles for control-
ling complexity, drawn from computer science, with tech-
niques for robust design, inspired by biology.

Acknowledgements
This research is supported by a National Science Founda-
tion grant on Quantum and Biologically Inspired Computing
(QuBIC) from the Division of Experimental and Integrative
Activities, contract EIA-0130391.

References
Abelson, H.; Allen, D.; Coore, D.; Hanson, C.; Homsy, G.;
Knight, T.; Nagpal, R.; Rauch, E.; Sussman, G.; and Weiss,
R. 2000. Amorphous computing.Communications of the
ACM43(5).
Berlin, A., and Gilbert. 1999. Collaboration and coordi-
nation in massively distributed smart matter.Workshop on
Amorphous Computing.



Berlin, A. 1994. Towards Intelligent Structures: Active
Control of Buckling. Ph.D. Dissertation, MIT, Dept of
Electrical Eng. and Computer Science.

Butera, W. 2001. Programming a Paintable Computer.
Ph.D. Dissertation, MIT Media Lab.

Butler, Z.; Kotay, K.; Rus, D.; and Tomita, K.
2002. Generic decentralized control for a class of self-
reconfigurable robots.Proceedings of the IEEE Intl Conf
on Robotics and Automation (ICRA).

Butler, Z.; Byrnes, S.; and Rus, D. 2001. Distributed mo-
tion planning for modular robots with unit-compressible
modules. Proceedings of the Intl Conf. on Intelligent
Robots and Systems.

Cheung, P.; Berlin, A.; Biegelsen, D.; and Jackson, W.
1997. Batch fabrication of pneumatic valve arrays by
combining mems with printed circuit board technology.
In Proc. of the Symposium on Micro-Mechanical Systems,
ASME Intl. Mech. Engineering Congress and Exhibition.

Coore, D. 1999.Botanical Computing: A Developmen-
tal Approach to Generating Interconnect Topologies on an
Amorphous Computer. Ph.D. Dissertation, MIT, Dept of
Electrical Eng. and Computer Science.

Deneubourg, J.; Goss, S.; Franks, N.; Sendova-Franks, A.;
Detrain, C.; and Chretien, L. 1990. The dynamics of col-
lective sorting: robot-like ants and ant-like robots.Simula-
tion of Adaptive Behavior: from animals to animats.

Folk, C., and Ho, C.-M. 2001. Micro-actuators for con-
trol of delta wing with sharp leading edge. In39th AIAA
Aerospace Sciences Meeting and Exhibit.

Forrest, S., and Mitchell, M. 1993. What makes a problem
hard for a genetic algorithm?Machine Learning13:285–
319.

Fukuda, T., and Nakagawa, S. 1988. Approach to the dy-
namically reconfigurable robot systems.Journal of Intelli-
gent and Robotic Systems1:55–72.

Hall, S.; Crawley, E.; Howe, J.; and Ward, B. 1991. A hier-
archic control architecture for intelligent structures.Jour-
nal of Guidance, Control and Dynamics14(3):503–512.

Hogg; Bojinov; and Casal. 2000. Multiagent control of
self-reconfigurable robots. In4th International Conference
on Multi-Agent Systems.

Huzita, H., and Scimemi, B. 1989. The algebra of paper-
folding. In First International Meeting of Origami Science
and Technology.

Ingber, D. 1998. The architecture of life.Scientific Ameri-
can.

Knight, T., and Sussman, G. 1998. Cellular gate technol-
ogy. In Proceedings of the First International Conference
on Unconventional Models of Computation (UMC98).

Lang, R. J. 1996. A computational algorithm for origami
design. InAnnual Symposium on Computational Geome-
try.

Lynch, N. 1996. Distributed Algorithms. Wonderland:
Morgan Kaufmann Publishers.

Mataric, M. 1995. Issues and approaches in the design of
collective autonomous agents.Robotics and Autonomous
Systems16((2-4)):321–331.
Nagpal, R. 2001. Programmable Self-Assembly: Con-
structing Global Shape using Biologically-inspired Local
Interactions and Origami Mathematics. Ph.D. Disserta-
tion, MIT, Dept of Electrical Engineering and Computer
Science.
Nagpal, R. 2002. Programmable self-assembly using
biologically-inspired multiagent control. InAutonomous
Agents and Multiagent Systems (AAMAS).
Nusslein-Volhard, C. 1996. Gradients that organize em-
bryo development.Scientific American.
Odell, G.; Oster, G.; Alberch, P.; and Burnside, B. 1981.
The mechanical basis of morphogenesis: 1. epithelial fold-
ing and invagination.Developmental Biology85:446–462.
Pamecha; Ebert-Uphoff; and Chirikjian. 1997. Useful met-
rics for modular robot planning.IEEE Trans. on Robotics
and Automation13(4).
Pottie, G. J., and Kaiser, W. J. 1999. Wireless integrated
network sensors.Communications of the ACM43(5).
Resnick, M. 1994. Turtles, Termites and Traffic Jams.
Cambridge, MA: MIT Press.
Slack, J. 1991.From Egg to Embryo, second edition. U.K.:
Cambridge University Press.
Weiss, R.; Homsy, G.; and Knight, T. 1999. Toward in
vivo digital circuits. InDimacs Workshop on Evolution as
Computation.
Williams, B. C., and Nayak, P. P. 1996. Immobile robots:
AI in the new millennium.AI Magazine.
Wolpert, L. 1998.Principles of Development. U.K.: Ox-
ford University Press.
Yim, M.; Lamping, J.; Mao, E.; and Chase, J. G. 2000.
Rhombic dodecahedron shape for self-assembling robots.
Spl techreport p9710777, Xerox PARC.


