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Abstract 
 
We propose that many problems in robotics arise from the 
difficulty of integrating multiple representation and 
inference techniques.  These include problems involved in 
planning and reasoning using noisy sensor information 
from a changing world, symbol grounding and data fusion.  
We describe an architecture that integrates multiple 
reasoning, planning, sensation and mobility techniques by 
composing them from strategies of managing mental 
simulations.  Since simulations are conducted by modules 
that include high-level artificial intelligence representation 
techniques as well as robotic techniques for sensation and 
reactive mobility, cognition, perception and action are 
continually integrated.  Our work designing a robot based 
on this architecture demonstrates that high-level cognition 
can make robot behavior more intelligent and flexible and 
improve human-robot interaction. 

Many problems in robotics are 
fundamentally integration problems. 

 
We propose that many problems in designing intelligent 
autonomous robots arise from the difficulty of combining 
multiple representation and inference techniques into one 
robot that can construct and maintain rich, coherent and 
dynamic models of its environment.  These include the 
problems involved in data fusion, symbol grounding and 
flexibly combining reasoning, planning, perception and 
action. 

The data fusion problem involves integrating 
information from multiple sensors into a coherent model 
of the environment.  For example, when sensor A in a 
robot detects an object and sensor B in the same robot 
detects an object, the robot must determine whether the 
two sensors are detecting the same or different objects.  
Since each class of sensor information has its own best 
representation, sensor fusion is in part a problem of 
combining multiple representation schemes.  Since the 
decision about whether information from two sensors is 

about the same object can depend on world knowledge 
(e.g., that objects of a particular category are too slow to 
have moved from sensor A’s range to sensor B’s range in 
so short a time) that is often best represented using 
artificial intelligence reasoning techniques, robust sensor 
fusion also requires the integration of sensor information 
with traditional AI representations. 

Some researchers (e.g., Harnad, 1990) have had 
difficulty understanding how symbols manipulated by 
traditional artificial intelligence algorithms can have any 
relation to objects, events and relations in the 
environment that are perceived through sensors yielding 
data in very different representations.  This “symbol 
grounding” problem is fundamentally a problem of 
integrating different sorts of (“perceptual” and 
“symbolic”) representations. 

A third problem in robotics involves the difficulty of 
using traditional artificial intelligence reasoning 
techniques to plan a robot's behavior using noisy 
information from a changing world that can invalidate a 
plan during the interval between its formulation and 
execution.  Although one would like every step of a 
robot's reasoning and planning to be able to adapt to 
changing sensor information, the most effective reasoning 
and planning techniques use data structures and 
algorithms that are very different from and not obviously 
reconcilable with the most effective perceptual and motor 
techniques.  It is not at all clear, for example, how to 
tightly integrate a STRIPS (Fikes & Nilson, 1971) planner 
with a Bayesian object localizer and a reactive obstacle 
avoidance system. 

Behavior-based and reactive (e.g., Brooks, 1991 and 
Agre & Chapman, 1990) robotics researchers have 
reacted to this difficulty by dispensing with algorithms 
that are based on constructing and manipulating internal 
representations that are not closely (in time and space) 
tied to what is being immediately sensed.  Since there is 
no "old" information and the robot never needs to pause 
to perform computations on internal representations, these 
systems appear to have the virtue of always taking the 
most relevant action given the current information.   A 



major problem with these approaches is that so much of 
what determines the correct action for a robot to take 
involves the environment in past or future, occluded, 
spatially distant and/or hypothetical situations that cannot 
be immediately sensed.  For example, the future 
consequences of an action (i.e., the future state of the 
hypothetical world in which that action is taken) help 
determine whether a robot should take that action.  For 
tasks or environments with all but the most minimal 
complexity, one cannot anticipate all possible classes of 
sensor readings and precompile an appropriate reaction 
for each situation.  Thus, representation-free approaches 
are severely limited by the complexity of the 
environments they can deal with and the tasks they can 
achieve. 

 Since so many problems in robotics involve the 
integration of multiple representation and inference 
techniques, we have developed a robotic architecture that 
supports the combination of these techniques.  The 
architecture, which we call Polybot, is based on the 
Polyscheme cognitive architecture (Cassimatis, 2002) for 
solving integration problems in artificial intelligence and 
cognitive science generally.   Polyscheme differs from 
traditional cognitive architectures based on one or a few 
data structures by enabling inference based on multiple 
data structures.  Polyscheme differs from the many multi-
agent system architectures that encapsulate specialized 
algorithms in modules by enabling every step of every 
algorithm to be executed using multiple representations 
and be potentially assisted by every other algorithm. 

The next two sections explain how Polybot composes 
reasoning and planning techniques from cognitive science 
and artificial intelligence research by sequences of mental 
simulations.  Since Polybot enables these sequences of 
simulations to be interleaved and since a particular 
simulation can be part of the execution of more than one 
algorithm, multiple reasoning and planning algorithms are 
easily integrated.  Since each simulation is conducted 
using multiple representations, spanning the continuum 
from low-level perception and mobility techniques to 
higher-level knowledge representation schemes, 
reasoning and planning in Polybot are continuously 
integrated with perception, action and multiple knowledge 
representation schemes.  The final section gives a brief 
overview of the initial results we have achieved with this 
approach in object tracking and human-robot interaction 
tasks. 

An architecture for integrating multiple 
representation and inference techniques 

through the control of mental simulations 

 
Polyscheme is motivated by the view that the difficulty of 
achieving the benefits of both high-level reasoning and 
planning and behavior-based and reactive systems is a 
problem of combining different representation and 

inference techniques into one system.  In using 
Polyscheme to design Polybot, we aimed to create an 
architecture that could engage in reasoning and planning 
that is at every step responsive and adaptive to 
information from (potentially noisy) sensors and changes 
in the world. 

Polyscheme’s fundamental approach to this problem is 
to implement and execute reasoning and planning 
algorithms using mental simulations that are based on 
perceptual and reactive representations as well as 
traditional artificial intelligence representations.  
Polyscheme takes "reactive" components that typically 
choose their actions only with reference to the currently 
sensed state of the world, and allows them to "react to" 
represented or simulated states of the world.  Using 
strategies for choosing which simulations to run (i.e., 
what time, place or hypothetical world to simulate), 
Polyscheme implements high-level AI algorithms by 
executing mental simulations.  Because simulations are 
composed in part of reactive and perceptual 
subcomponents, reasoning is constantly and thoroughly 
integrated with perception and action.  We now describe 
how these ideas are realized in Polybot. 

Polyscheme encapsulates mobility and perception 
techniques in specialists. 
Polyscheme encapsulates the functionality of robot 
perception and mobility techniques in modules called 
specialists.  Because our experience has shown that 
multiple techniques for mobility and perception are 
useful, specialists may use any algorithm or data structure 
to implement their functionality.  For example, Polybot 
includes a specialist that identifies the location and 
category of objects using color segmentation (Rehrmann 
& Priese, 1998).  All of the inferences and actions in 
Polyscheme are executed by specialists.  The rest of the 
Polyscheme architecture is aimed at coordinating and 
sharing information among specialists. 

Specialists communicate using a representation-
neutral language based on a common ontology. 
Specialists must share information in order to perform 
their functions.  For example, a mobility specialist will 
need information from a perception specialist in order to 
avoid obstacles.  In order for specialists to be able to 
communicate such information, all Polyscheme specialists 
use the same common language to communicate 
information.  Because the language is only used for 
communication and not computation, we focused on a 
simple, though expressive, propositional language.  
Specialists in Polyscheme must be able to translate 
between their internal data structures to this propositional 
language.  In order for these specialists to communicate, 
the language must adhere to a standard known to all 
specialists.  For example, an object recognition specialist 
indicates that a cone is at location p at time, now, with the 
propositions Location(o,p,now), xOf(p,3.4,now), 



yOf(p,4.2,now), and Category(o,Cone,now).  If 
other specialists are to use this information (e.g., a 
mobility specialist that knows to avoid cones), then they 
must share predicates such as Location, xOf, yOf and 
Category and understand the units of distance and time 
used in their arguments.  Specialists are not committed to 
using these units and these predicates in their own internal 
computations or even using representations based on 
predicates on objects.  They must simply be able to 
translate between this representation and their own 
internal representation.  By separating the representation 
used for communication from the representation used for 
inference, we achieve the benefits of a common ontology 
without the rigidity often associated with such knowledge 
representation schemes. 

Specialists implement a common set of functions 
used to share information. 
Specialists each implement a common set of functions 
that Polyscheme uses to coordinate information flow and 
behavior.  By standardizing this set of functions and by 
using the common propositional language described in the 
last subsection, specialists do not need to take into 
account the implementation details of other specialists 
and Polyscheme can be extended with new specialists 
more easily. These functions are as follows: 

 
•  ReportOpinion(prop,otherSpecialist,tv).  A 

specialist learns that otherSpecialist believes that 
the proposition, prop, has truth value tv. 

•  StanceOn(prop).  Returns the truth value the 
specialist believes prop has. 

•  RequestedFoci().  Returns a set of propositions that 
the specialist would like to focus on. These include, but 
are not limited to, propositions that the specialists 
wants to assert as being true or false and subgoals (i.e. 
propositions whose truth values would help the 
specialist take a more accurate stance on another 
proposition.) 

•  Groundings( prop ).  Returns a set of closed 
propositions that ground the open (i.e., its arguments 
have open variables) proposition, prop. 
 

Specialists must alert the system to changes in 
their beliefs. 
Because robotic sensors are noisy and because they 
generally yield incomplete information about the 
environment (because of limited sensor ranges and 
occluders), Polyscheme's specialists will at least 
occasionally change their stance on a proposition.  When 
this occurs, it is important that other specialists are 
notified of this so that they do not continue to make 
inferences and take actions based on bad information.  A 
specialist’s RequestedFoci() function must therefore 
include among its assertions stances on propositions on 
which it has revised its beliefs. 

Specialists must be able simulate non-immediate 
states. 
Since robots’ actions and inferences often depend on past, 
future, distant and/or hypothetical situations, specialists in 
Polyscheme must be able to react not just to the 
immediately sensed state of the world, but some 
representation (described in the next subsection) of past, 
future, distant, invisible or hypothetical states.  We call 
any state, event, region, or situation that is not currently 
sensed (because it is distant, occluded, hypothetical at 
another time and/or at another place) non-immediate.  To 
represent non-immediate situations, Polyscheme’s 
ontology includes temporal intervals and hypothetical 
worlds.  The last two arguments of every proposition 
input to and output from specialists are, respectively, a 
time and world argument.  For example, the proposition 
that object, o, is located at point p, in hypothetical world, 
w, at time t is indicated: Location(o,p,t,w).  In the 
next subsection we discuss how Polyscheme represents 
non-immediate states. 

Specialists simulate non-immediate states using 
multiple representations. 
If specialists must react to non-immediate states of the 
world, then there must be some representation of those 
states that is different from the current state of the robot’s 
sensors.  There must be a memory for past events, 
properties of objects and relations between them; there 
must be a way to represent future and hypothetical states 
so their desirability can be evaluated and it must be 
possible to represent distant or occluded parts of the 
environment.  Because different representational 
techniques are most appropriate for different aspects of 
the world (for example temporal constraint graphs for 
temporal intervals, spatial maps for object locations) 
Polybot includes multiple specialists that encapsulate 
representations for different aspects of the world.  
Representations that have already been implemented 
include spatial maps, temporal constraint graphs, scripts 
and directed graphs. 

Given that robots must represent non-immediate states, 
how do they decide what the truth is about those states?  
There are several mechanisms for accomplishing this.   
Memory is a mechanism for deciding what was true in the 
past.  Causal rules, constraint satisfaction algorithms, and 
dynamic simulation can predict what is true in future 
and/or hypothetical states.   They can also decide what is 
happening in occluded regions of the environment, for 
example when the causal rule specialist predicts that in 
the absence of an obstacle or external force, a ball rolling 
behind an occluding object will continue to exist and roll 
behind the occluder even though the ball and its motion 
are not detected at that moment by the robot’s sensors.  
We use Minsky’s (1986) term simulus to refer to the input 
to specialists from a simulated world. 

 Although inferential specialists use high-level AI 
algorithms, the way they interface with the rest of the 



system has a reactive character because they implement 
the same specialist functions as reactive specialists.  For 
example, Polyscheme’s category hierarchy specialist 
learns new information about an object through its 
ReportOpinions() function, “reacts” to it by using its 
own internal data structures and algorithms to make 
inferences about the category membership of the object, 
and uses the RequestedFoci() function inform other 
specialists of these. 

Figure 1 illustrates how several “high-level” artificial 
intelligence algorithms take on a reactive character when 
encapsulated in specialists.   

 
 

Simulus 
Representation/ 

Algorithm 
Action 

Sensors [None for reactive 
systems] 

Action 

Cause Causal Rules / Rule 
matching 

Assert effect 

Input layers Neural Networks / 
Network propagation 

Output layer 

Object 
category 
information 

Category hierarchies/ 
Graph walking 

Assert other 
categories the 
object belongs to 

Two 
temporal 
intervals 

Temporal intervals / 
Constraint propagation 

Assert the possible 
constraints 
between the two 
intervals 

 
Figure 1.  Reactions to simuli in multiple representations. 
 

Specialists must focus their attention. 
All specialists in Polyscheme react to the same 

proposition at the same time.  There are two reasons for 
this.  First, a surprisingly large number of specialists are 
relevant to any particular proposition.  For example, when 
inferring whether a falling object will continue to fall, a 
causal specialist will predict that it will do so if the region 
underneath the object is empty, the perceptual specialist 
might be able to see whether there is a supporting object, 
the object location specialist might be able to remember if 
there was a support, etc.  Second, if a specialist acts on an 
inferred or perceived proposition before checking other 
specialists’ stances on it, the specialist might be acting on 
incorrect information that can lead to harmful mistakes or 
at best require a time-consuming retraction of incorrect 
actions and inferences.   

For these reasons, at every time step in Polyscheme, 
specialists focus on the same proposition.  Once a 
proposition, P, is chosen (as described in the next 
section), the following sequence occurs: 

 

•  Polyscheme calls StanceOn(P) for each specialist to 
determine the consensus truth value of all the specialists 
on P. 

•  For each specialist, Polyscheme calls the function 
ReportOpinion(P,specialist,tv) to report 
specialists’ truth values for P to each other. 

•  Polyscheme calls RequestedFoci() to get 
propositions the specialists would like to focus on soon. 
 
The chief form of communication among specialists in 

Polyscheme is through the focus of attention.  Through 
functions such as StanceOn(), ReportOpinions(), 
Groundings() and  RequestedFoci(), specialists 
communicate information to and request information from 
each other.  When a proposition becomes the focus of 
attention, each specialist learns the other specialists’ 
opinions of its truth and has an opportunity to ask 
questions that flow from or assert propositions that follow 
from the focal proposition. 

Specialists must quickly react to the focus. 
Because the environment can change quickly or because 
new sensor information may become available at any 
moment, specialists must quickly execute functions such 
as StanceOn() and ReportOpinion() so that the 
specialist can constantly focus on and make inferences 
with the newest information.  This is an important 
component of Polyscheme’s solution to the problem of 
inferences and plans that are invalidated before they are 
completed or executed. 

Simulations result from the focused attention of 
specialists. 
One result of the architectural principles discussed in this 
section is that Polyscheme’s specialists collectively 
perform a kind of simulation.  When Polyscheme focuses 
on a particular time and world, the architecture forces all 
specialists to focus on that time and world.  The sum 
effect of this attention will be that specialists will make 
inferences about that world and therefore elaborate 
Polyscheme’s representation of it.  Since some of these 
inferences will involve the consequences of states and 
events in this world, Polyscheme will focus on subsequent 
times in the same world.  The result is that specialists will 
perform a dynamic simulation of that world. 

Focus schemes guide simulation. 
Nonrepresentational robotic systems must constantly 
(implicitly or explicitly) make a choice, “Where do I look 
now?”, because sensors are inherently directed towards a 
local region of space.  Even sensors which uniformly 
monitor the region surrounding a robot can be directed to 
another region by the robot’s motion.  For Polybot, the 
number of choices is even greater because specialists can 
focus on many possible simulated worlds in addition to 
the immediate world itself. 

As indicated in the previous subsection, when 
Polyscheme specialists focus on a proposition, they ask 
for a set of propositions to focus on through their 



RequestedFoci() function.  Polyscheme’s focus 
manager chooses from these requests (based on their level 
of urgency (as indicated by the specialist) and several 
other factors).  If the proposition is open or 
“ungrounded”, i.e., if it contains an open variable, the 
focus manager chooses a proposition that grounds the 
proposition.  Once the focal proposition is chosen, 
Polyscheme calls the various specialist functions as 
indicated in the last subsection. 

Polyscheme thus continuously chooses a proposition to 
focus on, allows specialists to communicate about and 
make inferences about this proposition and then chooses 
the next proposition to focus on based on specialists’ 
requests.     Through their ability to request Polybot to 
focus on a proposition, specialists can influence the flow 
of attention and hence computation.  We call different 
strategies for guiding attention focus schemes.   We have 
already encountered one focus scheme implemented by 
all specialists: 

 

Resimulation focus scheme.  When a specialist infers 
that a proposition P has a truth value that is the 
opposite of the truth value it returned during the last 
call of StanceOn(P), include P in the return set of 
RequestedFoci()the next time that function is 
called.  Less formally, when a specialist changes its 
stance on P, it should request that P be focused on 
again. 
 
Another example is the prediction focus scheme.  It is 

tells Polybot to simulate the results of an action before 
executing it: 

 

Prediction Focus Scheme.  When the motor 
specialist is about to take an action, A, simulate 
Occurs(A,t,w) where t is the next time step and w 
is the hypothetical world in which A is taken at time 
t. 
 
When the system focuses on Occurs(A,t,w), all of 

the specialists in the system will infer what else is true in 
that world, i.e., what the consequences are of the action A, 
and request that these consequences be focused on 
through their RequestedFoci() function.  If w is a 
world that contains damage or harm, the motion specialist 
will not execute A.  

Algorithms are implemented by strategies for 
choosing simulations. 

 
The most fundamental point of this paper is that many 
“high-level” artificial intelligence algorithms can be 
implemented by focus schemes for choosing simulations 
that Polyscheme’s specialists execute.  We illustrate this 

by showing how to implement backtracking search with 
the counterfactual simulation focus scheme. 

 

Counterfactual Simulation.  When uncertain about 
A’s truth value (because of a lack of information or 
because of conflicting information), simulate the 
world in which A is true and the world in which A is 
false. 
 
If when simulating one of these worlds, say where A is 

true, one of the specialists infers a fact that contradicts 
what is already known for certain, then the world where A 
is true is contradictory and hence A can be inferred to be 
false in the real world. 

Consider the case where Polybot is uncertain of two 
propositions, A and B.  In the simulated world in which A 
is true, there is still uncertainty about B.   Thus the 
counterfactual simulation focus scheme still applies and 
imagines the world in which A and B are true and the 
world in which A and not-B are true.  When one of these 
leads to a contradiction, that world is not simulated any 
longer.  Thus, the counterfactual simulating focus scheme 
can lead to nested simulations which effectively 
implement backtracking search.   

 
 

Algorithm Focus scheme that 
implements it 

Case-based reasoning Memory-based simulations 
Prediction Forward simulation 
Counterfactual reasoning Counterfactual simulation 
Backtracking search (nested) Counterfactual 

simulation. 
Backward chaining/Theorem 
proving 

Antecedent simulation 

Truth maintenance Resimulation 
Bayesian inference Stochastic simulation 

 
Figure 2. Inference algorithms and the focus schemes 
simulations that implement them. 

 
 
Figure 2 lists several focus schemes that implement 

important artificial intelligence algorithms.  The 
resimulation focus scheme of the last section implements 
a form of truth maintenance since the result of focusing 
on a proposition whose truth value has changed will be to 
resimulate events and states the proposition relates to and 
hence change incorrect inferences based on the initial 
false belief.  Cassimatis (2003) has shown that the 
antecedent simulation (roughly, “when P implies Q and 
you want to know Q, simulate the world where P is true”) 
implements a form of resolution theorem proving.  The 
stochastic simulation focus scheme (“when P has 
probability m/(m+n), simulate the world where P is true m 
times and the world where P is false n times) implements 
an approximate form of Bayesian inference that has been 



used widely by the uncertain reasoning community.  
Finally, memory-based simulation (“when G is a goal, 
simulate in the current situation actions you have 
previously taken that have achieved goals similar to G”) 
implements a form of case-based reasoning. 

 
 

Figure 3.  Polybot’s view of a scenario in which it adapts 
a plan to new sensor information while it is being 
executed. 

 

Combining mental simulations resolves many 
integration issues in robotics. 

 
Now that we have described Polyscheme’s approach to 
supporting multiple representation and inference schemes, 
we discuss how this helps resolve many problems in 
robotics.  We do so by presenting an example, illustrated 
in Figure 3, which will illustrate several of this paper’s 
themes.   

An extended example 
In 3A, Polybot observes one of two visible carts roll 
behind some boxes.  Polybot’s task is to go to the cart.  In 

3B, Polybot sees a cart move out from behind the boxes 
and assumes that it is the cart it is tracking.  As Polybot 
moves towards the cart in 3C, it notices that behind the 
boxes there is an obstacle that the cart could not have 
moved through and therefore assumes that the cart it sees 
is in fact not the cart it is tracking and moves towards the 
last place it saw the cart go.  Figure 4 traces Polybot’s 
focus during this scenario. 

The following subsections use this example to illustrate 
how using Polyscheme to combine multiple 
representation and inference techniques helps resolve 
many of the problems surrounding building flexible 
robots that can engage in high-level reasoning. 

Simulations are a medium for integrating 
multiple representations. 
The example shows that sharing information between 
different representations is fairly straightforward in 
Polyscheme.  Each specialist has its own representation 
and can translate back and forth between it and the 
representation-neutral language used to encode the focus.  
For example, during step 9, the perception specialist 
perceives that p2 is flat and encodes that in its own 
perceptual representation, returns true as a stance and 
the other specialists learn of this through their 
ReportOpinion() function.  One of these specialists is 
the causal specialist which encodes that p2 is flat in its 
causal rule language.  Thus, through the focus of attention 
and the representation-neutral language, specialists can 
share information easily. 

In this context, symbol grounding is less puzzling.  The 
causal rule specialist can manipulate symbols representing 
flatness without fear of losing touch with “physical 
reality” because each simulation it performs combines 
(through the focus of attention) information from sensors 
and information from the rule specialist.  This is made 
possible because of the representation-neutral language 
the specialists share.  

Combining simulations combines algorithms. 
In this example, Polybot executes three different 
algorithms: prediction, backtracking (path) search and 
truth maintenance.  Each is composed of several foci.  
Prediction is composed of foci 5-7 and 11-13, back 
tracking search is composed of 6, 9 and 10 and truth 
maintenance is composed of 9-13.  Note that each 
algorithm’s foci overlap with the others.  This overlap or 
sharing of foci is a key to combination of algorithms in 
Polyscheme.  When, for example, Polybot focuses on 
Flat(p2,E,R) in step 9, the specialists’ inferences about 
whether that proposition is true are shared by both the 
search and truth-maintenance algorithms.  In general, 
since algorithms implemented by focus schemes are 
merely composed of foci, the data they operate on resides 
in the specialists which make inferences on the foci.  
Since foci can be shared by any algorithm, sharing 
information between these algorithms is simple.  

A 

B 

C 



 
 
 

 
 
 

 Focus Simulation Algorithm Explanation 
1 … Immediate  Perception specialist observes the cart move from behind the boxes ( 

Location(cart1,p1,t1,R) and Category(cart1,Cart,t1,R)) and 
then observes a cart come out from behind the boxes 
(Location(cart2,p3,t3,R) and Category(cart2,Cart,t3,R)). 

2 Category 

(cart2,cart, 

t1,R) 

Immediate   Identity hypothesis specialist’s neural network infers that 
Same(cart1,cart2,E,R) and requests focus for that proposition. 

 
3 

Same 

(cart1,cart2, 

E,R) 

Immediate   The difference specialist detects a difference in the location of tracked 
cart, infers an change event and requests for a focus on Exists(d,E,R), 
Category(d,ChangeEvent,E,R), etc. 

4 Category 

(d,Change,E,R) 

Recent  Prediction The causal rule specialist infers that since p1 and p3 are not adjacent 
points, there must be an intermediate point, P, that cart1 visited and that P 
must be flat because carts cannot roll over non-flat surfaces.  

5 Flat(P,t2,R) Recent Prediction The space specialist infers that there P might be the intermediate point 
and requests for a focus on Same(p2,P,w), where w is the world where 
p2 and P are the same. 

6 Same(p2,P,E,R) Immediate  
Hypothetical 

Prediction, 
Search 

The tracking specialist infers that since the location cart1 is now at P 
that the system should move there. 

7 … Future 
Hypothetical 

Prediction The prediction focus scheme simulates that motion and finds no problems. 
(This takes several steps.) 

8 … Immediate   While moving towards that location, the perception specialist sees p2 for 
the first time and sees that is flat. 

9 Flat(P,t2,R) Current 
Hypothetical 

Search, 
Truth 
maintenance 

The difference specialist notices the difference between Flat(P) and not 
Flat(P2). Since p2 is certainly flat, and P is certainly not flat, then the 
difference specialist assumes that in fact Same(p,p2,E,R) is false and 
requests focus for that proposition because of the resimulation focus 
scheme. 

10 Same(p2,P,E,w) Hypothetical Truth 
maintenance, 
Search 

The space specialist cannot find any other places that P might be equal to 
and thus assumes it does not exist and request focus for Exist(P,E,R). 

11 Exists(P,E,R) Immediate 
 

Truth 
maintenance, 
Prediction 

Since no intermediate point exists, the causal rules specialist retracts the 
existence of the event that implies it and request focus on it because of 
resimulation. 

12 Exists(d,E,R) Past Truth 
maintenance, 
Prediction 

Since delta is retracted, the identity of Same(cart1,cart2,t2,E,w) is 
retracted 

13 Same 

(cart1,cart2, 

E,R) 

Immediate Truth 
maintenance, 
Prediction 

Thus, cart1 and cart2 are different and cart1 is still behind the box on 
the left.  

14 … Immediate  Motion specialist initiates movement in that direction. 
 
Figure 4. A trace of Polybot’s focus. 
 

Simulations integrate reasoning, planning, 
perception and action. 
Inference algorithms are composed of sequences of 
simulations executed by specialists.  Since these 
specialists include specialists for perception and mobility, 
the combination of high-level and low-level 
computational techniques is constant in Polybot.  For 
instance, the focus in step 9 of the example is part of a 
path search.  The focus, Flat(p2,E,R), is perceived to 

be false and modifies the course of the path search.  This 
is a simple example of a system’s sensors being able to 
influence the course of a high-level artificial intelligence 
algorithm as it is being executed. 

Reasoning and planning with information from 
noisy sensors in a dynamic world. 
Three features of this approach greatly reduce the tension 
between the flexibility of representation-free, reactive 
systems and the power of high-level artificial intelligence 



algorithms.  First, since algorithms are composed by 
simulations executed by specialists and because these 
specialists include perceptual specialists, every step of 
inference is always being checked against new sensor 
information.  Thus, revisions in sensor readings or 
changes in the world will be detected immediately.  
Second, because each specialist is obligated to 
immediately broadcast these changes to the rest of the 
specialists as soon as they occur, inference can be 
adjusted immediately.  Finally, because algorithms are 
composed of reactions that are required to follow quickly 
from simuli, there is no long lag between the formulation 
and execution of a plan during which the plan can become 
invalidated by changes in the world. 

In the example above, as soon as Polybot’s initial 
assumption that P is flat is seen to be false in step 9, that 
change is broadcast to the rest of the system and search is 
immediately altered.  The revision does not need to wait 
until the end of prediction and truth maintenance in step 
13 for it to influence inference. 

Results and Conclusion 

 
Although Polybot is a relatively new project, we have 
been able to demonstrate many of the benefits discussed 
in this paper in object tracking and human-robot 
interaction tasks.  This work has been based on several 
specialist we implemented, including those for perception 
(which uses CMVison), movement (a reactive planner), 
temporal constraints (Allen’s (1983) temporal intervals), 
spatial location (cognitive maps), change events, 
causation (production rules), ontology (category 
heterarchy), uncertainty, perspective and object identity 
(neural networks). 

In our object tracking work, Polybot has been able to 
improve upon a statistically-based object tracker by using 
common sense reasoning about what kinds of actions a 
particular category of object is capable of.  Our existing 
vision system could only track an object when there was 
an overlap between its pixels on one image and those in 
the subsequent image.  By incorporating in high-level 
reasoning about what kinds of paths objects could take 
(e.g., carts could only roll over a flat surface whereas 
people would move over rougher terrain) we were able to 
track objects that became occluded over longer distances 
and periods of time. 

In our human-robot interaction work, Polybot has been 
able to improve upon previous work on an object 
reference tasks by using its ability to simulate the world 
from a person’s perspective in order to more accurately 
understand and predict his actions.  We created a task in 
which a human would use language to refer to an object 
and it was the robot’s task to go to that object.  Since 
there were many instances of the same object (e.g., many 
cones) in the room and since humans could see objects 
that the robots could not, and visa versa, many of the 
human’s utterances were ambiguous when taken literally.  

By using Polybot’s simulation abilities, robots were able 
to take the perspective of the human in the task and 
significantly improve the accuracy of their understanding. 

We believe that these results are a first step toward 
demonstrating that this approach towards integrating 
multiple algorithms and representations enables a 
significant reduction in the tension between using 
sophisticated reasoning and knowledge representation 
techniques in robots that can flexibly react to new sensor 
information and to changes in the environment. 
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