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Abstract 
A fundamental aspect of many evolutionary approaches to 
synthesis of complex systems is the need to compose atomic 
elements into useful higher-level building blocks. However, 
the ability of genetic algorithms to promote useful building 
blocks is based critically on genetic linkage – the 
assumption that functionally related alleles are also 
arranged compactly on the genome. In many practical 
problems, linkage is not known a priori or may change 
dynamically. Here we propose that the problems’ Hessian 
matrix reveals this linkage, and that an eigenstructure 
analysis of the Hessian provides a transformation of the 
problem to a space where first-order genetic linkage is 
optimal. Genetic algorithms that dynamically transform the 
problem space can operate much more efficiently. We 
demonstrate the proposed approach on a real-valued 
adaptation of Kaufmann’s NK landscapes. 

Introduction 
A fundamental aspect of many evolutionary approaches to 
synthesis of complex systems is the need to compose 
atomic elements into useful higher-level building blocks. 
This compositional process should continue recursively to 
generate increasingly complex modules from lower level 
components, until the desired solution is attained. The 
importance of discovery of partial building blocks was 
initially stresses by Holland (1975) in “The building block 
hypothesis” that described how Genetic Algorithms (GAs) 
work. GAs promote useful building blocks represented as 
schemata, and compose them though the process of 
crossover. As the Schema Theorem shows, however, the 
ability of GAs to promote useful building blocks is based 
critically on genetic linkage – the assumption that 
functionally related alleles are also arranged compactly on 
the genome. If genetic linkage is poor (i.e., there is little 
correlation between functional dependency and genetic 
proximity), then the crossover operator is more likely to 
break useful building blocks than it is likely to compose 
them. 

The effect of poor genetic linkage can be dramatic. Before 
proceeding to describe previous work and our proposed 
solution, we demonstrate the grave effect of poor linkage 
in Figure 1. The graph shows the best population fitness of 
a GA running on a hard test problem. The test problem 

consists of 16 real-valued dimensions, each of which is 
deceptive (gradients lead in the wrong direction), and 
contains significant coupling between the variables. The 
test problem will be described in detail later; for now, it is 
suffice to notice the difference in performance of the GA 
between the top curve, where the genome is ordered so that 
coupled variables are close to each other (tight linkage), 
versus the lower curve, where the genome is shuffled so 
that coupled variables are far from each other (poor 
linkage). In both these cases, diversity maintenance 
techniques were also used. Without diversity maintenance, 
the GA’s performance is inferior even to standard 
optimizers such as a well-tuned parallel simulated-
annealing optimizer and a parallel random mutation 
hillclimber (a basic gradient optimizer). A random search 
process is shown for reference. All methods perform equal 
number of samplings per generation. 
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Figure 1. Performance of a GA on a 16 dimensional problem with 
poor and tight linkage, with and without diversity maintenance. A 
parallel Simulated Annealing optimizer, a parallel hillclimber, 
and a random search are provided for comparison. All methods 
perform equal number of evaluations per generation. Error bars 
of one standard deviation based on 10 runs on the same problem. 

Since genetic linkage is not necessarily known in advance, 
and may change dynamically as solution progresses or as 
the problem varies, new evolutionary algorithms have been 
proposed that either change linkage dynamically, or that do 
not rely on genetic linkage at all (at an additional 
computational cost). Originally, Holland (1975) proposed 
an inversion operator that would reorder alleles on the 
genome, with the expectation that genomes with better 
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orderings (tighter genetic linkage) would gradually take 
over the population. However, this operator turned out to 
be too slow in practice. A variety of algorithms were 
proposed that do not assume linkage at all, and build up 
the genome from scratch starting with the founding 
building blocks. Goldberg et al (1989) developed the 
Messy GA that evolves partial solutions in which allele 
locations are moveable, and linkage can be adapted 
through combination and split operators. Genetic 
programming (Koza, 1989) combines building blocks in 
tree hierarchies, allowing arbitrary branches of solutions to 
be swapped and thereby permitting promotion of useful 
subcomponents without relying on linkage (although GP is 
usually applied to open-ended problems where linkage is 
not well defined anyway). More recently, Harik and 
Goldberg (1996) proposed a linkage learning genetic 
algorithm (LLGA) that intersperses alleles in the partial 
solutions with variable-sized gaps (introns) allowing the 
GA more control over linkage tightening and exchange of 
complete building blocks. A more recent version of this 
algorithm uses evolved start expressions to assist in the 
process of nucleation of tightly linked groups (Chen and 
Goldberg, 2002). Watson and Pollack (2002) also co-
evolve partial solutions, but use symbiotic completion and 
Pareto-dominance criteria to compare candidate 
subcomponents, and assemble full solutions from scratch 
without assuming linkage. The increased computational 
cost comes through the exploration of many compositional 
permutations offered by this formulation, but both of these 
approaches have been shown to be able to synthesize 
solutions to complex functions with multiple local optima, 
which traditional GAs and gradient optimizers cannot 
solve. 

Identifying linkage through the Hessian 
Here we propose an alternative way of identifying building 
blocks through dynamic eigenstructure analysis of the 
problem landscape’s Hessian matrix. The matrix H is 
defined by measuring the cross-correlation effect of the 
variation of each of the n variables xi on the variation 
effect of each other locus of the genome on the fitness 
function F(X). Essentially, the Hessian matrix determines 
the first-order functional dependencies between gene 
locations. The Hessian is defined as 
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By definition, it is a symmetric matrix. For example, if  

X=(x1, x2, x3, x4),  (2) 

and the fitness function to be optimized is 

F(X)=sin(2x1x3)+sin(3x2x4),  (3) 

then computing H and evaluating at X=0 would yield 



















=

0030
0002
3000
0200

H  (4) 

Highly coupled variable pairs are represented by large 
magnitude elements in H. Large, off-diagonal elements 
imply coupling between variables that are not adjacent on 
the genome; to improve linkage, variables can be 
rearranged so that coupled pairs are proximate on the 
genome, bringing their corresponding Hessian coefficient 
closer to the diagonal. Rearranging the order of parameters 
is equivalent to swapping rows and columns of H, 
effectively transforming by a permutation transformation. 
To bring the elements of H above closer to the diagonal 
(effectively tightening the genetic linkage), we can use the 
permutation matrix T, where 
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to yield a new Hessian H’,  
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and the improved genome ordering X’ 
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H’ above is as close as we can bring the non-zero elements 
to the diagonal by reordering, and the resulting genome 
ordering of Eq. (7) has indeed improved its linkage 
compared to the original ordering of Eq. (2). But is there a 
way to bring them even closer to the diagonal? 

Generalized genome reordering 
The optimal linkage ordering is not necessarily sequential. 
In the example above, the permutation matrix simply 
reorders elements on the genome. However, there might 
not be a perfect sequential ordering if variables are coupled 
in any way but a linear serial chain. For example, if three 
variables are coupled equally, there is no way to arrange 
them in linear progression so that all are equally close to 
each other (the first will be less proximate to the last than it 
is to the middle variable). Similarly, in the previous 
example of Eq. (3), x1 is coupled to x3 but not to x2, so the 
genome ordering provided in Eq. (7) is still not optimally 
tight, and that is why H’ is not exactly diagonal. 



However, since the permutation matrix is nothing but an 
orthogonal linear transformation, we can think of any 
reordering process as merely a linear transformation. Now, 
by allowing the transformation to have non-integer 
elements, we can allow for even more compact orderings. 
Essentially, the optimal transformation is the one that will 
bring all elements of the Hessian matrix exactly to the 
diagonal. We thus seek the optimal transformation T0 to a 
diagonal matrix λ: 

λ=00 HTT T  (8) 

Solving for T0 yields the Hessians’ eigenvectors1. Because 
the Hessian matrix is always symmetric, the eigenvectors 
have no imaginary component. In our example,  
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and 
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and the optimal genome ordering X0 is given by 
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To understand why the linkage-optimal vector X0 above 
has even less coupling than the compactly ordered vector 
X’={x3, x1, x2, x4} of Eq, (7), consider the following. A 
small positive mutation δ applied to x1, a gene of X’, will 
result in either an increase or decrease of the fitness 
function. Whether it will be an increase or a decrease 
depends on the sign of another gene, x3, thus there is still 
coupling between alleles on the genome. On the other 
hand, a small positive mutation in δ applied to <x1,x3> will 
always result in an increase in fitness, regardless of the 
states of other genes. Therefore, <x1,x3> is more suited to 
be a gene than any single variable. Similarly, a small 
positive mutation δ applied to the complementary vector 
<x1,-x3>, the second gene of X0, will do nothing to the 
fitness function, independent of the value of the other 
variables. These two thus genes span the search space 
much more effectively. 

                                                 
1 Assuming H≠0. If H is null, the landscape is linear or constant 
and no linkage problem exists. 

What can we learn from the eigenvalues? 
The eigenvalues λ hold the scaling factors of the new 
space, by which any variation operators can be calibrated; 
in our example, these are 2 and 3. Dividing the mutation 
operators, for example, by these factors would allow all 
blocks to be explored at the same resolution. 

Degenerate eigenvalues (two or more eigenvalues of the 
same magnitude) indicate a subspace of the landscape, 
spanned by the corresponding eigenvectors, where 
variables are uniformly coupled (or decoupled). For 
example, the fitness function of Eq. (3) has two degenerate 
sets, implying two such subspaces, the subspace spanned 
by x1 and x3 and the subspace spanned by x2 and x4. In a 
degenerate subspace the eigenvectors are not unique. 

Using transformations in a GA 
Based on the analysis above, we conclude that  

• The genome reordering is equivalent to a linear 
transformation of the fitness landscape, therefore, 

• There exists non-discrete genome orderings, and 

• The ordering that yields optimal genetic linkage at 
a point in the landscape is given by the 
eigenvectors of the Hessian at that point. 

Once a linkage-optimal ordering transformation has been 
determined by computing the eigenvectors of the Hessian 
of F(X), a GA can proceed regularly by evolving 
individuals hi, but evaluating F(T0hi), instead of directly 
F(hi). Many varieties of GAs, such as those incorporating 
partial solutions, learning, and sophisticated composition 
operators can easily be modified to use this formulation. 

Test function 
We tested the eigenvector reordering process on evolution 
of a solution to a multidimensional function of real 
variables, Z(X), that composes n base functions Ψ(x): 
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This function is a real-valued adaptation of Kauffman’s 
NK landscapes (1993). Kauffman defined a function with 
N bits, in which each bit’s fitness contribution depends 
arbitrarily on its K neighbors. NK landscapes thus have 
“tunable ruggedness” and are often used to test GAs. Here 



we defined a similar problem that uses real values instead 
of bits. First, we define a multimodal base function Ψ(x) 
with one global maximum at ci, and several smaller 
maxima, shown in Figure 2. The constants ci are each set 
arbitrarily. This base function is deceptive if the search 
space is larger than ±2π around ci, because then in most of 
the space the gradients lead to local optima. The function Z 
is a sum of the n single dimensional base functions; 
however the blocks are not separable: Each base function 
is evaluated at position bi, which is a mixing function of k 
elements of the argument vector X. The mixing is obtained 
through an array of coefficients aij, each set arbitrarily. 
Because of the mixing of order k, optimizing one 
dimension may (and usually does) lead to adverse effect in 
the other k-1 dimensions. Finally, the genome elements xi..n 
are shuffled so that variables that contribute to the same 
base function are maximally apart on the genome, so as to 
create the worst linkage. The function was defined so that 
it always has a single global optimum with the value n, and 
it occurs at X=A-1c (where A is a k-diagonal matrix with 
the elements of a on its diagonals, and X is the unshuffled 
vector). In our study, we generate the coefficients aij 
randomly with a uniform distribution in the range of ±1, 
and the coefficients ci with a uniform distribution in the 
range of ±8. These values were selected arbitrarily, and 
were not tuned. 
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1 

ci 

 
Figure 2. The base function Ψ(x) used to construct the test 
function. The full test function is a shuffled kth-order mixing of n 
base functions. 

Experimental Results 
We carried out a series of tests, with different setting of N 
and K. All problems have bad shuffling (poor linkage). In 
each experiment, we set the coefficients randomly, and 
then carried out several runs to collect average 
performance and standard deviation. We also ran a parallel 
hillclimber as a baseline control. 

In all experiments we used a GA with a diversity 
maintenance technique called ‘Deterministic Crowding’ 
(Mahfoud, 1996). Diversity maintenance is important to 
avoid premature convergence, in which case crossover 
operators would do little and the effect we wish to study 
would vanish. 

First, let us look closely at the effect of using a Hessian 
Eigenvector transformation. Figure 3 shows average 
performance of an Eigenvector GA on a problem with 
N=16 and K=4, for the first 500 generations. Population 

size is 100, and statistics are based on 20 runs. The 
transformation is re-computed numerically every 100 
generations, around the currently best solution, adding 1% 
evaluations. We will discuss the cost of this computation in 
the next section. The points of re-computation are marked 
with a vertical dashed line; note how the process ‘boosts’ 
its optimization rate at those intervals. 
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Figure 3. Performance of a GA on a shuffled real-valued NK 
landscape with N=16 and K=4. Reordering transformation is 
recomputed every 100 generations (at vertical dashed lines), and 
performance boosts are visible at those instances. Statistics are of 
20 runs. Eigenvector GA uses 1% more evaluations. 

Figure 4 shows the long-term behavior of the solver over 
3000 generations using the same parameter settings. Both 
average fitness of the population and best fitness in the 
population are shown. We see that the eigenvector GA has 
significantly outperformed the regular GA. The 
contribution of the eigentransformation has been exhausted 
after 500 generations or so. After that period, both 
algorithms progress at roughly the same rate. We 
hypothesize this point is where contribution of first-order 
(linear) linkage has been exhausted. All runs use the 
‘deterministic crowding’ diversity maintenance technique 
(Mahfoud, 1995). 

The performance boost provided by the 
eigentransformation becomes more significant as the 
problem becomes harder both in the number of parameters 
(N) and in the amount of coupling between the parameters 
(K). Figure 5 shows the performance of an Eigenvector 
GA on a problem with N=64 and K=8. Population size is 
100, and average and standard deviation is based on 10 
runs. At N=256 and K=16, and at N=1024 and K=32, we 
observed similar performance boosts. 

Computational Cost 
While we understand why and how the eigenstructure can 
resolve linkage, we still need to determine when in 
generational time and where in the landscape to compute 
it. The cost associated with our method is composed of two 
independent factors: Arithmetic cost, and evaluation cost.  
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Figure 4. Performance comparison on a shuffled real-valued NK 
landscape with N=16 and K=4. Reordering transformation is 
recomputed every 100 generations. Statistics are of 20 runs. 

The evaluation cost has to do with the increased number of 
evaluations needed to compute the Hessian. The arithmetic 
cost is the added computation associated with analyzing 
and using the Hessian. We discuss both costs here. 

Arithmetic cost 
Additional computational cost is incurred by the linear 
transformation and eigenstructure calculation. The 
transformation cost adds O(n2) arithmetic operations per 
evaluation and O(n2) arithmetic operations per Hessian 
calculation for computing derivatives from the samples, 
and computing the eigenvectors. Both of these are 
typically negligible compared to the cost of a single 
evaluation of hard practical problem. 
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Figure 5. Performance comparison on a shuffled real-
valued NK landscape with N=64 and K=8. Reordering 
transformation is recomputed every 200 generations. 
Statistics are of 10 runs. 

Evaluation cost 
The evaluation cost is especially critical because direct 
numerical calculation of the Hessian matrix involves 
approximately 2n2 samplings of the search space. If each 
individual is at a different location of the landscape, this 
may amount to 2n2p extra evaluations per generation, 
where p is the population size. This cost is prohibitive, and 
so more efficient schemes must be found.  

If linkage properties of the landscape are consistent over 
time, significantly fewer than n2p samplings are necessary. 
For example, the results shown in Figure 4 required only 
one Hessian calculation per 100 generation. Since for that 
problem n=16, this amounts to only 1% additional 
evaluations, and the advantage gained is well worth it. The 
number of evaluations grows as O(n2) but the interval at 
which Hessian-recalculation is required increases as well 
since propagation of building blocks is slower. 

If the linkage properties of the landscape are consistent 
over space, the Hessian does not need to be tracked for 
every individual. For the results shown in Figure 4 we 
recalculated the Hessian only around the currently best 
individual, but use it for all individuals in the diverse 
population. 

It is conceivable that a harder class of problems exists 
where linkage properties of the landscape change over 
time and over space. Prior work dealing with various 
forms of linkage learning and composition has typically 
assumed the linkage properties are fixed for the given 
problem. For such linkage-variable problems we might 
either spend more evaluations to track separate Hessian 
matrices for clusters of individuals, and also update them 
more frequently. Alternatively, we could extract Hessian 
information indirectly from the samplings already being 
done by the GA anyway.  



Indirect computation of the Hessian 
The Hessian can be computed indirectly from the GA 
samples using cross-correlation statistics. As described by 
the “Two-armed Bandit” problem (De Jong, 1975), there is 
a tradeoff between exploration and exploitation. Some 
samples of the search space can be used to learn properties 
of the landscape (exploration), while other samples are 
used to maximize the fitness function at promising areas 
(exploitation). However, with a linkage-learning algorithm 
as proposed here, it is possible to use all samples to extract 
linkage properties and thus enhance exploration without 
incurring additional function evaluations, assuming linkage 
properties are persistent. 

The key to indirect extraction of linkage information is the 
understanding that linkage can be learned just as efficiently 
even from individuals with low fitness. Consider, for 
example, a new individual in the population that is 
generated through crossover and yields a low fitness. In a 
traditional GA, this new individual is likely to be removed 
from the population. The information gained by that 
experiment is mostly lost: Although the frequency of the 
genes that made up that new composition has gone down, 
there was no recording of the bad functionality correlation 
that has been exposed by that composition. A linkage-
learning algorithm, however, uses this information. Even 
when a new individual has low fitness, its fitness exposes 
important linkage properties that are critical to efficient 
composition of new, more successful individuals in the 
future. 

Estimating the Hessian through least squares 
One way to gather linkage properties from arbitrary, 
unstructured samplings of the search space is through 
least-squares fitting to a linkage modeling function. For 
example, assume a two dimensional landscape F(x1,x2) can 
be described very roughly by the conic section equation 
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The linkage coefficient we are interested in is the 
magnitude of parameter b with respect to parameters a and 
c. These parameters reveal how the landscape is influenced 
by the combination (x1x2). Note that the function is not 
used to model the landscape for direct optimization; that is, 
we do not proceed to compute the optimum of F, because 
there is no guarantee whatsoever that the landscape is of 
degree 2 (in fact, if it was then much more efficient 
optimization techniques could be used). Instead, we only 
use it to probe how variables are dependent on each other, 
by fitting a conic surface to a small patch of the landscape. 
A landscape with n parameters will have (n+1)(n+2)/2 
coefficients, and so O(n2) samplings will be needed to 
determine the coefficients through least squares modeling. 
Direct computation of the Hessian also requires O(n2) 
samplings, and so the new formulation is not a 
improvement in terms of the number of evaluations. 

However, the direct computation method required 
structured samplings on a grid, whereas the new 
formulation can use an unstructured pattern of samples, 
and can therefore use samples performed anyway by the 
GA in course of its normal operation.  

The quality of the ‘linkage probe’ degrades as the 
sampling radius δ increases, just like direct numerical 
computation of the Hessian degrades with O(δ2) according 
to Taylor expansion around the center point (δ≈0.1 for the 
test function described in this paper). It is therefore 
necessary to use samples that are within small region with 
respect to nonlinearities in the function. In a diverse set of 
samples this can be done by clustering samples into 
groups, at the cost of additional cluster management. 

Higher-level compositions 
Direct eigenstructure transformation resolves first order 
linkage, but more elaborate, non-linear transformations 
may resolve higher order linkage. We say a linkage is first 
order when the linkage between two variables does not 
depend on any other, third variable. If it does, we would 
have a second order linkage. Higher order linkage effects 
can be identified using Kronecker tensor products of 
partial derivatives of arbitrary orders. High eigenvalues of 
these tensors indicates a strong high-order dependency that 
can be resolved through a nonlinear transformation. These 
higher order transformations are again provided by 
(nonlinear) eigenstructure analysis of tensors (Lipson and 
Siegelmann, 2000). In many ways, the approach proposed 
here is akin to support vector machine (SVM) methods 
(Cristianini and Shawe-Taylor, 2000) that transform the 
space so that data classes are linearly separable. Here, we 
use kernels (polynomial or other) that transform the search 
space so that linkage is optimal (linear).  

Conclusions 
Performance of genetic algorithms is critically based on 
both diversity maintenance and genetic linkage. Here we 
propose that linear transformations can effectively be used 
to reorder the genome, and that the linkage-optimal 
transformation can be found through Eigenstructure 
analysis of the landscape’s Hessian matrix. In a series of 
experiments using a highly coupled, nonlinear, deceptive 
and shuffled function, we show how the presented 
algorithm produces significantly superior performance, at 
relatively low additional computational cost. 

We also postulate that a new class of problems exists 
which is harder for GAs. These are problems where 
linkage properties of the landscape change over time and 
across the landscape. We define these problems as having 
high-order linkage. For such problems, linkage can be 
measured dynamically using statistical probes that use 



existing evaluations. We further suggest that kernel 
methods that are traditionally used in machine learning to 
transform coupled problems into linearly separable 
problems, can be brought to bear on evolutionary 
computation to decompose high-order linkage into linkage 
optimal. 
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