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Abstract 
We present initial results on achieving synthesis of complex 
software systems via a biophysics-emulating, dynamic self-
assembly scheme. This approach offers novel constructs for 
constructing large hierarchical software systems and reusing 
parts of them. Sets of software building blocks actively 
participate in the construction and subsequent modification 
of the larger-scale programs of which they are a part. The 
building blocks interact through a software analog of 
selective protein-protein bonding. Self-assembly generates 
hierarchical modules (including both data and executables); 
creates software execution pathways; and concurrently 
executes code via the formation and release of activity-
triggering bonds. Hierarchical structuring is enabled 
through encapsulants that isolate populations of building 
block binding sites. The encapsulated populations act as 
larger-scale building blocks for the next hierarchy level.  
Encapsulant populations are dynamic, as their contents can 
move in and out. Such movement changes the populations 
of interacting sites and also modifies the software execution. 
"External overrides", analogous to protein phosphorylation, 
temporarily switch off undesired subsets of behaviors (code 
execution, data access/modification) of other structures. 
This provides a novel abstraction mechanism for code reuse. 
We present an implemented example of dynamic self-
assembly and present several alternative strategies for 
specifying goals and guiding the self-assembly process. 

Self-assembling Software Background  
 Dynamic self-assembly is a ubiquitous process in non-
equilibrium physical and biological systems (Whitesides 
and Grzybowski, 2002). We are developing an approach to 
create artificial systems that dynamically self-assemble into 
hierarchical structures. We are interested more broadly in 
physical realizations of such processes and how 
computational capability emerges in biological systems. 
 As a first step, we are developing dynamically-self-
assembling software systems that are modeled after 
physical systems and physical self-assembly processes. 
This paper is our first report on this research direction. We 
have developed the infrastructure to allow software self-
assembly processes to occur, and provide an example of the 
use of this approach to self-assemble and modify software 
modules. 
 A central result here is that a variety of software self-
assembly processes become available by emulating 

physical self assembly. As we describe below, physics-
emulating self-assembly can generate data structures, 
multiple kinds of executable code structures, dynamic 
execution pathways, hierarchies of software modules, 
movement of modules within the hierarchy and triggers that 
execute or inhibit certain code structures. These processes 
can also dismantle any structure that has been assembled. 
 The concept of bonding is a central part of our approach.  
We translate the physical notions of bonding, as they occur 
in biology (i.e. strong covalent bonds and weak protein-
protein bonds), into software. Our “strong” software 
bonding mechanism directly builds long-lived software 
structures. These lead to software structures with parts that 
execute sequentially and deterministically. “Weak” 
bonding is a more active process that not only assembles 
executable software structures but also triggers their 
execution. The weakly-bonded structures and the code 
execution pathways associated with them are transient. 
Further, weak bonds can be used to interfere with the action 
of other bonding processes on the same structure. This type 
of override is analogous to protein phosphorylation. This 
provides functionality that is distinct from object-oriented 
inheritance as it allows removal of unwanted functionality 
from the “outside” of the existing software structure. This 
additional flexibility may be useful for enhancing software 
reuse. The detailed implementation of these ideas is 
described in a later section. 
 Weak bonding occurs at bonding sites. Each site allows 
at most one bond with another individual site at any time. 
These sites have numerical keys that only allow bonding 
with complementary sites. Thus, this bonding is a selective 
process as in biological and physical systems. The 
selectivity of bonding sites provides certain error-
prevention capability intrinsically and provides a general 
mechanism for self-assembly of desired structures and 
execution pathways. Matching bond sites can be thought of 
as having a virtual attraction, as weak bonds will readily 
form between them when they become available (by 
breaking existing bonds). 
 A natural property of this physics-emulating approach is 
the availability of concurrent non-deterministic execution 
pathways that can self-assemble. Here, populations of 
individual software structures self-assemble individual 
execution steps in single execution pathways or complex 
execution networks over time by making and breaking 
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weak bonds with each other. It is possible to completely 
“wire” together modules into an execution software process 
using only these flexible (but relatively slow) stochastic 
processes. Deterministic (faster but inflexible) execution 
can also be assembled, using structures that are strongly 
bonded, in which the order of the components in memory 
determine the execution sequence.  The ability to readily 
mix and modify both sequential deterministic execution 
processes and dynamic stochastic execution processes 
provides a novel flexibility to the software self-assembly 
processes. In fact, the executing self-assembling software 
alternates between these two mechanisms. Stochastic weak 
bonding and unbonding events trigger a set of deterministic 
actions within the associated structures, which in turn lead 
to more stochastic bond formation and release events. 
 Newly freed bonding sites become available for bonding 
with other free sites that have complementary key matches.  
If no matching sites are available, such sites passively 
“wait” until matching sites do become available for bond 
formation. The new bonds may activate dormant structures 
that contain these sites. In this way, execution pathways 
become alternately active and dormant, so that the physical 
order of such software components in memory becomes 
irrelevant to the execution behavior of the system. Software 
structures with free sites can act as passive (i.e. non-
polling) sensors for detecting complex situations that 
generate matching bonding sites. This is unlike the 
conventional conditional branching constructs such as IF 
and CASE, and is a software analog of hardware interrupts.  
We discuss this construct (called the “situation”) further 
below. 
 The hierarchical structure of the self-assembling 
software is enabled through an encapsulant structure. This 
is analogous to a cell wall. Encapsulants allow bonds to 
form only for pairs of sites that are within the same 
encapsulant. By limiting the population size of machines in 
any encapsulant, we prevent an O(N2) escalation of 
possible site-site interactions and help enforce scalability of 
the approach to large software systems. The encapsulants 
manage external interactions with other encapsulants 
through surface sites. These surface sites enable “transport” 
in and out of the encapsulant. Encapsulants can contain 
other encapsulants, allowing a hierarchical structure. 
Movement of machines and encapsulants in and out of  
other encapsulants changes the populations of sites that can 
form bonds within these encapsulants, and so directly  
modifies the internal software execution. 
 Our system intentionally resembles a stochastic physics  
or biology simulation (Ideker, Galitski, and Hood, 2001), 
in that the stochastic bonding and unbonding events are 
posted to a priority queue and assigned a future (virtual, not 
processor) “time” for execution that is used simply to 
provide an ordering to event execution. Despite the non-
physical nature of software modules, we subject them to 
several physics-emulating processes. Modules can be 
moved through the encapsulant hierarchy, machine parts 
can be assembled and eliminated dynamically, and 
machines and encapsulants can stick together and come 

apart dynamically. Machine proximity is used here as well, 
albeit in a graph-theory sense. The bonds between 
machines form graph edges, and we can use these graph 
edges to directly locate “nearby” machines. We use this in 
some cases to deterministically search for multiple 
matching sites between machines that have just formed a 
new weak bond. This allows groups of matching bonding 
sites on two machines to bond at essentially the same time, 
so as to behave like a single effective pair of larger scale 
bonding sites. 
 Multiple, concurrent threads of self-assembly and 
associated computation are automatically available in this 
approach. We note that the virtual event times can be used 
to provide execution priority to concurrent processes 
without the involvement of the operating system. Further, 
additional code for monitoring and querying the existing 
code can be introduced during execution. 
  This approach exhibits features that may prove useful for 
generating large software systems. First, self-assembly 
reduces the amount of minutia that must be provided by the 
software developer. The self-assembly processes take over 
some of the details that must be designed and coded. This 
may save development time. It may also reduce coding 
errors. The interactions between modules are self-
assembling, and are enforced to generate hierarchical 
structuring. Second, this approach enables novel 
programming constructs, e.g. the “situation”, the “external 
override” for software reuse, concurrent “stochastic” 
reconfigurable execution pathways, and the ability to 
modify and add monitoring capability to a preexisting 
machine as it executes. Third, the bonding selectivity 
enforces correct interactions between modules and data 
structures that may allow greater surety of the 
implementation. 
 The downside is that this system will pay an execution 
speed penalty. The impact on code size, compared to 
compiled code from a conventional language like C++, is 
unclear at present. 

System Infrastructure  

Overview 
 We call the low-level constructs of our approach 
“machines”. High-level “language” commands are used to 
clone populations of these machines (rather than be parsed 
and compiled into machine code). The machines are 
constructed from sequences of machine parts. High-level 
commands can also be used to combine a sequence of 
certain generic machine parts into a single (new) machine. 
The machine parts, in turn, have sites for bonding and 
optional executable code attached to them. 
 There are two part types: controls and actuators. 
Controls have only one bonding site. The controls are 
further categorized as activating or non-activating. An 
activating control must have its single site bonded in order 
for the machine it is in to become active (i.e. execute the 



code in the actuators). A non-activating control has a 
bonding site that does not activate the machine but is useful 
for other machines that must dock to or manipulate the 
machine. Controls may also be associated with data in a 
type of control called a “data store.”  A data store has all 
the features of a simple control and also points to a block 
of memory that is used for general-purpose data storage. 
The data-associated site keys of data stores can be used to 
enforce correct matching and usage, and give a form of unit 
checking (for example, it would enforce that meters are 
only added to other meters, and never added to, say, 
seconds).   It can also enforce the correct transfer and usage 
of complex data structures that are self-assembled. 
 Actuator parts each contain a “small” piece of execution 
code and execute sequentially (in the order that they exist 
in their machine). Actuators can have multiple bonding 
sites. Each actuator part in a machine may also be active or 
inactive depending on the bonding status of the sites in the 
part. An inactive actuator will halt execution of a machine, 
and this execution can resume when the actuator site forms 
the necessary bond (and all activating control bonds are 
still in place).  Actuators can also be internal to a machine, 
typically, to manipulate the data stores of its own machine.  
It that case, it has no sites exposed to other machines.  
Instead, it checks that its associated data stores are bonded, 
in order to activate data manipulation. 
 Both control and actuator parts are described by generic 
design data and execution code (analogous to a class 
definition in object oriented programming). One aspect of 
this design is whether the part makes bonds stochastically 
(by finding a match on the free-site list) or deterministically 
(through proximity).  Individual versions of these parts are 
instantiated into particular machines when these machines 
are created. 
 Encapsulants effectively create local environments in 
which collections of free bond sites can interact to form 
new bonds. Encapsulants in our approach are meant to 
resemble biological cell walls that isolate their internal 
contents from bonding interactions with external structures. 
Encapsulants can contain machines as well as other 
encapsulants (for hierarchical organization). They also 
contain “surface” machines that act as gates to move 
machines and other encapsulants in and out of the gate’s 
encapsulant. These surface machines manage all external 
interactions of the encapsulant, and allow it to act as a 
“machine” building block for structures and execution 
pathways at another (higher) hierarchy level. The 
encapsulant gates are analogous to membrane proteins in 
biological cells. Our encapsulants play some of the roles 
that “modules” or objects play in modern computer 
languages (McConnel, 1993; Watt, 1990). That is, they 
provide modularity and information hiding. In contrast to 
object modules, the contents of encapsulants are dynamic, 
with machines (containing data and executables) and other 
encapsulants being moved in and out during self-assembly 
and software execution. 
 The overall action of the system is to execute make-bond 
and break-bond events, and these then trigger the activation 

or deactivation of associated machines that can carry out 
deterministic behaviors. This system is thus event-driven, 
with the events consisting of stochastic bond formation and 
bond breaking. An event queue is maintained to efficiently 
post future events and to execute the events in 
chronological order. Free bonds are generally posted to a 
data structure, with sites arranged according to their site 
keys so that matching site pairs can be efficiently found. 
Bond formation triggers the execution of the machine(s) 
that contain the sites. Machines do not become active 
unless all of their activating controls have bonds. Machine 
actuators then can execute their code in the sequence that 
they occur in the machine if their sites are in the necessary 
bonding configuration. Execution stops at an actuator site 
that is not “ready” to execute. Each machine maintains its 
own “instruction pointer” to enable restart of the machine 
execution at the proper part when bonding conditions 
change externally to allow restart. We do not allow 
deterministic machines to execute arbitrary numbers of 
loops as this would prevent the stochastic actions from 
taking place. Instead, the number of deterministic repeats is 
constrained, and then the machine must relinquish control 
by posting a future activation event for itself on the priority 
queue. 
 The code executed by the actuator parts is typically the 
lowest level functionality that a language would provide. 
The complexity of the overall software comes from: the 
assembly of parts into machines; the stochastic assembly of 
machine execution sequences within encapsulants; and the 
hierarchical assembly and interaction of encapsulant 
execution structures. 

Novel Software Constructs  
 Situations are a generalization of the IF branching 
construct. Situations provide a mechanism for “sensing” 
whenever certain conditions or events occur by providing 
passive machines with empty bonds. These bonds 
correspond to the conditions of interest, and when all bonds 
are satisfied, the sensing machine is activated to report or 
trigger a desired response. Situation detection is 
asynchronous. It is also passive, in that no repeated active 
polling by the machine itself is required to detect the 
events. Situations can monitor the code structure itself. For 
example, the activity of other machines, their status 
(number of bonded and unbonded sites, active or dormant), 
their functionality, and the numbers and types of machines 
present in an encapsulant can all be determined 
automatically. 
 External overrides are a useful and novel construct that  
is enabled in our approach. The term “external” indicates 
that the code designer does not alter or remove the original 
source software that is being overridden. There are a 
variety of ways that the self-assembling software system 
can carry out external overrides, and they can be carried 
out at the encapsulant level or at the machine level. In all 
cases, additional generic override machines are introduced 
into the system (even to remove existing functionality). At 
the encapsulant level, existing machines can be skipped, 



made to wait for new conditions (not present in the original 
design), or to take part in alternative stochastic execution 
pathways not present originally. At the machine level, 
modified clones of the original machines can be self-
assembled. In this work we describe only the encapsulant-
level override process. These external overrides can be 
introduced into existing self-assembling software in “real-
time” while the existing software is being executed. 
 Monitoring and querying of self-assembling and 
executing software during runtime are special cases of the 
override and situation processes. These processes can be 
developed long after the software of interest has self-
assembled. Monitoring can be accomplished by inserting 
sensors into the stochastic execution pathway during 
execution and having them report on activity or on the data 
that are being manipulated. The functionality of the 
monitored machines is not affected during monitoring. 
However, the total execution time will clearly be altered by 
this monitoring process. 
 Runtime priority can be modified for various concurrent 
self-assembly processes. Processor allocation is often 
implemented at the operating system level. It is easy to 
allocate different amounts of processing time to concurrent 
processes here by varying the future (virtual) event times 
associated with each process. Those with short times will 
repeatedly activate more frequently. 

Implementation Details 
 We chose FORTH to implement our self-assembling 
software system. FORTH finds use both for developing 
embedded software applications (Napier, 1999) and 
Windows applications (Conklin and Rather, 2000). 
FORTH essentially lacks conventional language syntax. 
Our self-assembled software can execute without concern 
for syntax errors or keyword use restriction. FORTH 
permits the entry of executable code directly and allows 
code definitions to be deferred and redefined later. This 
allows the software to directly modify itself while running 
without the offline compilation step that would be required 
by a compiled language.  
 We implement the two types of software bonds as 
follows. Weak bonds (corresponding to protein-protein 
binding) are implemented by setting pointers of the 
bonding sites of two machines pointing to each other. 
Strong bonds are formed by placing items in contiguous 
memory locations and result in arrays of executable parts. 
This type of bonding is used to implement the machine 
structures with ordered parts that execute sequentially and 
deterministically.  Machines are “born” when they are 
instantiated. Multiple copies of a machine are readily 
cloned if needed. 
 Figure 1 illustrates the layout of machines, controls, and 
actuators in computer memory.  The machine is the left 
column: a set of consecutive memory cells, with eight 
controls (gray) and four actuators (white).  Each cell of the 
machine has the address of its control or actuator, which 
can be anywhere in memory.  The essential parts of the 
controls are shown: the key for its bonding site, and the  

Figure 1.  A schematic illustration of the data structure 
associating machines, controls, and actuators.  Refer to the text 
for details.   
 
type of control.  The control type contains code that 
executes when the control’s site makes or breaks a bond.  
The actuators shown are internal actuators, so rather than 
having keys, they have a pointer to their associated data 
stores.  They also have a pointer to the actuator type.  The 
actuator type contains code that handles not only make- and 
break-bond events, but also the actuator’s activation.  Any 
exterior actuators would look schematically like the 
controls of Figure 1. 
 We chose the calendar queue as the data structure for 
implementing our event priority queue (Brown, 1988) and 
also for the free-site data structures in each encapsulant. 
 An overview of the software execution is as follows: The 
next event (a make- or break-bond event) is pulled from the 
priority queue.  If it is a make-bond event, a weak bond is 
made between the two specified sites (that is, their “site-
bonded-to” pointers are set pointing to each other).  Each 
site’s make-bond event handler is executed.  These event 
handlers typically update the active state of the part, and 
any deterministically bonding parts on the two machines 
make additional bonds if their keys match. Then the 
machine logic for each machine is executed.  This checks if 
all activating controls are active, and if so, executes the 
actuators in sequence until either an actuator is not ready, 
or the end of the actuators is reached.  When a machine’s 
actuation is complete, it is “reset.”  It breaks all of its 
bonds.  The sites of stochastically bonding parts are 
matched against the free-site list.  If a matching site is 
found, a future make-bond event is posted to the priority 
queue.  If no match is found, the free site is put on the free-
site list to wait for a free matching site. 
 Actuators are the parts that perform software functions 
most programmers expect, such as reading or writing data,  
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Figure 2. Initially, the Account Balance, Withdrawal Manager, 
and Start Codon machines are available for making bonds.  A 
Withdrawal occurs, and many bonds with the Withdrawal 
Manager promptly form. 
 
or performing calculations or otherwise manipulating data.  
An actuator may also change the keys of its own machine’s 
sites, or those of the machine it is bonded to.   As described 
in the previous paragraph, when a machine is reset, its 
stochastically bonding sites are matched against the free 
sites.  If the machine’s actuators changed some of its site’s 
keys in one way, it will bond to a different machine, 
resulting in the execution of a different software function 
than if the actuators had changed the site’s keys in some 
other way.  In this way, actuators can influence the 
execution pathway of the self-assembled software. 
 If the event pulled from the priority queue was a break 
event, the bond between the two specified sites is broken 
(i.e., their “site-bonded-to” pointers are set to 0).  Each 
site’s break-bond event handler is executed.  These event 
handlers typically update the active state of the part (to set 
it inactive).  Since breaking a bond cannot make a machine 
go from inactive to active, there is no need to execute the 
machine logic for the two machines. 
 When the make- or break-bond processing is completed, 
the next event is pulled from the priority queue, and the 
process is repeated until there are no more events on the 
priority queue.  Alternatively, a “pause” event can be 
placed on the priority queue to temporarily pause 
execution.  Such an event may be used, for example,  to 
update a Windows display or output to a file at regular 
intervals.  
 We implemented a simple but general mechanism for 
overrides via machines that modify the keys of other 
machines. Altering a key to an unusual or “invalid” value 
prevents the associated site from forming any bonds. This 
allows bonding to be turned on and off externally. Altering 
keys also allows stochastic execution pathways to be 
altered. Machines can be added or removed from an 
execution path through the generation of “glue” machines 
that manage the key alterations. The appropriate sites for  

Figure 3.  When the Withdrawal bonds to the Withdrawal 
Manager, the Withdrawal Manager changes one of its keys from 0 
to –108.  A bond then forms between the Account Balance and 
the Withdrawal Manager.  The Withdrawal Manager subtracts the 
withdrawal amount from the balance, and updates the balance. 
 
modification can be found by the machines themselves, so 
that human designer intervention can be at a high level.  
 Sequential stochastic execution pathways can be 
implemented among machines in multiple ways. One 
method is to introduce a signal machine that bonds to a 
corresponding control site on the machines of interest. A 
sequencing machine can alter the key of this signal machine 
so that it triggers a series of machines to act in the desired 
order. Multiple pathways can be spawned by generating 
multiple signal machines at the same time. 
 A more direct method is to have an “output” site on one 
machine match an enabling control site on a second 
machine that is to execute after the first machine. The first 
machine site can hide its output site (the site key made an 
invalid value) until it is finished executing, then it can 
restore the necessary output site key. 

Steering the Self-Assembly Process 
 The ultimate goal is to cause self-assembling software to 
create data structures and behaviors that conform to the 
software designer’s requirements. There are a variety of 
potential mechanisms for accomplishing this. The simplest 
is to start with initial conditions – i.e. initial sets of 
machines – that are already known to self-assemble in ways 
that lead to desired types of results. One can design and 
verify that particular populations of machines will carry out 
frequently needed behaviors, and then create machine clone 
populations in an encapsulant with a single high level 
command word. Further, machines can be designed that 
implement common types of overriding modifications in 
the self-assembly process, and these override machine 
populations can similarly be introduced into existing 
encapsulants by high level words. By combining these high  
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Figure 4.  After completing the withdrawal transaction, the 
Withdrawal Manager changes the keys of the Withdrawal, so that 
it bonds with the Start Codon.  Then the Withdrawal Manager is 
ready to handle a new Withdrawal. 
 
level constructs, more complex behaviors can be 
assembled. Further, hierarchical structuring can be 
enforced by limiting the population size in any encapsulant, 
and automatically triggering the creation of additional 
encapsulants as machine population sizes exceed selected 
limits.  
 Another approach is to provide time-dependent steering 
by adding or taking away machines or by suppressing or 
overriding existing machines (again using high level words) 
at various times as self-assembly progresses. This breaks 
up the development into well defined stages. 
 Another category of steering involves evolutionary 
modification of machine properties and machine designs in 
populations of machines. This will be a subject of future 
work. 

Example: Bank Transaction 
 We present an example of the handling of savings 
account withdrawals, chosen for its simplicity to 
demonstrate our concepts and infrastructure.  We represent 
machines graphically by polygon shapes.  For example, the 
Withdrawal Manager in Figure 2 represents the machine 
data structure shown in Figure 1. The bonding sites and key 
values are tabs at the perimeter of the machine. The 
internal parts are omitted for clarity. When the sites of two 
machines touch, this represents a weak bond.  
 Initially (Figure 2), three machines are present, the 
Account Balance, the Withdrawal Manager, and the Start 
Codon.  The Account Balance holds the current balance for 
the account in a data store, the Withdrawal Manager 
subtracts the withdrawal amount from the current balance 
and updates the current balance.  The Start Codon acts as  

Figure 5.  The Key-Modification machine bonds to the 
Withdrawal Manager to modify its keys. Then the Verify 
Withdrawal machine inserts itself. 
 
the “head” of a “polymer” of completed transactions, which 
can be walked later by a Monthly Account Report machine.  
All of their stochastically bonding sites are posted on the 
free-site list. 
 When a Withdrawal occurs, its free sites post make-bond 
events with the Withdrawal Manager. When these make-
bond events are handled, the Withdrawal Manager’s 
actuators activate, changing its site with a key of 0 to –108.  
The –108 site now bonds with the Account Balance (Figure 
3).  Additional actuators in the Withdrawal Manager then 
activate, subtracting the withdrawal amount (in a data store 
of the Withdrawal machine) from the current balance (in a 
data store of the Account Balance machine), and saving the 
result back to the Account Balance machine. The 
Withdrawal Manager then changes several keys of the 
Withdrawal (Figure 4), so that (1) it will not bond again to 
the Withdrawal Manager (which would result in subtracting 
the same withdrawal again) and (2) it will bond to the Start 
Codon and leave a 105 site available for the next 
Withdrawal to bond to.  Lastly, the Withdrawal Manager 
sets its –108 key back to 0 and resets.  Now it is ready for 
another Withdrawal (Figure 4).  Note that the Withdrawal 
Manager changes its site keys to bond to the Account 
Balance only temporarily.  This leaves the Account 
Balance free to bond to other machines (such as a Deposit 
Manager or Interest Compounder) when needed. 
 After executing this code, we “realize” that a 
requirement was omitted: the system shall prevent the 
withdrawal of an amount exceeding the current balance.  
To accommodate this requirement, we implement an 
external override.  In essence, a machine inserts itself into 
the execution pathway before the Withdrawal Manager to 
check whether there are sufficient funds to complete the 
transaction. 
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Figure 6.  Now, when a Withdrawal occurs, the Verify 
Withdrawal machine bonds to it first. 
 
 A Key-Modification machine (Figure 5) modifies some 
of the keys of the Withdrawal Manager so that Withdrawals 
will no longer automatically bond with it.  Only the 100, 
106, and 107 sites of the Withdrawal make bonds 
stochastically.  Therefore only –100, –106, and –107 of the 
Withdrawal Manager need to be changed.  Once the Key-
Modification machine has done its job, it sets all of its own 
keys to 0. 
 When the Verify Withdrawal machine inserts itself, its 
keys are posted to the free-site list.  Now, when a 
Withdrawal occurs, it bonds with the Verify Withdrawal 
machine instead of the Withdrawal Manager (Figure 6). 
 The Verify Withdrawal actuators compare the 
withdrawal amount to the account balance.  If there are 
sufficient funds for the withdrawal, the Verify Withdrawal 
machine changes the keys of the Withdrawal (Figure 7) 
enabling bonding with the Withdrawal Manager, and the 
transaction proceeds as illustrated in Figures 2-4.  If there 
are insufficient funds, the Verify Withdrawal machine 
changes the keys of the Withdrawal to some other values, 
resulting in bonding with an Insufficient Funds machine 
instead (not shown). 
 Note that with our dynamic self-assembly approach, this 
new function was inserted into the existing program 
without (a) rewriting the original source code, (b) 
compiling an entire new program, or (c) shutting down the 
already running software. 
 Finally, when the Savings Account software module is 
completed, it is encapsulated.  Other banking functions are 
also encapsulated (Figure 8).  Each encapsulant has a Gate  
machine embedded in its surface, which selectively allows 
machines to enter, based on matching keys.  In the overall 
banking system, when a Withdrawal occurs, its key 
matches only the Gate of the Savings Account module, so it 
enters and undergoes the same process described above. 
 In our computational experiments, we have implemented 
all of the behaviors described here.  In addition we have 
implemented machine and encapsulant transport into and 
out of encapsulants executing concurrently with the above 
example.  

Figure 7.  If there are sufficient funds, the Verify Withdrawal 
machine changes the keys of the Withdrawal so that it bonds with 
the Withdrawal Manager, and the transaction proceeds as before.  
If there are insufficient funds, the Verify Withdrawal machine 
changes the keys of the Withdrawal so that it bonds with an 
Insufficient Funds machine (not shown). 

Future Directions  
 We are in the process of developing a language for 
steering self-assembling software for general-purpose 
applications. The language words will generate populations 
of machines and encapsulants that carry out the intent 
behind the high level words. Our infrastructure is designed 
enable the autonomous generation of encapsulants, 
machines, and keys that implement the desired execution 
paths, so that the software designer will not be required to 
specify detail at that level. For example, the external 
override described above would be programmed as 
“VERIFY balance > withdrawal BEFORE ALLOWING 
withdrawal.” The novel constructs of passive situation 
monitoring, external overrides for reuse, and correctness 
enforcement through selective bonding site keys will enable 
programming with a reduced burden of minutia 
specification. 
 An interesting extension of our approach is to add 
evolutionary processes into the self-assembly process. The 
ability to selectively override actions of an existing 
machine or module externally provides novel opportunities 
for “mutating” existing software structure in ways that are 
more likely to remain functional than random changes or 
recombinations of existing code. In particular, the 
stochastic execution pathways provide a mechanism for 
introducing new kinds of machines into an execution 
pathway that is very robust, and may require only the  
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Figure 8.  A schematic illustration of different encapsulants that 
might be in an overall banking application.  Each encapsulant has 
a Gate machine on its surface with a specific key.  The 
Withdrawal (upper left) will only enter the Savings Withdrawals 
module, because they have matching keys.  Similarly, auto loan 
payments would only pass into the Auto Loan module and Credit 
Card charges would only enter the Credit Cards module. 
 
automated reassignment of a few bonding site keys in the 
original machinery.  Further, the ability of the machines to 
self-monitor their performance means that ineffective 
modifications can be “backed out of” without necessarily 
destroying the machine. Populations of competing 
machines can readily be maintained, with winners 
achieving more access to processor time as described 
above. Apoptosis (programmed death) of machines within 
encapsulant populations provides for a finer tuning of 
evolved performance. Machines can monitor the activity of 
machines or machine parts within an encapsulant, and 
identify unused structures for elimination. It will be of 
interest to see if this eliminates the accumulation of 
“introns” in the software developed via such evolutionary 
processes (Banzhaf, Nordin, Keller, and Fancone, 1998). 
Evolving, self-assembling software promises to be a rich 
research topic that we will explore in considerable depth. 
 Another future direction for this research is to develop 
self-optimizing behaviors for the self-assembling software 
performance. One approach is to convert stochastic 
execution pathways directly into deterministic machinery. 
This will speed up the code execution at the cost of 
interfering with future external overrides at the module 
level. Such changes are reversible, so that any relative ratio 
of stochastic and deterministic pathways is achievable at 
any time. 
 In addition, we envision alternative data structures or 
algorithms, all appropriate for the same task (but each more 
effective for a different size of data set or a different 
distribution of data values) that can replace each other 
based on their monitoring of the overall execution and the 

available data set. On a larger scale, populations of similar 
machines/encapsulants with a distribution of operating 
parameters could be deployed for evolving an optimal 
population mix. 
 Again, we note that such optimizations can occur in 
“real-time” as the original code is executing. This could be 
convenient for high-consequence applications that cannot 
be frequently taken off-line. 
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