
Integrating Cognition, Perception and

Action through Mental Simulation in Robots

Nicholas L. Cassimatis, J. Gregory Trafton, Alan C. Schultz, Magdalena D. Bugajska

Naval Research Laboratory
Codes 5513, 5515

4555 Overlook Avenue SW
Washington, DC 20375-5337

{cassimatis, trafton}@itd.nrl.navy.mil, {schultz, magda}@aic.nrl.navy.mil

Abstract

We propose that many problems in robotics arise from the
difficulty of integrating multiple representation and
inference techniques. These include problems involved in
planning and reasoning using noisy sensor information
from a changing world, symbol grounding and data fusion.
We describe an architecture that integrates multiple
reasoning, planning, sensation and mobility techniques by
composing them from strategies of managing mental
simulations. Since simulations are conducted by modules
that include high-level artificial intelligence representation
techniques as well as robotic techniques for sensation and
reactive mobility, cognition, perception and action are
continually integrated. Our work designing a robot based
on this architecture demonstrates that high-level cognition
can make robot behavior more intelligent and flexible and
improve human-robot interaction.

Many problems in robotics are
fundamentally integration problems.

We propose that many problems in designing intelligent
autonomous robots arise from the difficulty of combining
multiple representation and inference techniques into one
robot that can construct and maintain rich, coherent and
dynamic models of its environment. These include the
problems involved in data fusion, symbol grounding and
flexibly combining reasoning, planning, perception and
action.

The data fusion problem involves integrating
information from multiple sensors into a coherent model
of the environment. For example, when sensor A in a
robot detects an object and sensor B in the same robot
detects an object, the robot must determine whether the
two sensors are detecting the same or different objects.
Since each class of sensor information has its own best
representation, sensor fusion is in part a problem of
combining multiple representation schemes. Since the
decision about whether information from two sensors is

about the same object can depend on world knowledge
(e.g., that objects of a particular category are too slow to
have moved from sensor A’s range to sensor B’s range in
so short a time) that is often best represented using
artificial intelligence reasoning techniques, robust sensor
fusion also requires the integration of sensor information
with traditional AI representations.

Some researchers (e.g., Harnad, 1990) have had
difficulty understanding how symbols manipulated by
traditional artificial intelligence algorithms can have any
relation to objects, events and relations in the
environment that are perceived through sensors yielding
data in very different representations. This “symbol
grounding” problem is fundamentally a problem of
integrating different sorts of (“perceptual” and
“symbolic”) representations.

A third problem in robotics involves the difficulty of
using traditional artificial intelligence reasoning
techniques to plan a robot's behavior using noisy
information from a changing world that can invalidate a
plan during the interval between its formulation and
execution. Although one would like every step of a
robot's reasoning and planning to be able to adapt to
changing sensor information, the most effective reasoning
and planning techniques use data structures and
algorithms that are very different from and not obviously
reconcilable with the most effective perceptual and motor
techniques. It is not at all clear, for example, how to
tightly integrate a STRIPS (Fikes & Nilson, 1971) planner
with a Bayesian object localizer and a reactive obstacle
avoidance system.

Behavior-based and reactive (e.g., Brooks, 1991 and
Agre & Chapman, 1990) robotics researchers have
reacted to this difficulty by dispensing with algorithms
that are based on constructing and manipulating internal
representations that are not closely (in time and space)
tied to what is being immediately sensed. Since there is
no "old" information and the robot never needs to pause
to perform computations on internal representations, these
systems appear to have the virtue of always taking the
most relevant action given the current information. A

major problem with these approaches is that so much of
what determines the correct action for a robot to take
involves the environment in past or future, occluded,
spatially distant and/or hypothetical situations that cannot
be immediately sensed. For example, the future
consequences of an action (i.e., the future state of the
hypothetical world in which that action is taken) help
determine whether a robot should take that action. For
tasks or environments with all but the most minimal
complexity, one cannot anticipate all possible classes of
sensor readings and precompile an appropriate reaction
for each situation. Thus, representation-free approaches
are severely limited by the complexity of the
environments they can deal with and the tasks they can
achieve.

 Since so many problems in robotics involve the
integration of multiple representation and inference
techniques, we have developed a robotic architecture that
supports the combination of these techniques. The
architecture, which we call Polybot, is based on the
Polyscheme cognitive architecture (Cassimatis, 2002) for
solving integration problems in artificial intelligence and
cognitive science generally. Polyscheme differs from
traditional cognitive architectures based on one or a few
data structures by enabling inference based on multiple
data structures. Polyscheme differs from the many multi-
agent system architectures that encapsulate specialized
algorithms in modules by enabling every step of every
algorithm to be executed using multiple representations
and be potentially assisted by every other algorithm.

The next two sections explain how Polybot composes
reasoning and planning techniques from cognitive science
and artificial intelligence research by sequences of mental
simulations. Since Polybot enables these sequences of
simulations to be interleaved and since a particular
simulation can be part of the execution of more than one
algorithm, multiple reasoning and planning algorithms are
easily integrated. Since each simulation is conducted
using multiple representations, spanning the continuum
from low-level perception and mobility techniques to
higher-level knowledge representation schemes,
reasoning and planning in Polybot are continuously
integrated with perception, action and multiple knowledge
representation schemes. The final section gives a brief
overview of the initial results we have achieved with this
approach in object tracking and human-robot interaction
tasks.

An architecture for integrating multiple
representation and inference techniques

through the control of mental simulations

Polyscheme is motivated by the view that the difficulty of
achieving the benefits of both high-level reasoning and
planning and behavior-based and reactive systems is a
problem of combining different representation and

inference techniques into one system. In using
Polyscheme to design Polybot, we aimed to create an
architecture that could engage in reasoning and planning
that is at every step responsive and adaptive to
information from (potentially noisy) sensors and changes
in the world.

Polyscheme’s fundamental approach to this problem is
to implement and execute reasoning and planning
algorithms using mental simulations that are based on
perceptual and reactive representations as well as
traditional artificial intelligence representations.
Polyscheme takes "reactive" components that typically
choose their actions only with reference to the currently
sensed state of the world, and allows them to "react to"
represented or simulated states of the world. Using
strategies for choosing which simulations to run (i.e.,
what time, place or hypothetical world to simulate),
Polyscheme implements high-level AI algorithms by
executing mental simulations. Because simulations are
composed in part of reactive and perceptual
subcomponents, reasoning is constantly and thoroughly
integrated with perception and action. We now describe
how these ideas are realized in Polybot.

Polyscheme encapsulates mobility and perception
techniques in specialists.
Polyscheme encapsulates the functionality of robot
perception and mobility techniques in modules called
specialists. Because our experience has shown that
multiple techniques for mobility and perception are
useful, specialists may use any algorithm or data structure
to implement their functionality. For example, Polybot
includes a specialist that identifies the location and
category of objects using color segmentation (Rehrmann
& Priese, 1998). All of the inferences and actions in
Polyscheme are executed by specialists. The rest of the
Polyscheme architecture is aimed at coordinating and
sharing information among specialists.

Specialists communicate using a representation-
neutral language based on a common ontology.
Specialists must share information in order to perform
their functions. For example, a mobility specialist will
need information from a perception specialist in order to
avoid obstacles. In order for specialists to be able to
communicate such information, all Polyscheme specialists
use the same common language to communicate
information. Because the language is only used for
communication and not computation, we focused on a
simple, though expressive, propositional language.
Specialists in Polyscheme must be able to translate
between their internal data structures to this propositional
language. In order for these specialists to communicate,
the language must adhere to a standard known to all
specialists. For example, an object recognition specialist
indicates that a cone is at location p at time, now, with the
propositions Location(o,p,now), xOf(p,3.4,now),

yOf(p,4.2,now), and Category(o,Cone,now). If
other specialists are to use this information (e.g., a
mobility specialist that knows to avoid cones), then they
must share predicates such as Location, xOf, yOf and
Category and understand the units of distance and time
used in their arguments. Specialists are not committed to
using these units and these predicates in their own internal
computations or even using representations based on
predicates on objects. They must simply be able to
translate between this representation and their own
internal representation. By separating the representation
used for communication from the representation used for
inference, we achieve the benefits of a common ontology
without the rigidity often associated with such knowledge
representation schemes.

Specialists implement a common set of functions
used to share information.
Specialists each implement a common set of functions
that Polyscheme uses to coordinate information flow and
behavior. By standardizing this set of functions and by
using the common propositional language described in the
last subsection, specialists do not need to take into
account the implementation details of other specialists
and Polyscheme can be extended with new specialists
more easily. These functions are as follows:

• ReportOpinion(prop,otherSpecialist,tv). A

specialist learns that otherSpecialist believes that
the proposition, prop, has truth value tv.

• StanceOn(prop). Returns the truth value the
specialist believes prop has.

• RequestedFoci(). Returns a set of propositions that
the specialist would like to focus on. These include, but
are not limited to, propositions that the specialists
wants to assert as being true or false and subgoals (i.e.
propositions whose truth values would help the
specialist take a more accurate stance on another
proposition.)

• Groundings(prop). Returns a set of closed
propositions that ground the open (i.e., its arguments
have open variables) proposition, prop.

Specialists must alert the system to changes in
their beliefs.
Because robotic sensors are noisy and because they
generally yield incomplete information about the
environment (because of limited sensor ranges and
occluders), Polyscheme's specialists will at least
occasionally change their stance on a proposition. When
this occurs, it is important that other specialists are
notified of this so that they do not continue to make
inferences and take actions based on bad information. A
specialist’s RequestedFoci() function must therefore
include among its assertions stances on propositions on
which it has revised its beliefs.

Specialists must be able simulate non-immediate
states.
Since robots’ actions and inferences often depend on past,
future, distant and/or hypothetical situations, specialists in
Polyscheme must be able to react not just to the
immediately sensed state of the world, but some
representation (described in the next subsection) of past,
future, distant, invisible or hypothetical states. We call
any state, event, region, or situation that is not currently
sensed (because it is distant, occluded, hypothetical at
another time and/or at another place) non-immediate. To
represent non-immediate situations, Polyscheme’s
ontology includes temporal intervals and hypothetical
worlds. The last two arguments of every proposition
input to and output from specialists are, respectively, a
time and world argument. For example, the proposition
that object, o, is located at point p, in hypothetical world,
w, at time t is indicated: Location(o,p,t,w). In the
next subsection we discuss how Polyscheme represents
non-immediate states.

Specialists simulate non-immediate states using
multiple representations.
If specialists must react to non-immediate states of the
world, then there must be some representation of those
states that is different from the current state of the robot’s
sensors. There must be a memory for past events,
properties of objects and relations between them; there
must be a way to represent future and hypothetical states
so their desirability can be evaluated and it must be
possible to represent distant or occluded parts of the
environment. Because different representational
techniques are most appropriate for different aspects of
the world (for example temporal constraint graphs for
temporal intervals, spatial maps for object locations)
Polybot includes multiple specialists that encapsulate
representations for different aspects of the world.
Representations that have already been implemented
include spatial maps, temporal constraint graphs, scripts
and directed graphs.

Given that robots must represent non-immediate states,
how do they decide what the truth is about those states?
There are several mechanisms for accomplishing this.
Memory is a mechanism for deciding what was true in the
past. Causal rules, constraint satisfaction algorithms, and
dynamic simulation can predict what is true in future
and/or hypothetical states. They can also decide what is
happening in occluded regions of the environment, for
example when the causal rule specialist predicts that in
the absence of an obstacle or external force, a ball rolling
behind an occluding object will continue to exist and roll
behind the occluder even though the ball and its motion
are not detected at that moment by the robot’s sensors.
We use Minsky’s (1986) term simulus to refer to the input
to specialists from a simulated world.

 Although inferential specialists use high-level AI
algorithms, the way they interface with the rest of the

system has a reactive character because they implement
the same specialist functions as reactive specialists. For
example, Polyscheme’s category hierarchy specialist
learns new information about an object through its
ReportOpinions() function, “reacts” to it by using its
own internal data structures and algorithms to make
inferences about the category membership of the object,
and uses the RequestedFoci() function inform other
specialists of these.

Figure 1 illustrates how several “high-level” artificial
intelligence algorithms take on a reactive character when
encapsulated in specialists.

Simulus
Representation/

Algorithm
Action

Sensors [None for reactive
systems]

Action

Cause Causal Rules / Rule
matching

Assert effect

Input layers Neural Networks /
Network propagation

Output layer

Object
category
information

Category hierarchies/
Graph walking

Assert other
categories the
object belongs to

Two
temporal
intervals

Temporal intervals /
Constraint propagation

Assert the possible
constraints
between the two
intervals

Figure 1. Reactions to simuli in multiple representations.

Specialists must focus their attention.
All specialists in Polyscheme react to the same

proposition at the same time. There are two reasons for
this. First, a surprisingly large number of specialists are
relevant to any particular proposition. For example, when
inferring whether a falling object will continue to fall, a
causal specialist will predict that it will do so if the region
underneath the object is empty, the perceptual specialist
might be able to see whether there is a supporting object,
the object location specialist might be able to remember if
there was a support, etc. Second, if a specialist acts on an
inferred or perceived proposition before checking other
specialists’ stances on it, the specialist might be acting on
incorrect information that can lead to harmful mistakes or
at best require a time-consuming retraction of incorrect
actions and inferences.

For these reasons, at every time step in Polyscheme,
specialists focus on the same proposition. Once a
proposition, P, is chosen (as described in the next
section), the following sequence occurs:

• Polyscheme calls StanceOn(P) for each specialist to
determine the consensus truth value of all the specialists
on P.

• For each specialist, Polyscheme calls the function
ReportOpinion(P,specialist,tv) to report
specialists’ truth values for P to each other.

• Polyscheme calls RequestedFoci() to get
propositions the specialists would like to focus on soon.

The chief form of communication among specialists in

Polyscheme is through the focus of attention. Through
functions such as StanceOn(), ReportOpinions(),
Groundings() and RequestedFoci(), specialists
communicate information to and request information from
each other. When a proposition becomes the focus of
attention, each specialist learns the other specialists’
opinions of its truth and has an opportunity to ask
questions that flow from or assert propositions that follow
from the focal proposition.

Specialists must quickly react to the focus.
Because the environment can change quickly or because
new sensor information may become available at any
moment, specialists must quickly execute functions such
as StanceOn() and ReportOpinion() so that the
specialist can constantly focus on and make inferences
with the newest information. This is an important
component of Polyscheme’s solution to the problem of
inferences and plans that are invalidated before they are
completed or executed.

Simulations result from the focused attention of
specialists.
One result of the architectural principles discussed in this
section is that Polyscheme’s specialists collectively
perform a kind of simulation. When Polyscheme focuses
on a particular time and world, the architecture forces all
specialists to focus on that time and world. The sum
effect of this attention will be that specialists will make
inferences about that world and therefore elaborate
Polyscheme’s representation of it. Since some of these
inferences will involve the consequences of states and
events in this world, Polyscheme will focus on subsequent
times in the same world. The result is that specialists will
perform a dynamic simulation of that world.

Focus schemes guide simulation.
Nonrepresentational robotic systems must constantly
(implicitly or explicitly) make a choice, “Where do I look
now?”, because sensors are inherently directed towards a
local region of space. Even sensors which uniformly
monitor the region surrounding a robot can be directed to
another region by the robot’s motion. For Polybot, the
number of choices is even greater because specialists can
focus on many possible simulated worlds in addition to
the immediate world itself.

As indicated in the previous subsection, when
Polyscheme specialists focus on a proposition, they ask
for a set of propositions to focus on through their

RequestedFoci() function. Polyscheme’s focus
manager chooses from these requests (based on their level
of urgency (as indicated by the specialist) and several
other factors). If the proposition is open or
“ungrounded”, i.e., if it contains an open variable, the
focus manager chooses a proposition that grounds the
proposition. Once the focal proposition is chosen,
Polyscheme calls the various specialist functions as
indicated in the last subsection.

Polyscheme thus continuously chooses a proposition to
focus on, allows specialists to communicate about and
make inferences about this proposition and then chooses
the next proposition to focus on based on specialists’
requests. Through their ability to request Polybot to
focus on a proposition, specialists can influence the flow
of attention and hence computation. We call different
strategies for guiding attention focus schemes. We have
already encountered one focus scheme implemented by
all specialists:

Resimulation focus scheme. When a specialist infers
that a proposition P has a truth value that is the
opposite of the truth value it returned during the last
call of StanceOn(P), include P in the return set of
RequestedFoci()the next time that function is
called. Less formally, when a specialist changes its
stance on P, it should request that P be focused on
again.

Another example is the prediction focus scheme. It is

tells Polybot to simulate the results of an action before
executing it:

Prediction Focus Scheme. When the motor
specialist is about to take an action, A, simulate
Occurs(A,t,w) where t is the next time step and w
is the hypothetical world in which A is taken at time
t.

When the system focuses on Occurs(A,t,w), all of

the specialists in the system will infer what else is true in
that world, i.e., what the consequences are of the action A,
and request that these consequences be focused on
through their RequestedFoci() function. If w is a
world that contains damage or harm, the motion specialist
will not execute A.

Algorithms are implemented by strategies for
choosing simulations.

The most fundamental point of this paper is that many
“high-level” artificial intelligence algorithms can be
implemented by focus schemes for choosing simulations
that Polyscheme’s specialists execute. We illustrate this

by showing how to implement backtracking search with
the counterfactual simulation focus scheme.

Counterfactual Simulation. When uncertain about
A’s truth value (because of a lack of information or
because of conflicting information), simulate the
world in which A is true and the world in which A is
false.

If when simulating one of these worlds, say where A is

true, one of the specialists infers a fact that contradicts
what is already known for certain, then the world where A
is true is contradictory and hence A can be inferred to be
false in the real world.

Consider the case where Polybot is uncertain of two
propositions, A and B. In the simulated world in which A
is true, there is still uncertainty about B. Thus the
counterfactual simulation focus scheme still applies and
imagines the world in which A and B are true and the
world in which A and not-B are true. When one of these
leads to a contradiction, that world is not simulated any
longer. Thus, the counterfactual simulating focus scheme
can lead to nested simulations which effectively
implement backtracking search.

Algorithm Focus scheme that
implements it

Case-based reasoning Memory-based simulations
Prediction Forward simulation
Counterfactual reasoning Counterfactual simulation
Backtracking search (nested) Counterfactual

simulation.
Backward chaining/Theorem
proving

Antecedent simulation

Truth maintenance Resimulation
Bayesian inference Stochastic simulation

Figure 2. Inference algorithms and the focus schemes
simulations that implement them.

Figure 2 lists several focus schemes that implement

important artificial intelligence algorithms. The
resimulation focus scheme of the last section implements
a form of truth maintenance since the result of focusing
on a proposition whose truth value has changed will be to
resimulate events and states the proposition relates to and
hence change incorrect inferences based on the initial
false belief. Cassimatis (2003) has shown that the
antecedent simulation (roughly, “when P implies Q and
you want to know Q, simulate the world where P is true”)
implements a form of resolution theorem proving. The
stochastic simulation focus scheme (“when P has
probability m/(m+n), simulate the world where P is true m
times and the world where P is false n times) implements
an approximate form of Bayesian inference that has been

used widely by the uncertain reasoning community.
Finally, memory-based simulation (“when G is a goal,
simulate in the current situation actions you have
previously taken that have achieved goals similar to G”)
implements a form of case-based reasoning.

Figure 3. Polybot’s view of a scenario in which it adapts
a plan to new sensor information while it is being
executed.

Combining mental simulations resolves many
integration issues in robotics.

Now that we have described Polyscheme’s approach to
supporting multiple representation and inference schemes,
we discuss how this helps resolve many problems in
robotics. We do so by presenting an example, illustrated
in Figure 3, which will illustrate several of this paper’s
themes.

An extended example
In 3A, Polybot observes one of two visible carts roll
behind some boxes. Polybot’s task is to go to the cart. In

3B, Polybot sees a cart move out from behind the boxes
and assumes that it is the cart it is tracking. As Polybot
moves towards the cart in 3C, it notices that behind the
boxes there is an obstacle that the cart could not have
moved through and therefore assumes that the cart it sees
is in fact not the cart it is tracking and moves towards the
last place it saw the cart go. Figure 4 traces Polybot’s
focus during this scenario.

The following subsections use this example to illustrate
how using Polyscheme to combine multiple
representation and inference techniques helps resolve
many of the problems surrounding building flexible
robots that can engage in high-level reasoning.

Simulations are a medium for integrating
multiple representations.
The example shows that sharing information between
different representations is fairly straightforward in
Polyscheme. Each specialist has its own representation
and can translate back and forth between it and the
representation-neutral language used to encode the focus.
For example, during step 9, the perception specialist
perceives that p2 is flat and encodes that in its own
perceptual representation, returns true as a stance and
the other specialists learn of this through their
ReportOpinion() function. One of these specialists is
the causal specialist which encodes that p2 is flat in its
causal rule language. Thus, through the focus of attention
and the representation-neutral language, specialists can
share information easily.

In this context, symbol grounding is less puzzling. The
causal rule specialist can manipulate symbols representing
flatness without fear of losing touch with “physical
reality” because each simulation it performs combines
(through the focus of attention) information from sensors
and information from the rule specialist. This is made
possible because of the representation-neutral language
the specialists share.

Combining simulations combines algorithms.
In this example, Polybot executes three different
algorithms: prediction, backtracking (path) search and
truth maintenance. Each is composed of several foci.
Prediction is composed of foci 5-7 and 11-13, back
tracking search is composed of 6, 9 and 10 and truth
maintenance is composed of 9-13. Note that each
algorithm’s foci overlap with the others. This overlap or
sharing of foci is a key to combination of algorithms in
Polyscheme. When, for example, Polybot focuses on
Flat(p2,E,R) in step 9, the specialists’ inferences about
whether that proposition is true are shared by both the
search and truth-maintenance algorithms. In general,
since algorithms implemented by focus schemes are
merely composed of foci, the data they operate on resides
in the specialists which make inferences on the foci.
Since foci can be shared by any algorithm, sharing
information between these algorithms is simple.

A

B

C

 Focus Simulation Algorithm Explanation
1 … Immediate Perception specialist observes the cart move from behind the boxes (

Location(cart1,p1,t1,R) and Category(cart1,Cart,t1,R)) and
then observes a cart come out from behind the boxes
(Location(cart2,p3,t3,R) and Category(cart2,Cart,t3,R)).

2 Category

(cart2,cart,

t1,R)

Immediate Identity hypothesis specialist’s neural network infers that
Same(cart1,cart2,E,R) and requests focus for that proposition.

3

Same

(cart1,cart2,

E,R)

Immediate The difference specialist detects a difference in the location of tracked
cart, infers an change event and requests for a focus on Exists(d,E,R),
Category(d,ChangeEvent,E,R), etc.

4 Category

(d,Change,E,R)

Recent Prediction The causal rule specialist infers that since p1 and p3 are not adjacent
points, there must be an intermediate point, P, that cart1 visited and that P
must be flat because carts cannot roll over non-flat surfaces.

5 Flat(P,t2,R) Recent Prediction The space specialist infers that there P might be the intermediate point
and requests for a focus on Same(p2,P,w), where w is the world where
p2 and P are the same.

6 Same(p2,P,E,R) Immediate
Hypothetical

Prediction,
Search

The tracking specialist infers that since the location cart1 is now at P
that the system should move there.

7 … Future
Hypothetical

Prediction The prediction focus scheme simulates that motion and finds no problems.
(This takes several steps.)

8 … Immediate While moving towards that location, the perception specialist sees p2 for
the first time and sees that is flat.

9 Flat(P,t2,R) Current
Hypothetical

Search,
Truth
maintenance

The difference specialist notices the difference between Flat(P) and not
Flat(P2). Since p2 is certainly flat, and P is certainly not flat, then the
difference specialist assumes that in fact Same(p,p2,E,R) is false and
requests focus for that proposition because of the resimulation focus
scheme.

10 Same(p2,P,E,w) Hypothetical Truth
maintenance,
Search

The space specialist cannot find any other places that P might be equal to
and thus assumes it does not exist and request focus for Exist(P,E,R).

11 Exists(P,E,R) Immediate

Truth
maintenance,
Prediction

Since no intermediate point exists, the causal rules specialist retracts the
existence of the event that implies it and request focus on it because of
resimulation.

12 Exists(d,E,R) Past Truth
maintenance,
Prediction

Since delta is retracted, the identity of Same(cart1,cart2,t2,E,w) is
retracted

13 Same

(cart1,cart2,

E,R)

Immediate Truth
maintenance,
Prediction

Thus, cart1 and cart2 are different and cart1 is still behind the box on
the left.

14 … Immediate Motion specialist initiates movement in that direction.

Figure 4. A trace of Polybot’s focus.

Simulations integrate reasoning, planning,
perception and action.
Inference algorithms are composed of sequences of
simulations executed by specialists. Since these
specialists include specialists for perception and mobility,
the combination of high-level and low-level
computational techniques is constant in Polybot. For
instance, the focus in step 9 of the example is part of a
path search. The focus, Flat(p2,E,R), is perceived to

be false and modifies the course of the path search. This
is a simple example of a system’s sensors being able to
influence the course of a high-level artificial intelligence
algorithm as it is being executed.

Reasoning and planning with information from
noisy sensors in a dynamic world.
Three features of this approach greatly reduce the tension
between the flexibility of representation-free, reactive
systems and the power of high-level artificial intelligence

algorithms. First, since algorithms are composed by
simulations executed by specialists and because these
specialists include perceptual specialists, every step of
inference is always being checked against new sensor
information. Thus, revisions in sensor readings or
changes in the world will be detected immediately.
Second, because each specialist is obligated to
immediately broadcast these changes to the rest of the
specialists as soon as they occur, inference can be
adjusted immediately. Finally, because algorithms are
composed of reactions that are required to follow quickly
from simuli, there is no long lag between the formulation
and execution of a plan during which the plan can become
invalidated by changes in the world.

In the example above, as soon as Polybot’s initial
assumption that P is flat is seen to be false in step 9, that
change is broadcast to the rest of the system and search is
immediately altered. The revision does not need to wait
until the end of prediction and truth maintenance in step
13 for it to influence inference.

Results and Conclusion

Although Polybot is a relatively new project, we have
been able to demonstrate many of the benefits discussed
in this paper in object tracking and human-robot
interaction tasks. This work has been based on several
specialist we implemented, including those for perception
(which uses CMVison), movement (a reactive planner),
temporal constraints (Allen’s (1983) temporal intervals),
spatial location (cognitive maps), change events,
causation (production rules), ontology (category
heterarchy), uncertainty, perspective and object identity
(neural networks).

In our object tracking work, Polybot has been able to
improve upon a statistically-based object tracker by using
common sense reasoning about what kinds of actions a
particular category of object is capable of. Our existing
vision system could only track an object when there was
an overlap between its pixels on one image and those in
the subsequent image. By incorporating in high-level
reasoning about what kinds of paths objects could take
(e.g., carts could only roll over a flat surface whereas
people would move over rougher terrain) we were able to
track objects that became occluded over longer distances
and periods of time.

In our human-robot interaction work, Polybot has been
able to improve upon previous work on an object
reference tasks by using its ability to simulate the world
from a person’s perspective in order to more accurately
understand and predict his actions. We created a task in
which a human would use language to refer to an object
and it was the robot’s task to go to that object. Since
there were many instances of the same object (e.g., many
cones) in the room and since humans could see objects
that the robots could not, and visa versa, many of the
human’s utterances were ambiguous when taken literally.

By using Polybot’s simulation abilities, robots were able
to take the perspective of the human in the task and
significantly improve the accuracy of their understanding.

We believe that these results are a first step toward
demonstrating that this approach towards integrating
multiple algorithms and representations enables a
significant reduction in the tension between using
sophisticated reasoning and knowledge representation
techniques in robots that can flexibly react to new sensor
information and to changes in the environment.

Bibliography

P. Agre and D. Chapman 1990. “What are plans for?”. Journal
for Robotics and Autonomous Systems, vol. 6, 1990, pp. 17-34.

J. F. Allen 1983. Maintaining knowledge about temporal
intervals. Communications of the ACM, 26(11):832–843, 1983.

R. A. Brooks 1991. Intelligence without Representation.
Artificial Intelligence, Vol. 47, 1991, pp. 139-159.

N. L. Cassimatis 2002. Polyscheme: A cognitive architecture for
Integrating Multiple Representation and Inference Schemes.
Ph.D. diss, Media Laboratory, Massachusetts Institute of
Technology.

N. L. Cassimatis 2003. A Framework for Answering Queries
using Multiple Representation and Inference Techniques. In
Proceedings of the 10th International Workshop on Knowledge
Representation meets Databases, 2003.

R. Fikes and N. Nilson 1971. STRIPS: A new approach to the
application of theorem proving to problem solving. Artificial
Intelligence. 2(3-4):189-208, 1971.

S. Harnad 1990. The Symbol Grounding Problem. Physica D
42: 335-346.

M. L. Minsky 1986. The Society of Mind. Simon and Schuster,
New York, New York, 1986.

V. Rehrmann and L. Priese 1998. Fast and robust segmentation
of natural color scenes. Computer Vision - ACCV98 (R. Chin
and T.-C. Pong, eds.), vol. I, (Hong Kong, China), pp. 598-606,
January 1998.

