
Reasoning about BDI Agents from a Programming Languages Perspective

Wayne Wobcke
School of Computer Science and Engineering

University of New South Wales
Sydney NSW 2052, Australia

wobcke@cse.unsw.edu.au

Abstract

In this paper, we summarize an approach to reasoning about a
class of BDI agent architectures based on PRS. The theory is
formalized using a logic, Agent Dynamic Logic (ADL), that
combines elements from Computation Tree Logic, Proposi-
tional Dynamic Logic and Rao and Georgeff’s BDI Logic.
The motivation of this work is to develop a logical frame-
work that is at once rigorous in providing formal notions of
belief, desire and intention, yet which is also computationally
grounded in the operational behaviour of this architecture, so
as to enable formal reasoning about the behaviour of agents
in this class. We illustrate the model theory with a simple
“waypoint following” agent.

Methodology

Following a symposium on intentions in communica-
tion almost exactly twenty years ago, papers that were
eventually published as Bratman (1990) and Cohen and
Levesque (1990b) established a research direction in the in-
teraction between philosophical and formal logic theories of
intention and action, explicitly recognized in Allen’s com-
mentary (Allen, 1990). Perhaps the main issue can be con-
cisely stated as to provide a general formal modelling of in-
tention and action (and their relationship) for rational agents
that is consistent with philosophical theories of intention,
action and rationality. Such a theory would enable reason-
ing about rational agents using a logical approach, possibly
even to prove the rationality of complex “BDI agents”, those
based on notions of belief, desire and intention.

The problem of developing a general logical theory of
intention and rationality for BDI agents, however, remains
open. We believe that part of the difficulty in developing
such a general theory is that formal modellings inevitably
build in some architectural assumptions about the agents
they model, so inevitably a formal theory applies only to
certain classes of BDI agents. Moreover, when it comes
to reasoning about agents in that class, what is required
is a systematic mapping from the computational states of
the agent to formal BDI models. This requirement is what
Wooldridge (2000) has called computational grounding. If
a formal theory is not computationally grounded, properties

Copyright c© 2007, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

of an agent’s mental states that are shown to hold in virtue
of some formal modelling do not necessarily apply to the
agent, making the “cognitive” analysis of the agent irrele-
vant for practical considerations.

Our approach is therefore to start by developing a more
specific logical account of intention and action for the PRS-
style agent architecture, Georgeff and Lansky (1987), adopt-
ing a point of view similar to that used in reasoning about
computer programming languages. The PRS-type architec-
ture operates with some notions of belief, desire and inten-
tion, and is accordingly described as a “BDI architecture”.
However using logical versions of idealized concepts of be-
lief, desire and intention to model this architecture is inad-
equate for reasoning about agent programs, because these
idealized concepts do not match their specific meanings as
used in the architecture. Rather, the “PRS-like” agent uses
a plan library to store pre-defined plans for achieving goals,
explicit beliefs to represent information about the environ-
ment that guides the selection of actions both in response to
events and to refine plans, and various strategies for action
execution to realize commitments to the chosen plans.

Although our work focuses on the properties of a partic-
ular BDI architecture, our aim is to develop the logic of in-
tention and action in a general way so as not to be restricted
to agents of this class. In particular, our clause for the se-
mantics of intention is based on Bratman’s requirement of
strong consistency between intentions and beliefs, and is not
specific to any architecture. However, our approach to mod-
elling the agent’s action and reasoning incorporates two as-
sumptions particular to PRS: (i) that the agent attempts to
execute only one primitive action at a time, and (ii) that the
agent selects a plan to fulfil an achievement goal only at the
time of executing that plan (at the latest possible moment).
These assumptions reflect more the simplicity of PRS and/or
the characteristics of the environments in which PRS agents
operate, rather than general principles of rationality.

The organization of this paper is as follows. We begin
with a brief summary of the PRS-like agent architecture,
then describe some of the philosophical concerns that have
been addressed in our approach, present our logic, Agent
Dynamic Logic (ADL), for reasoning about intention and
action, and finally, conclude with an illustration of the com-
putational grounding of PRS-like agents based on a simple
“waypoint following” agent.

PRS-Like Agent Architectures
The class of agent architectures studied in this paper are
the PRS-like architectures, which is supposed to cover
PRS (Procedural Reasoning System), Georgeff and Lan-
sky (1987), and variants such as UM-PRS, C-PRS, AgentS-
peak(L), dMARS, JAM, JACK Intelligent AgentsTM and
SPARK. The agent’s computation cycle can be conveniently
described with reference to the simplified interpreter shown
in Figure 1, adapted from Rao and Georgeff (1992). In this
abstract interpreter, the system state consists of a set of be-
liefs B and intentions I. Each element of I is a partially exe-
cuted hierarchical plan.

Abstract BDI Interpreter:
initialize-state(B, I);
do

get-external-event(e);
new-options := trigger-plans(e, B);
selected-option := select-option(new-options);
update-intentions(selected-option, I);
selected-intention := select-intention(I);
execute(selected-intention);
update-intention(selected-intention, I);
get-observation(o);
update-beliefs(o, B);
drop-successful-plans(B, I);
drop-impossible-plans(B, I)

until quit

Figure 1: Abstract BDI Interpreter

The configurations of the agent are pairs 〈B, I〉 where B is
the set of beliefs and I is the set of intentions (partially ex-
ecuted hierarchical plans). We assume a finite propositional
language L for representing the beliefs of the agent, and the
agent’s belief set B at any time is assumed to be a consis-
tent set of literals of L. The conditions of each plan in the
plan library are also formulae of L, and the body of each
plan is a program. The language of programs consists of a
set of atomic programs, including special actions achieve γ
(where γ is a formula of L) and an “empty” program Λ, and
conditional and iterative statements if α then π else ψ and
while α do π (where α is a formula of L and π and ψ are
programs). Note that the tests in these statements are tests
on the agent’s beliefs, not on the state of the environment.

The selection mechanisms are constrained as follows:

• Given a set of options triggered by an event (whose pre-
condition and context are believed), the function select-

option returns a randomly selected element of maximal
priority within that set;

• Given a set of intentions, the function select-intention re-
turns a randomly selected element of maximal priority in
the subset of this set of plans which are applicable (whose
preconditions are believed) in the current state; moreover,
if a plan is chosen to break a tie, as long as its execution
is believed successful, it continues to be chosen on future
cycles until it terminates.

The functions for belief and intention update are as fol-
lows. For simplicity, it is assumed that the observations on

each cycle correspond to a consistent set of literals O. Then
the belief revision function can be defined as the function
that removes the complement l̄ of each literal l inO from the
belief set B (if it is contained in B) and then adds each (now
consistent) literal l of O to B. The only subtlety with in-
tention update is in defining which plans may be dropped as
achieved or infeasible. We take it that on failure, only whole
plans can be dropped, and on success, only whole plans or
the initial actions of any plan can be dropped (if an action of
the form achieve γ is dropped, the achieve action and all its
subplans are removed from the intention structure). Drop-
ping a subplan leaves the achieve subgoal that resulted in
the plan’s selection as the next step to be executed in that
hierarchical plan.

Philosophical Issues
Any formalism for reasoning about BDI agents makes con-
crete some implicit theory of intention, and since one major
aim of formalization is to give a semantic definition of in-
tention in terms of certain model theoretic constructs, any
formalism implicitly includes a partial theory of intention.
There are a number of philosophical issues, listed below,
dealing with notions of agency, intentions vs. intentional ac-
tions, actions vs. events, ability and control, that must be
handled correctly in any formalism and computational ap-
proach applying to BDI agents. These issues do not always
form part of the formalism; sometimes they relate to as-
sumptions about how the formalism is meant to be applied
in reasoning about agents.

The main definitions in any formalism relate intention to
other concepts, such as goals and events, in the case of Co-
hen and Levesque (1990a), or actions, in the case of Rao
and Georgeff (1991) and Singh (1998). In our approach, a
version of Bratman’s requirement for strong consistency on
beliefs and intentions is the basis of the modelling of inten-
tion. This requirement is never defined precisely by Brat-
man; the closest statement approaching a definition is that
an agent’s intentions are strongly consistent relative to its
beliefs when it is ‘possible for [its] plans taken together to
be successfully executed in a world in which [its] beliefs are
true’, Bratman (1990, p. 19), though Bratman realizes that
this is in need of further elaboration, Bratman (1987, p. 179,
note 3). It is indeed a strong requirement, since the quan-
tification in ‘a world in which its beliefs are true’ seems to
refer to all worlds in which the agent’s beliefs are true, not
just some such worlds or the actual world. In our approach,
rather than taking all worlds in which the agent’s beliefs are
true (which is inappropriate for simple PRS-type agents with
a limited belief language), we define intention with respect
to a set of all worlds the agent could inhabit (at the time of
assigning the intention), which, moreover, are determined
at any time from the prior execution of the agent’s program
(however, typically starting from a situation satisfying the
agent’s beliefs). Branching in such structures is derived from
the nondeterministic execution of action attempts, so some
branches correspond to successful executions while others
correspond to failed attempts, and the intentions of the agent
are directed towards the successful performance of those ac-
tions the agent chooses from its plans.

Our formal approach to modelling belief and intention for
PRS-like agents aims to address the following aspects of be-
lief, intention and action:

• Present vs. future-directed intentions: Intentions are
future-directed and directed towards actions, not propo-
sitions (so Bratman’s idea of intentions “controlling con-
duct” is captured, though the actions attempted by the
agent are assumed to be under its control);

• Success and failure: Intentions are directed towards ac-
tions the agent will eventually perform successfully in
every world considered possible (so a rationality assump-
tion of belief-intention consistency is built in, though not
a requirement for successful fulfilment of the intention
since there can be unintended failed action attempts);

• Action attempts vs. events: By treating attempts as a
type of action, the model theory captures a distinc-
tion between what the agent actually does and what the
agent tries to do (intentions are directed towards suc-
cessful execution of the agent’s attempts, whereas Rao
and Georgeff (1991) have intentions directed towards
“events” that may or may not succeed);

• Two types of success: The use of attempts and the seman-
tics for achieve γ actions enable the theory to capture the
distinction between an agent successfully executing the
steps in a plan and successfully achieving the postcondi-
tion and goal (intended effect) of the plan;

• Ignorance vs. nondeterminism: Ignorance is modelled by
a belief-alternative relation between situations in worlds,
nondeterminism through branching within worlds (this
differs from Rao and Georgeff’s motivation based on de-
cision theory);

• Beliefs in the action semantics: To correctly handle ac-
tions that test the agent’s beliefs and the fact that agents
“track” conditions about the environment brought about
by their actions, belief relations are included in the se-
mantics of action, in that an action is modelled as a rela-
tion on environment and associated belief states;

• Two types of “possible worlds”: The modelling distin-
guishes worlds the agent could inhabit (alternative actual
worlds) from the beliefs (epistemic possibilities) of the
agent in those worlds (intention relates to the former, be-
lief to the latter);

• Side-effect or “package deal” problems: The account
handles side-effect problems in an intuitive way, in that
an agent can intend to perform an action but not its gener-
ated consequences, since the plans for the consequences
can differ from the plan the agent has adopted, and in ad-
dition since an agent “tracks” through observation only
the intended consequences of its actions.

Agent Dynamic Logic

In this section, we summarize our formal framework for
modelling BDI agents, which is based on a logic called
Agent Dynamic Logic (ADL), Wobcke (2002), that com-
bines aspects of Computation Tree Logic (CTL), Emerson
and Clarke (1982), Propositional Dynamic Logic (PDL),
Pratt (1976), and the BDI Logic of Rao and Georgeff (1991),
called here BDI-CTL.

The language of ADL (Agent Dynamic Logic) is based
on both BDI-CTL, which extends CTL with modal oper-
ators for modelling beliefs, desires (goals) and intentions,
and PDL, which includes modal operators corresponding to
program terms. Our definitions of BDI-CTL are modifica-
tions of Rao and Georgeff’s in that, though there are three
modal operators, B (belief), G (goal) and I (intention) in the
language, the operators G and I are defined in terms of other
primitives. We assume there is a base propositional language
L for expressing time-independent properties of states. The
language of ADL includes the formulae of BDI-CTL (which
includes the CTL state formulae) plus formulae built using
the PDL constructs ∗ (iteration), ; (sequencing) and ∪ (al-
ternation), and, corresponding to any formula α of the base
language L, a test statement α?. Note, however, that the test
statement covers tests on the beliefs of the agent in addi-
tion to tests on the environment. The language of programs
also includes special atomic actions achieve γ, attempt π and
observe α (where γ and α are formulae of the base language
L with α a conjunction of literals, and π is a program).

Rao and Georgeff (1991) make extensive use of the notion
of a “world”, a forward-branching discrete-time structure.

Definition 1 Let S be a nonempty set of states. A world w
over a time tree 〈T ,≺〉 based on S is a function on T giving
a state wt ∈ S for each time point t ∈ T (in the context of a
particular world w, wt is called a situation).

Definition 2 A BDI interpretation 〈T ,≺,S,W,A,B, I〉 is
a tuple where 〈T ,≺〉 is a time tree, S is a nonempty set of
states, W is a nonempty set of worlds based on S, each over
a subtree of 〈T ,≺〉, A and B are subsets of W×T ×W×T
defined only for tuples (w, t, w′, t′) for which t (t′) is a time
point in w (w′) and wt and w′

t′ share a common history, and
I is a function W × T → W mapping each time point t in
a world w to a subworld of w containing t.

Definition 3 A subworld of a world w over a time tree
〈T ,≺〉 based on a set of states S is the world w restricted
to a subtree of 〈T ,≺〉 whose root is the root of w.

As mentioned above, the agent needs to keep track of two
senses of epistemic alternative: alternative actualities and
alternative epistemic states with respect to one actual world.
The relation A is for alternative actual worlds, while the re-
lation B captures the ignorance of an agent with respect to
one actual world. The relation A is used as part of the def-
inition of intentions; no matter how the world is actually,
the agent will eventually perform the intended action on all
possible futures which it regards as successfully realizing
its intentions. Both relations A and B on situations are as-
sumed to be serial, transitive and Euclidean, and in addition
A is assumed to be reflexive.

The major definitions in ADL relate to the modal opera-
tors for belief, desire (goal) and intention.

Definition 4 Let 〈T ,≺,S,W,A,B, I〉 be a BDI interpre-
tation. Then a world w ∈ W satisfies a BDI-CTL formula
at a time point t in w as follows.
w |=t Bα if w′ |=t′ α whenever B(w, t, w′, t′)
w |=t Iπ if I(w′, t′) |=t′ ∀3do(π) whenever A(w, t, w′, t′)
w |=t Gγ if w |=t I(achieve γ)

A main feature of our approach is the semantic defini-
tion of intention, which explicitly relates intentions to ac-
tions eventually performed successfully (as defined by the
function I) in all alternative worlds the agent could actually
inhabit (as determined by the relation A). This captures the
intuition that an agent intends to execute its actions success-
fully in the future in all of a range of possible worlds, though
successful performance of the action is not guaranteed. The
definition therefore accommodates the asymmetry thesis of
Bratman (1987). The definition for goals, defining goals in
terms of the postconditions of plans, is specific to PRS-type
agents, which have no separate representation of goals.

We can now present the dynamic part of ADL. Analogous
to PDL, the language of ADL includes modal operators [π]
and 〈π〉 corresponding to each program π, and the semantics
of action is based on agent computation trees, extending the
approach of Harel (1979). For PRS-type agents, the seman-
tics of action can be defined without reference to intention
and intention update, so the relations A and I play no role
and are omitted. A situation in such an agent computation
tree thus corresponds to a state of the environment together
with the agent’s set of beliefs.

The semantics of ADL is based on PRS interpretations.
Each program is modelled as a set of agent computation
trees that arises by varying the initial situation. Each agent
computation tree b modelling a program π is a set of worlds,
one distinguished world b∗ modelling the execution of π in
the environment and other worlds for representing the epis-
temic alternatives of each situation in b∗: transitions in such
worlds correspond to “actions” of the form observe α where
α is a conjunction of literals which implies, for each literal in
the postcondition of π, either that literal or its complement.
The world b∗ may have non-final situations, situations in the
agent computation tree where execution can continue. Each
primitive action π is modelled as a set of agent computation
trees of depth 1; the agent computation trees for complex
programs are derived from these.

Definition 5 A PRS interpretation is a pair 〈S,R〉, where S
is a set of states and R is a set of agent computation trees
Rπ based on S, one such set for each program π, for which
for each primitive program π, the set of transitions for Rπ

is a subset of those for Rattempt π .

The program construction operators, sequencing, alterna-
tion and iteration, are modelled as operations on agent com-
putation trees. The operation for sequencing is a kind of
“concatenation” of worlds ⊕, analogous to concatenation of
computation sequences. For alternation, we utilize an opera-
tion ⊎ that merges two worlds if they have equivalent initial
situations (two situations are equivalent if they represent the
same state of the environment and beliefs of the agent). It-
eration is modelled as a transitive closure operation over ⊕.

Definition 6 The sets of agent computation trees Rachieve γ

for the actions achieve γ are defined as follows.

Rachieve γ(σ) =
⊎
{Rπ|γ : π ∈ Lγ(σ)}

Here Rachieve γ(σ) is the agent computation tree with root σ,
w|γ is defined as the maximal subworld of w all of whose
non-final situations satisfy γ, and Lγ(σ) is the set of max-

imal priority plans from the plan library L amongst those
applicable at σ and whose postcondition implies γ.

Finally, the satisfaction conditions for do(π) and [π]α are
defined as follows. Note that the definition for do(π) is
future-directed, in that do(π) is a CTL state formula cap-
turing a range of possible outcomes when executed in a sit-
uation. Thus do(π) captures the choice of actions available
to the agent at a point in time. The formula [π]α is quite dif-
ferent, stating that whenever π actually occurs in a situation,
α holds in the resulting situation.

Definition 7 Let 〈S,R〉 be a PRS interpretation and let
〈T ,≺,S,W,A,B, I〉 be a BDI interpretation. For a world
w ∈ W over the time tree 〈T ,≺〉 containing a time point
t, let wt be the subworld of w over 〈Tt,≺t〉, the subtree of
〈T,≺〉 generated from t. Then w satisfies do(π) and [π]α at
a time point t in w as follows.

w |=t do(π) if some prefix ofwt is isomorphic to a subworld
of b∗, where b is the agent computation tree in
Rπ whose root is equivalent to wt

w |=t [π]α if some prefix of a subworld ofwt is isomorphic
to a subworld of b∗, where b is the agent com-
putation tree in Rπ whose root is equivalent to
wt, and w |=u α for every situation wu in w
corresponding to a non-final situation in b∗

Computational Grounding

In this section, we illustrate the modelling of intention and
action using agent computation trees through an example
“waypoint following” agent. As in standard approaches to
both temporal logic and model checking, instead of working
directly with agent computation trees, we use agent compu-
tation graphs, which can be “unwound” to form trees. These
graphs are similar to the reachability graphs used in the SPIN

model checker, Holzmann (1997), which represent all situa-
tions that can be reached from a given initial situation.

Each situation in an agent computation graph is associ-
ated with both a state of the environment s (including possi-
bly an event e that occurs in the state) and a configuration of
the agent, which consists of two setsB and I , whereB is the
set of beliefs and I the set of intentions of the agent in that
situation. Situations representing epistemic alternatives of
the agent are, in addition, associated with a state of the envi-
ronment s′ consistent with the agent’s beliefs. Situations are
only identified if all these values are identical. Note that an
attempt is considered “failed” if its postcondition does not
hold in, and importantly, if some (unexpected) event occurs
in, the resulting situation.

Let us first present at the waypoint agent example before
returning to more general discussion. The waypoint agent
has a simple task: it must visit four waypoints, numbered
1–4, in order, whilst not running out of fuel. The agent is
capable of carrying out the actions visit i and refuel ; the re-
fuelling plans are used in response to a warn event in order
to direct the agent to a fuel depot where a refuel action is
attempted. There is fuel at locations 1 and 3 though this
knowledge is not explicit in the agent’s beliefs. Rather, the
agent is constructed to have four refuelling plans (two for

Figure 2: Agent Computation Graph for Waypoint Agent

the fuel at location 1, [refuel], applicable when the agent is
at location 1, [visit1; refuel] applicable otherwise, and two
similar plans for the fuel at location 3).

The agent always has knowledge of its position, repre-
sented as beliefs at i and ¬atj (j 6= i), and each visit i ac-
tion includes a correct observation of the agent’s position.
The agent initially has no belief about the fuel level, but af-
ter a refuel action, correctly observes the state of the fuel
tank, represented as a belief full (= ¬empty) or empty . For
simplicity, the visit i and refuel actions always succeed, ex-
cept that on occasion (here only at location 3) a warn event
occurs. A warn event can therefore occur even after a refu-
elling action (the refuel action may not provide enough fuel
to offset the warning).

In this example, the agent starts at location 1 (and believes
this) and has a full fuel tank (though does not believe this).
Thus the initial situation in the model has two B-related al-
ternatives (one where the tank is full and one where it is
empty), but just one A-related alternative (itself). A portion
of the model for the waypoint agent is shown in Figure 2 (A
and B-related links between a situation and itself are omit-
ted). An action labelling a transition corresponds to a prim-
itive action π such that do(π) is satisfied at the situation.

The example illustrates some of the finer points of PRS-
type agent programs. First, note that the set of intentions
in any configuration is indeed a set, so there can only be
one instance of any given plan from the plan library at the

same point in its execution in any given configuration. So,
for example, repeated fuel warnings that are not acted upon
have no effect on the set of intentions, since they would only
be adding another instance of the same plan. However, the
agent can fall into an infinite cycle when repeatedly acting
on a fuel warning that is followed by another fuel warning.
This is represented in the situation in the graph with a loop
to itself labelled warn . Notice also how successfully com-
pleted intentions are dropped by the agent even when not
directly acted upon, e.g. when the agent visits location 3 fol-
lowing a fuel warning as part of the refuelling plan, it does
not have to visit location 3 again as part of the main plan,
because the action visit3 is removed from this plan.

In Wobcke, Chee and Ji (2005), we presented an al-
gorithm for the construction of agent computation graphs
from PRS-like agent programs. The algorithm carries out a
breadth-first search of the possible environment states and
configurations, beginning with a given initial state and con-
figuration, generating A-related alternatives and their sets
of epistemic alternatives (B-related alternatives). The basic
idea of the algorithm is that, at each situation in the graph,
for each possible action the agent could attempt at that state
and for each possible outcome of executing that attempt (in-
cluding a possible new event), the search explores a new
actual situation. The algorithm keeps track of situations al-
ready visited, and terminates when no new situations are
discovered (which is not guaranteed in general, since there

can be infinitely many steps in iterative programs and expan-
sions of hierarchical plans).

The main criterion for the correctness of the algorithm is
the “computational grounding” condition for intention, that
a situation σ{s,e,B,I} in an agent computation graph satis-
fies an ADL formula Iπ iff π is a future action in I . Un-
fortunately, this condition will only hold in restricted cir-
cumstances, since in effect, it captures our version of Brat-
man’s strong consistency requirement for intentions and be-
liefs, which is built into the satisfaction conditions for in-
tentions in BDI interpretations, but is not necessarily part of
the reasoning capabilities of PRS-type agents (nor guaran-
teed by the designer of an agent program). The condition
effectively requires that whenever the agent can reach a sit-
uation in a certain configuration, whatever action the agent
chooses to attempt in that situation is possible to be exe-
cuted successfully in that situation. This latter requirement
is a domain-specific condition that a model checking system
could be used to establish. Proving this condition may re-
quire assumptions such as the finiteness of the agent’s plans
and of the agent computation graph.

Conclusion and Open Questions
We believe our approach offers an intuitive formalization of
a notion of intention suitable for modelling agents of a re-
stricted class, the PRS-type agents, that is computationally
grounded in that states of the agent are systematically re-
lated to their semantic counterparts. However, as previously
noted, both this class of agents and the logic we have used in
the modelling include simplifications, some merely for the
sake of conciseness, but others inherent in the formulation.
Thus a major open question is whether the approach can be
applied to extensions of the PRS-like architecture, e.g. those
based on alternative mechanisms for deliberation and action
selection, such as scheduling. The difficulty is to redefine
the semantic condition for achieve γ actions when the exe-
cution of a plan is interleaved with that of other plans, so as
to maintain the computational grounding condition.

Further generalizations to the PRS-type architecture re-
late to relaxing the assumption that agents execute only one
primitive action at a time. As we have recently discussed,
Wobcke (2006), closer examination of some of Bratman’s
examples shows that the relationship between intended ac-
tions and actions performed is not one-to-one, so the reason-
ing of a more complex agent would need to consider com-
plex execution strategies in relation to intentions (as in the
“Video Game” example where the agent adopts a complex
strategy in fulfilment of its intention), multiple primitive ac-
tions executed with the same “movement”, only some of
which are intended (as in the “Strategic Bomber” example,
where one movement achieves both bombing the munitions
plant and killing the children), and differentiating goals and
postconditions of plans (as in a plan to win the lottery, in
which the plan can be executed successfully even though the
goal of winning the lottery is not achieved).

A further outstanding issue is the development of a theory
of rationality for use with BDI agents that takes into account
the uncertainty involved in decision making, an issue that
receives comparatively little attention in Bratman’s theory.

References

Allen, J. F. 1990. Two Views of Intention: Comments
on Bratman and on Cohen and Levesque. In Cohen, P. R.,
Morgan, J. and Pollack, M. E., eds., Intentions in Commu-
nication. Cambridge, MA: MIT Press.

Bratman, M. E. 1987. Intention, Plans, and Practical Rea-
son. Cambridge, MA: Harvard University Press.

Bratman, M. E. 1990. What is Intention? In Cohen,
P. R., Morgan, J. and Pollack, M. E., eds., Intentions in
Communication. Cambridge, MA: MIT Press.

Cohen, P. R. and Levesque, H. J. 1990a. Intention is Choice
with Commitment. Artificial Intelligence 42:213–261.

Cohen, P. R. and Levesque, H. J. 1990b. Persistence, In-
tention, and Commitment. In Cohen, P. R., Morgan, J. and
Pollack, M. E., eds., Intentions in Communication. Cam-
bridge, MA: MIT Press.

Emerson, E. A. and Clarke, E. M. 1982. Using Branch-
ing Time Temporal Logic to Synthesize Synchronization
Skeletons. Science of Computer Programming 2:241–266.

Georgeff, M. P. and Lansky, A. L. 1987. Reactive Rea-
soning and Planning. In Proceedings of the Sixth National
Conference on Artificial Intelligence (AAAI-87), 677–682.

Harel, D. 1979. First-Order Dynamic Logic. Berlin:
Springer-Verlag.

Holzmann, G. J. 1997. The Model Checker SPIN. IEEE
Transactions on Software Engineering 23(5):279–295.

Pratt, V. R. 1976. Semantical Considerations on Floyd-
Hoare Logic. In Proceedings of the Seventeenth IEEE Sym-
posium on Foundations of Computer Science, 109–121.

Rao, A. S. and Georgeff, M. P. 1991. Modeling Rational
Agents within a BDI-Architecture. In Proceedings of the
Second International Conference on Principles of Knowl-
edge Representation and Reasoning, 473–484.

Rao, A. S. and Georgeff, M. P. 1992. An Abstract Archi-
tecture for Rational Agents. In Proceedings of the Third
International Conference on Principles of Knowledge Rep-
resentation and Reasoning, 439–449.

Singh, M. P. 1998. Semantical Considerations on Intention
Dynamics for BDI Agents. Journal of Experimental and
Theoretical Artificial Intelligence 10:551–564.

Wobcke, W. R. 2002. Modelling PRS-Like Agents’ Mental
States. In Ishizuka, M. and Sattar, A., eds., PRICAI 2002:
Trends in Artificial Intelligence. Berlin: Springer-Verlag.

Wobcke, W. R. 2006. An Analysis of Three Puzzles in the
Logic of Intention. In Sattar, A. and Kang, B.-H., eds., AI
2006: Advances in Artificial Intelligence. Berlin: Springer-
Verlag.

Wobcke, W. R., Chee, M. and Ji, K. 2005. Model Checking
for PRS-Like Agents. In Zhang, S. and Jarvis, R., eds., AI
2005: Advances in Artificial Intelligence. Berlin: Springer-
Verlag.

Wooldridge, M. J. 2000. Computationally Grounded Theo-
ries of Agency. In Proceedings of the Fourth International
Conference on Multi-Agent Systems, 13–22.

