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Abstract

The paper focuses on a key issue for human supervised “au-
tonomous” systems, namely situation monitoring. The oper-
ator’s involvement within human-robot team is first described
as the way they close the control and decision loops. Then a
framework based on particle filtering and Petri nets is pre-
sented for hybrid numerical-symbolic situation monitoring
and inconsistency and conflict prediction within the team.

Human-robot team and the operator’s
involvement

Autonomy is not an end in itself in robotic systems. Au-
tonomy is needed because we want robots to be able to cope
with mission hazards when communications with the human
operator are impossible (due to communication gaps, dis-
cretion requirements, or to the operator’s workload). There-
fore adjustable autonomy must be considered to enable the
robots to compensate for the operator’s neglect (Goodrich et
al. 2001). The control of shared autonomy may be human-
initiated, a priori scripted or robot-initiated (Brookshire,
Singh, & Simmons 2004). Whatever the case, implementing
adjustable autonomy requires situation awareness (Endsley
2000) – including predicting what is likely to happen next –
both from the operator’s and robot’s points of view (Drury,
Scholtz, & Yanco 2003).

A functional architecture that is worth considering when
dealing with autonomy and operator’s roles within a human-
robot team is the double loop (Barrouil 1993), which paral-
lels the symbolic decision loop (situation monitoring and re-
planning) with the classical numerical loop (estimation and
control) - see Fig. 1.

Many papers have suggested autonomy levels for robots
(Huang et al. 2004), human-agent teamwork (Bradshaw et
al. 2003), UAVs1 (Clough 2002) and others have focused on
the operator’s roles (Yanco & Drury 2002; Scholtz 2003).
What we are suggesting here is that the operator’s involve-
ment can be regarded as the way they “close” the loops
(Fong, Thorpe, & Baur 2003). Let us distinguish three main
autonomy levels for a single robot or UAV agent:
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1Uninhabited Aerial Vehicles.

Figure 1: Functional architecture of autonomous systems -
the double loop (Decisional autonomy (b))

1. No autonomy
the operator closes the numerical loop via direct percep-
tion from sensors and direct action on effectors (teleoper-
ation);

2. Operating autonomy
(a) the operator closes the numerical loop via control laws

(e.g. heading, slope, speed, altitude...)
(b) waypoints are defined; the operator monitors the ex-

ecution (checks whether the waypoints are correctly
reached) and deals with failures, i.e. embodies the
whole decision loop;

3. Decisional autonomy
(a) waypoints are recalculated autonomously if forbidden

areas appear in the course of the mission; the operator
is highly involved within the decision loop, i.e. inputs
area features, checks whether recalculated waypoints
are OK and deals with other failures;

(b) autonomous situation assessment and replanning are
performed; the operator may close the decision loop
when needed and when possible (i.e. when communi-
cations are available).



Remark 1 The operator closes the numerical or decision
loop provided required communications with the robot are
available.

Remark 2 In case of emergency, a manual handover may
be possible (provided required communications are avail-
able).

Situation monitoring is a key issue in human-robot teams:
indeed situation monitoring has to maintain both the oper-
ator’s situation awareness and situation assessment for the
robot (Drury, Scholtz, & Yanco 2003), so that the task con-
text should not be lost when the robot cedes control to the
human or conversely (Brookshire, Singh, & Simmons 2004).
What is more is that the global human-robot team must be
predictible whatever may occur, e.g. failures, operator’s
omissions or wrong moves. Therefore what is needed is
a global situation monitoring to track and predict the be-
haviour of the human-robot team, according to the human’s
involvement into the control loops, and possibly detect in-
consistencies within the team.

As it is already clear with the double-loop representation
(see Fig. 1), human-robot team are hybrid systems, in so
far as both numerical (continuous) and symbolic (discrete)
parts are involved. It must be noticed that the discrete part
is not a mere abstraction of the continuous part - as it is
the case in most of the hybrid system literature: indeed
the discrete part mostly corresponds to how the operator
interacts with the robot and sets configurations or modes.
What is presented in the paper is a way to estimate and
predict the states in such hybrid systems through a unified
model, and how conflicts (possibly leading to dangerous
situations) may be predicted within the team.

After an overview of hybrid system estimation methods,
the particle Petri net - a joint model for situation monitor-
ing in hybrid systems - will be presented. Afterwards the
estimation principles will be described and illustrated on the
thermostat example. Finally the application of particle Petri
net-based estimation to situation monitoring in human su-
pervised “autonomous” systems will be dealt with.

Hybrid State Estimation
Estimating the state of a hybrid system is widely studied
in the literature and involves a large amount of techniques,
from numerical filters to network models.

In (Veeraraghavan & Papanikolopoulos 2004) the estima-
tion rests on a set of Kalman filters, each one tracking a lin-
ear mode of the system. The most probable states allow to
determine the most probable filter and then the most prob-
able mode of the system (i.e. the most probable behavior
of a car like turning, accelerating, etc.) In the same way,
(Koutsoukos, Kurien, & Zhao 2003) propose an estimator
based both on hybrid automata to represent the mode evolu-
tion and on a particle filter to estimate the continuous state
of the system. The estimated mode is then the most probable
mode of the system with respect to the estimated continuous
states. A similar principle is applied in (Hofbaur & Williams
2002) who use a concurrent probabilistic hybrid automaton

(cPHA) to estimate the mode of the system using Kalman
filters.

Bayesian networks are also used to represent hybrid sys-
tems by modeling the links between discrete and continu-
ous variables in terms of conditional probabilities over time.
Inference rules (Lerner & Parr 2001) or particle filtering
(Doucet et al. 2000) can be used to estimate the state of
a hybrid system. However Bayesian networks suffer from:

1. the necessity to define a measure (probability, possibil-
ity. . . ) on the (continuous and discrete) state. This is
sometimes impossible to do for instance in case of com-
plete uncertainty (see (Chachoua & Pacholczyk 2000));

2. the fact that an analysis on the consistency of the discrete
and continuous states is difficult to perform as the esti-
mations on discrete and continuous states are aggregated
within the probability distribution.

In the same way, the analysis of conflicts, or conversely
consistency, is mainly based on the study of continuous
variables. In (Benazera & Travé-Massuyès 2003) the hybrid
system must satisfy constraints that are checked on the
continuous estimated states of the system. (Del Vecchio
& Murray 2004) use lattices to identify the discrete mode
of a hybrid system when only continuous variables are
observed. In (Tomlin et al. 2003), the reachability analysis
of continuous states, based on hybrid automata, allows to
identify safe and dangerous behaviors of the system and is
applied to an aircraft collision problem. Nielsen and Jensen
(Nielsen & Jensen 2005) define a conflict measure on the
estimated state of a Bayesian network; nevertheless this
method still suffers from the need to define a measure on
totally uncertain states, and from the fact that the conflict
measure is continuous, which leads to a threshold effect.
In (Lesire & Tessier 2005) an aircraft procedure and pilot’s
actions are jointly modeled using a particle Petri net that
allows the procedure to be simulated using a Monte-Carlo
method and the results to be analysed using the Petri net
properties. Hence only the nominal procedure is modeled
and the analysis is based on qualitative properties and does
not involve any continuous measure.

The monitoring system presented in this paper is based on
the later work: it allows both the estimation to be computed
and the consistency of the estimated states to be analysed
without defining a priori measures on unknown states. In-
deed it is the structure of the Petri net-based model itself
which allows the consistency to be checked. The next sec-
tion mentions the main definitions of particle Petri nets.

Particle Petri Nets
Prerequisites
Particle Filtering The particle filter (Arulampalam et al.
2002) allows the state xk at time k of a dynamic system sub-
ject to deterministic and random inputs to be estimated from
observations zk spoilt with stochastic errors. It is based on a
discretization of the uncertainty on the state value: the prob-
ability distribution function of the estimate x̂k|k – meaning
the state estimated at time k knowing the observation at time



k – is represented by a set of N particles x
(1)
k|k, . . . , x

(N)
k|k (see

Fig. 2). The estimation is achieved through a two-step pro-
cess : the prediction, that consists of estimating the next
particles x

(i)
k+1|k according to the evolution model, and the

correction, that is based on a comparison of the expected
particle values with the observation: the closer the expected
particles are to the most probable value of the observation,
the bigger weight they are assigned. Then N new particles
x

(i)
k+1|k+1 are generated from a resampling of the weighted

corrected particles.

Figure 2: Particle filtering (from (Lehmann 2003))

Petri Nets A Petri net < P, T, F,B > is a bipartite graph
with two types of nodes: P is a finite set of places; T
is a finite set of transitions (David & Alla 2005). Arcs
are directed and represent the forward incidence function
F : P × T → N and the backward incidence function
B : P × T → N respectively. An interpreted Petri net is
such that conditions and events are associated with places
and transitions. When the conditions corresponding to some
places are satisfied, tokens are assigned to those places and
the net is said to be marked. The evolution of tokens within
the net follows transition firing rules. Petri nets allow se-
quencing, parallelism and synchronization to be easily rep-
resented.

Particle Petri Nets
A particle Petri net (Lesire & Tessier 2005) is a hybrid Petri
net model where places and transitions are either numerical
or symbolic:

1. numerical places PN are associated with differential
equations representing the continuous evolution of the
system;

2. numerical transitions TN are associated with conditions
and represent mode changes in the system dynamics;

3. symbolic places PS and transitions TS are associated with
symbolic states and actions respectively.
The state of the system is represented by a set of tokens,

that are particles π
(i)
k+1|k – meaning particle number i at

time k + 1 knowing the observation at time k –, evolving
within the numerical places, and a set of configurations
δ
(j)
k+1|k evolving within symbolic places. A marking

mi,j = (π(i), δ(j)) represents a possible state of the system.
The firing rules (Lesire & Tessier 2005) associated with

numerical and symbolic transitions allow all the expected
states of the system to be computed whatever the actions.

Figure 3 is the particle Petri net of a thermostat. The ther-
mostat manages temperature2 θ between 20◦C and 25◦C.
The numerical places p0, p1 and p2 are associated with dif-
ferential equations modeling heating (θ̇ = −0.2θ+5.4) and
cooling (θ̇ = −0.1θ+1.2) respectively. The numerical tran-
sitions correspond to guards: transitions θ > 25 and θ < 20
indicate respectively that the temperature is and is not warm
enough. The symbolic places indicate the modes of the ther-
mostat (on or off) and the symbolic transitions (OFF ) rep-
resent external actions to turn off the thermostat.

Figure 3: The thermostat particle Petri net

Estimation principles
The estimator presented here is based on the particle filtering
principle and computes the expected markings of a particle
Petri net. The estimation is achieved through a two-step pro-
cess:

1. a prediction of the expected markings, according to the
particle Petri net firing rules, that computes all the possi-
ble combinations of numerical and symbolic states;

2. a correction of the markings according to an observation
made on the system.

Prediction
The prediction is achieved through the computation of the
reachable markings of the particle Petri net, i.e. the set of the
expected states. It is based both on an isoparticle evolution,
i.e. an evolution of the tokens within the net to model mode
changes according to actions, and an isomarking evolution,
i.e. an evolution of the particles according to differential
equations.

Let us consider the example of the thermostat (Fig. 3),
and let the initial marking be π

(0)
0|0 = 20◦C marking place

p0 and δ(0) marking place on. Then the expected marking at
time 1 is the marking shown on Fig. 4, where

1. in place p0, particle π(0) = 21.4◦C has evolved according
to the heating differential equation;
2The temperature is noted θ in the text and T on figures as the

θ character is not available in the estimation software and T is al-
ready the set of transitions of the particle Petri net.



2. in place p2, particle π(1) = 19.2◦C has evolved accord-
ing to the cooling differential equation, predicting the sit-
uation corresponding to the thermostat being turned off;

3. configurations δ(0) and δ(1) in symbolic places on and off
respectively indicate that the thermostat may be either on
or off at time 1.

Figure 4: Predicted marking at time 1

Thereby the marking at time k represents the estimated
states as a set of tokens – the set of particles being a dis-
cretization of the probability distribution on the continuous
state –, and the prediction step computes the expected mark-
ing at time k + 1.

Correction
The correction consists in comparing matchings between the
predicted tokens and the incoming observation and selecting
the “best” ones. The correction process:

1. weights the predicted particles according to the noisy ob-
servation:

w(π
(i)
k+1|k)=

p(zk+1|π
(i)
k+1|k)PN

j=0 p(zk+1|π(j)
k+1|k)

(1)

where zk+1 is the observation at time k + 1, w(π) is
the weight of particle π and p(z|π) is the conditional
probability to observe z knowing the expected state π;

2. groups the weighted particles according to the equiva-
lence relation R:

π(i)Rπ(j)⇔

8>><>>:
∀p∈PN ,(π(i)∈M(p)⇔π(j)∈M(p))

∀π(k)∈Π / ∀p∈PN (π(i)∈M(p)⇒π(k) 6∈M(p)),

(w(π(i))≥w(π(k))⇔w(π(j))≥w(π(k)))

(2)
where Π = {π(i), i ∈ J1;NK} and M(p) is the
marking of place p. The equivalence classes are noted
Γ = {γ(i)

k+1|k}, and their weights are defined by

w(γ
(i)
k+1|k)=

P
π∈γ

(i)
k+1|k

w(π) (3)

The process is then recursively applied on Γ to group the
equivalence classes until they are restricted to singletons;

Remark 3 The equivalence relation R is designed to
help diagnose the state of the system by reducing the size

of the data to be analysed. (2) means that particles π(i)

and π(j) are equivalent if they mark the same place p and
for each particle π(k) which is not in p, both π(i) and π(j)

have either a higher or lower weight than π(k).

Remark 4 The algorithm applying recursively relation
R on particles and then on equivalence classes terminates
and computes at most N steps, where N is the number of
particles (the worst case considers that at each step only
two classes are equivalent).

3. updates (Benferhat, Lagrue, & Papini 2005) the ranking
of predicted configurations δk+1|k according to the obser-
vation. This results in a ranking of corrected configura-
tions δk+1|k+1 (≺∆ means “is preferred to”):

(zk+1→δ
(i)
k+1|k)∧(zk+1 6→δ

(j)
k+1|k)⇒δ

(i)
k+1|k+1≺∆δ

(j)
k+1|k+1 (4)

where z → δ means that configuration δ matches obser-
vation z (see Example 1 below). (4) means that the con-
figurations matching the observation are preferred to the
configurations not matching the observation.

If both δ
(i)
k+1|k and δ

(j)
k+1|k match (or do not match) the ob-

servation, the ranking is not changed, the relation between
δ
(i)
k+1|k+1 and δ

(j)
k+1|k+1 is the same as between δ

(i)
k+1|k and

δ
(j)
k+1|k:

(zk+1→δ
(i)
k+1|k ∧ zk+1→δ

(j)
k+1|k)

⇒(δ
(i)
k+1|k+1-∆δ

(j)
k+1|k+1⇔δ

(i)
k+1|k-∆δ

(j)
k+1|k)

(5)

(zk+1 6→δ
(i)
k+1|k ∧ zk+1 6→δ

(j)
k+1|k)

⇒(δ
(i)
k+1|k+1-∆δ

(j)
k+1|k+1⇔δ

(i)
k+1|k-∆δ

(j)
k+1|k)

(6)

The relation -∆ (meaning “is preferred or equivalent to”)
is a partial preorder on the set of configurations;

Example 1 In the thermostat example, relation →, re-
presenting the matching between predicted configurations
and the observation, is defined by :

(a) on → on and on 6→ off,
(b) off → off and off 6→ on,
(c) on ∧ off → on and on ∧ off → off
(d) false → on and false → off

where case (c) corresponds to an observation of both
modes on and off, that may come from a sensor error, and
case (d) corresponds to an empty observation (false) that
may come from a sensor failure.

4. constructs the correction graph by ranking (relation -)
the markings mi,j = (γ(i), δ(j)), according to the weights
on γ(i) and to relation -∆ on configurations δ(j):

mi,j≺mk,l ⇔
(

w(γ(i))≥w(γ(k))∧δ(j)-∆δ(l)

w(γ(i))>w(γ(k))∨δ(j)≺∆δ(l) (7)

mi,j∼mk,l ⇔ ( w(γ(i))=w(γ(k))∧δ(j)∼∆δ(l) ) (8)



5. resamples the particles : N new particles π
(i)
k+1|k+1

are drawn from the discrete probability law
{π(i)

k+1|k, w(π(i)
k+1|k)}. The particles are then spoilt

with the model noise to represent the model approxima-
tion.
The resampled particles represent the estimated numeri-

cal states of the system at time k + 1 and are introduced
in the next prediction step. The correction graph built from
predicted tokens is analysed to detect inconsistencies. This
analysis is presented in the next section. The whole estima-
tion process is illustrated through the thermostat example.

Consistency Analysis and Conflict Detection
A state of the system is said to be consistent if it is a possible
state with respect to the initial state and to the model of the
nominal behavior of the system. The set of possible states
can be computed before the on-line estimation and consists
in computing the reachable states of the particle Petri net.

Hence an ordinary safe Petri net4 is associated with the
particle Petri net of the system such as one ordinary token
is associated to each place corresponding to a marked (by
particles or by configurations) place in the particle Petri net.

Let the initial marking of the ordinary safe Petri net of the
thermostat (Fig. 3) be M0 = (1 0 0 1 0): places p0 and on
are marked, places p1, p2 and off are empty. Then marking
M0 represents the initial state of the Petri net: the thermo-
stat is on and heating.

The reachable states of the particle Petri net correspond
to the reachable markings of the safe Petri net represented
in Fig. 5. The graph of reachable markings is the classical
automaton of a thermostat, with three modes: on (marking
M0), idle (marking M1) and off (marking M2). Conse-
quently the markings that are inconsistent in the estimation
process are:

1. M4 = (0 0 1 1 0), meaning that the thermostat is on but
the temperature decreases;

2. M5 = (1 0 0 0 1), meaning that the thermostat is off but
is still heating;

3. M6 = (0 1 0 0 1), meaning that the thermostat is off but
will heat as soon as the temperature is under 20.

Figure 5: Reachable markings of the thermostat Petri net

Remark 5 The computation of the reachable markings may
be complex in general as the set of reachable markings may
be infinite. Nevertheless the set of reachable markings of a
safe Petri net is finite.

4An ordinary Petri net is a Petri net with no interpretation con-
taining undifferentiated classical tokens. A Petri net is said to be
safe for an initial markingM0 if for all reachable markings, each
place contains zero or one token.

The consistency analysis is achieved through the study
of the correction graph computed during the correction pro-
cess:

1. Each marking mi,j = (γ(i), δ(j)) is associated with a
marking m̃i,j in the associated safe Petri net:

∀p∈P=PN∪PS , emi,j(p)=

(
1 if γ(i)∈M(p)

5 or δ(j)∈M(p)

0 otherwise
(9)

2. Then the consistency of mi,j is checked:

mi,j is consistent ⇔ m̃i,j ∈ G (10)

where G is the graph of the reachable markings of the safe
Petri net.
Knowing the (in)consistent markings of the correction

graph is a first step towards the detection of conflictual situ-
ations. Some issues in analysing such a graph are currently
under study, for instance about using the graph in the resam-
pling strategy or identifying patterns in the correction graph
to detect well-known conflictual situations.

The next section presents some examples and results
about the estimation principle and the consistency analysis.

Simulations
Thermostat Monitoring
The initial marking of the thermostat is represented in Fig. 6
where 50 particles have been drawn from the normal distri-
bution N (22◦C, 1) – 22◦C is the initially observed temper-
ature.

Figure 6: Initial estimated state of the thermostat: the ther-
mostat is on, heating, and the temperature is approxima-
tively 22◦C.

Temperature Estimation Figure 7 is the result of the es-
timation process launched on the Petri net of Fig. 6 with a
new observation of the temperature and the thermostat mode
every second. The dashed line represents the (noisy) obser-
vations and the crosses are the particles.

We can notice that the shape of the estimated temperature
smoothly fits the observed temperature, meaning that the es-
timation well corresponds to the thermostat behavior. To il-
lustrate the estimation process, let us consider the correction
step at time 1.

5By abuse of notation, γ(i) ∈M(p) means that all the particles
in γ(i) are marking place p (which is true by construction of γ(i)).



Figure 7: Estimation of the temperature

particle number θ weight place
11 21.581 0.0361 p2

12 21.594 0.0360 p0

25 21.535 0.0360 p0

41 21.615 0.0357 p2

17 21.618 0.0357 p0

18 21.624 0.0355 p2

8 21.630 0.0354 p0

29 21.502 0.0353 p0

1 21.638 0.0352 p0

42 21.642 0.0351 p0

Table 1: Best weighted particles at time 1

The observation at time 1 is z1 = (21.567◦C, on). Table 1
contains the ten best predicted particles according to z1 and
their associated weights. As far as the consistency analysis
is concerned, it is easily guessed that analysing the whole
table, containing fifty columns (one per particle), is not ob-
vious. Then the particles are grouped in equivalence classes
according to relation R applied recursively: when the parti-
cles are ranked by weight, (2) consists in making classes by
grouping the particles by place following the ranking. The
first step of the construction results in the following equiva-
lence classes:

1. γ(1) = {π(11)} with weight 0.0361 in p2,

2. γ(2) = {π(12), π(25), π(17)} with weight 0.1077 in p0,

3. γ(3) = {π(41), π(18)} with weight 0.0702 in p2,

4. γ(4) = {π(8), π(29), π(1), π(42)} with weight 0.1410 in
p0.

Relation (2) applied recursively on
Γ = {γ(1), γ(2), γ(3), γ(4)} gives as a final result:

1. γ(5) = {γ(4), γ(2)} with weight 0.2487 in p0,

2. γ(6) = {γ(3), γ(1)} with weight 0.1063 in p2.

The associated correction graph is drawn in Fig. 8 where
δ(0) = on and δ(1) = off: as the observation is on, δ(0) ≺
δ(1), and as w(γ(5)) > w(γ(6)), the marking relation is
m5,0 ≺ m5,1, m5,0 ≺ m6,0, m5,0 ≺ m6,1, m5,1 ≺ m6,1

and m6,0 ≺ m6,1.
The framed markings are consistent. As a result, the best

marking (the root of the graph) is consistent and matches the
on state (thermostat on and heating).

Figure 8: Correction graph at time 1

Inconsistent Behaviors In order to study the consistency
of the thermostat behavior, two faulty cases are considered.
Both consist in a wrong behavior of the thermostat that
stops heating at temperatures 26◦C and 24◦C respectively.

Case 1: Figure 9 is the result of the estimation of the ther-
mostat that stops heating at 26◦C. At time 7, the best
marking (given the observation at time 7) has a weight
of 0.9985 and matches the state idle (places p1 and on).
At time 8, the best marking has a weight of 0.9970 and
matches the state on (places p0 and on). The difficulty to
estimate the right state can be explained by the fact that
the behavior is misunderstood by the estimator as no par-
ticle has a temperature around 26◦C. At time 22, the best

Figure 9: Conflict detection: the behavior of the thermostat
is unknown.

marking matches the idle state (place p1 and on) with a
weight of 1. Then from time 23, the best markings match
state off (places p2 and off) and consequently are incon-
sistent as the observation is on. The difficulty to track
the behavior results in the fact that the estimation is com-
pletely wrong: all the particles are out of the main part
of the Gaussian observation – 99% of the probability of a
Gaussian distribution is within [µ− 3σ;µ + 3σ] where µ
is the mean value and σ the standard deviation.
This case shows that the prediction does not match the
observations very well as nearly no particle has a temper-
ature around 26◦C. Nevertheless the estimation is able to
track the temperature over 25◦C. Switching from consis-
tent to inconsistent matchings (times 7 and 8) reveals an
inconsistent behavior.

Case 2: Figure 10(a) is the result of the estimation of the
thermostat that stops heating at 24◦C. In that case the es-
timation is completely different: all the correction graphs
from time 4 are the same (Fig. 10(b), where γ(1) ∈ p2).
Indeed the numerical observations can be explained as
they match the particles within place p2. However the
symbolic observation is on. Then the best corrected mark-
ing is inconsistent and reveals a fault: the temperature



evolves as if the thermostat was off.

(a) Estimation of the temperature (b) Correction
graph

Figure 10: Conflict detection: the behavior of the thermostat
corresponds to the off mode.

Estimation of the UAV-Operator Activities
This section presents an application of the estimation prin-
ciple to a human–UAV team. This could be easily gener-
alized to any human–robot or human–system team involv-
ing procedures (e.g. the Water Recovery System (Martin,
Schreckenghost, & Bonasso 2004)). The considered mission
is modeled by the particle Petri net of Fig. 11 and consists of
an Approach from waypoint A to waypoint B where actions
are shared between the UAV and the operator.

Figure 11: The particle Petri net of the Survey mission

Numerical places and transitions represent the trajectory
of the UAV. The procedure consists of a descent (place p0)
from waypoint A. At 7 NM from A (transition d(A)>7NM),
the UAV starts turning (place p1) and when intercepting
heading 144◦ (transition Heading>144), the UAV has
to perform a deceleration (place p2). At 4 NM from B
(transition d(B)<4NM), the Approach procedure is finished:
the next phase is the Landing procedure. The symbolic tran-
sitions correspond to operator or UAV actions: pressing the
APPR button (transition APPR while descending or turning)
is an operator’s action, setting flaps 1 and setting the gear
down (transitions Flaps1 and Gear while decelerating) are
autonomous actions of the UAV. Then the configurations

have attributes APPR, Flaps1 and Gear. The particles have
attributes x, y, z (the 3-D coordinates of the UAV), s (the
speed) and h (the heading).

The estimation of the UAV position (x and y coordinates)
is represented in Fig. 12. The dashed lines represent the
nominal trajectory of the UAV and the dots represent the
estimated particles.

(a) at time 0 (b) from time 10

Figure 12: Estimation of the UAV position

At time 0, the UAV position is quite uncertain: the initial
distribution is diffuse. The estimation becomes more precise
from time 10.

At time 220, some particles mark place p2 (the UAV may
be decelerating) but the main corrected state matches place
p1: the UAV is still turning. At this time the observation
states that the APPR button is not pressed. The correction
graph at time 220 is shown in Fig. 13, with γ(i) ∈ pi for
i ∈ {1, 2} and δ(j) ∈ pj for j ∈ {3, 4, 5, 6, 7}.

Figure 13: Correction graph of the mission at time 220

Marking m2,3 is close to the best marking (m1,3) and is
inconsistent: it has to be studied and tracked while estimat-
ing the system state. Indeed it allows to anticipate a possible
conflict that may occur if the APPR button is not pressed in
a near future. At time 230 most of the corrected particles are
in p2 and the APPR button has been pressed (according to
the observation): a safe state is recovered.

Conclusion
The particle Petri net-based estimation principle that is pre-
sented in this paper paves the way to the detection of incon-
sistent behaviors in systems subjected to discrete actions –
e.g. human actions in a human–robot team.

Ongoing work is focusing on the analysis of the correction
graph, and more specifically on inconsistent states. What is
considered is to study the dynamics of inconsistent states
within the correction graph while monitoring the system in
order to design an automatic monitoring agent for hybrid
systems that would allow an early detection of conflicts and
if necessary the possibility to change the autonomy/control



level of the robot/human agents to face dangerous situations
or communication loss.

Experiments are being prepared with the flight simulator
at Supaero in order to assess conflict detection in procedures
involving complex autopilot modes.
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