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Abstract

In a conversational system, determining a user’s focus
of attention is crucial to the success of the system. Mo-
tivated by previous psycholinguistic findings, we are
currently examining how eye gaze contributes to au-
tomated identification of user attention during human-
machine conversation. As part of this effort, we inves-
tigate the contributing roles of various features that are
extracted from eye gaze and the visual interface. More
precisely, we conduct a data-driven evaluation of these
features and propose a novel evaluation metric for per-
forming such an investigation. The empirical results in-
dicate that gaze fixation intensity serves an integral role
in attention prediction. Fixations to objects are fairly
evenly distributed between the start of a reference and
1500 milliseconds prior. When combined with some
visual features (e.g., the amount of visual occlusion of
an object), fixation intensity can become even more re-
liable in predicting user attention. This paper describes
this empirical investigation of features and discusses the
further implication of attention prediction based on eye
gaze for language understanding in multimodal conver-
sational interfaces.

Introduction
Previous studies have shown that eye gaze is one of the re-
liable indicators of what a person is “thinking” about (Hen-
derson & Ferreira 2004). The direction of gaze carries infor-
mation about the focus of the user’s attention (Just & Car-
penter 1976). In human language processing tasks specifi-
cally, eye gaze is tightly linked to cognitive processing. The
perceived visual context influences spoken word recognition
and mediates syntactic processing (Tanenhouset al. 1995).
Additionally, directly before speaking a word, the eyes move
to the mentioned object (Griffin & Bock 2000). Not only is
eye gaze highly reliable, it is also an implicit, subconscious
reflex of speech. The user does not need to make a conscious
decision; the eye automatically moves towards the relevant
object, without the user even being aware.

Motivated by these psycholinguistic findings, we are cur-
rently investigating the role of eye gaze in human-machine
conversation, in particular for spoken language understand-
ing. As a first step in our investigation, we are currently
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examining how eye gaze contributes to automated identi-
fication of user attention during human-machine conversa-
tion. This investigation differs from previous work in two
aspects. First, previous studies examine the use of eye gaze
as an active mode of input that controls the navigation of
the interface. This work has shown that gaze fixation in-
tensity is an important feature for predicting user attention
(Qvarfordt & Zhai 2005). The work reported here addresses
a different scenario, where speech is the main mode of in-
teraction, while eye gaze is a naturally occurring byproduct.
Second, unlike previous investigation focusing on the role
of eye gaze in language production (Meyer & Levelt 1998;
Griffin 2001), our work is conducted in a conversational set-
ting that involves interaction between a user and a machine.
These unique settings, which have received less attention,
apply to a range of realistic and important problems that in-
volve speech communication between a user and a graphical
display. This paper investigates the role of eye gaze in this
important setting. In particular, we address the following
questions:
• Question 1: How are pertinent eye gaze fixations tempo-

rally distributed relative to spoken utterances?

• Question 2: What effect do different representations of
gaze fixation intensity have on performance of the user
attention prediction task?

• Question 3: Can auxiliary visual features further enhance
the reliability of the prediction based on gaze fixation in-
tensity? If so, what effect do different representations of
these auxiliary features have on performance of the user
attention prediction task?

• Question 4: What are appropriate evaluation metrics for
measuring different features’ reliability for the attention
prediction task?
To gain an overall understanding of this problem, we con-

ducted a user study to collect eye gaze data from subjects
interacting with a multimodal conversation system. We in-
vestigated the role of key gaze features (e.g., fixation inten-
sity) and auxiliary visual features (e.g., object size and vi-
sual occlusion) in attention prediction based on a Bayesian
Logistic Regression model. Our results indicate that fixation
intensity is the foremost important indicator of user attention
in this setting. The visual occlusion feature, which takes into
consideration physically overlapping objects on the display,



can be used to modify the fixation intensity measurement
for more reliable attention prediction. Although intuitively
the size of the object on the graphical display and the fre-
quency of fixation for an object can affect the measurement
of fixation intensity, these two features have shown no sig-
nificant effect in attention prediction. We believe these find-
ings will enable better recognition of user attention during
human-machine conversation.

This will, in turn, have further implications for construct-
ing artificial assistants designed to interact with humans.Im-
proving an artificial assistant’s understanding of which ob-
jects are the focus of conversation will allow these systems
to make fewer unexpected and erroneous responses. This
will speed up the dialog and improve task completion rate.
Additionally, users will have more trust that the system is
making correct interpretations of their speech and thus will
be more apt to continue using such artificial assistants.

Related Work

Eye gaze has been extensively studied in psycholinguistic
comprehension tasks. Some psycholinguistic studies have
focused on the role of eye gaze in language production tasks.
Meyer et. al. (1998) studied eye movements in an object
naming task. It was shown that people fixated objects prior
to naming them. Objects that are difficult to name were fix-
ated for a longer period of time than those that are easy to
name. The Griffin (2001) study showed that when multi-
ple objects were being named in a single utterance, speech
about one object was being produced while the next object
was fixated and lexically processed.

In addition to psycholinguistic eye gaze studies, there
have been several attempts to use eye gaze to facilitate in-
teraction in human-machine communication. Most of these
attempts focus on either using eye gaze to directly manip-
ulate an interface via pointing or using eye gaze as a dis-
ambiguation tool for multimodal interfaces. For example
Jacob (2000) explores the use of eye gaze as a substitute
for pointing in a virtual environment. This study shows
that interaction using eye gaze is faster than pointing, but
causes a decline in memory recollection of spatial informa-
tion. Kaur, et. al. (2003) explores the temporal alignment
between eye gaze and speech during a simple on-screen ob-
ject movement task, which combines gaze—as a pointing
mechanism—with speech. These results have shown that
the eye fixation that most likely identifies the object to be
moved occur, on average, 630 milliseconds (ms) before the
onset of the commanding utterance. In the iTourist project,
Qvarfordt et. al. (2005) attempt to take a step toward using
eye gaze as an integrated channel in a multimodal system.
They attempt to determine object activation as a user views a
map interface designed to facilitate a trip planning task. As
people gaze at objects on the screen, an “arousal” score is
calculated for each object. Once this score reaches a prede-
fined threshold, the object becomes activated and the system
provides information about this object to the user. In each of
these scenarios eye gaze is knowingly used by a participant
as an active mode of input.

A Data-driven Approach
To examine the questions raised earlier, we employed a
data-driven approach that is based on the logistic regression
model. In this section, we first describe the important fea-
tures that are considered in this investigation and then give
a brief introduction to the logistic regression model that em-
ploys these features to perform the attention prediction task.

Relevant Features

Fixation Intensity Gaze fixation has been shown to be
closely tied to user attention. Fixation intensity can be
crudely defined as the length of a fixation upon an object in
a visual scene. Generally, long fixations signify that a user
is paying attention to this object. This increase in likelihood
of attention increases the likelihood that this object willbe
referenced in the user’s speech. Here, we describe four dif-
ferent representations of the fixation intensity measure. The
reason to consider these variations is to evaluate their poten-
tially different impact and reliability for prediction of user
attention. We identified the following variations:

• Absolute Fixation Intensity (AFI): AFI is the amount of
time spent fixating on an object during a particular time
window W . The time window considered in this study
ranges from onset of a spoken reference to 1500 ms prior
to the onset. Objects that are fixated for a long period of
time are considered to be more likely to be activated than
those fixated for a short period of time.

• Relative Fixation Intensity (RFI): Given a time window
W , RFI is the ratio between the AFI of a candidate object
and the maximal AFI inW . An object may have a low
AFI, but still have a high RFI if the maximal AFI inW is
relatively low.

• Weighted Absolute Fixation Intensity (WAFI): Previous
language production studies have shown that the mean ob-
ject fixation occurs between 630 (Kauret al. 2003) and
932 (Griffin & Bock 2000) ms before it is referenced,
depending on the task and domain. Fixations made to ob-
jects occurring near the mean are more indicative of user
attention than other fixations. The WAFI measure takes
this factor into consideration by weighting the fixation du-
rations based on a skew-normal distribution.

• Weighted Relative Fixation Intensity (WRFI): WRFI is
the ratio between WAFI of an object and the maximal
WAFI in a particularW .

While fixation intensity is likely to be the most important
factor, we hypothesize that other auxiliary features can also
contribute to the eye gaze behavior and thus the prediction
of attention. We discuss those features next.

Object Size When users interact with a graphic display,
the size of the object on the display can potentially affect
user eye gaze behavior, and thus affect the prediction of at-
tention. For example, it is difficult to fixate on small objects
for long periods of time. People instinctively make small
jerky eye movements. Large objects are unaffected by these
movements because these movements are unlikely to escape



the object boundary. Thus our hypothesis is that small ob-
jects with a lower fixation intensity are still likely to be the
attended objects (i.e., be activated by the eye gaze). To take
this effect into consideration, we use the object size to rep-
resent the area of a candidate object relative to a baseline
object (e.g., the largest object in the scene). The values for
this feature are computed by finding the area of the small-
est rectangle that fully encompasses a particular object. The
object size feature is normalized by taking a ratio of a can-
didate object to a baseline object (the largest object in the
visual scene).

Visual Occlusion In a graphical display, it is likely that
objects overlap with one another. The visual occlusion of an
object represents how much of this object is obstructed (by
other objects) from the user’s viewpoint. We hypothesize
that when user eye gaze happens to simultaneously fixate on
two overlapping objects, the user is likely to be more inter-
ested in the object appearing in front. Objects in the back
are less likely to be attended. This aspect can be considered
on either a fixation level or a time window level.

When considering visual occlusion on a fixation level, this
feature can be used to clarify ambiguous fixations. Ambigu-
ous fixations are those for which a single unique object can-
not be determined. Fixations are partially disambiguated by
removing all objects that are visually occluded by another
object within the duration of this fixation. Unfortunately,
this does not completely disambiguate fixations because a
fixation may cover the area of two non-overlapping objects
if these two objects are very close together.

When considering visual occlusion on a time window
level—as a group of consecutive fixations in a particular
time window—we calculate the amount of visual occlusion
for each object during a particular time window. To take
this aspect into consideration, we can use the following two
variations of this feature:

• Absolute Visual Occlusion: the area of an object that is
obstructed from vision by objects that were fixated during
time windowW .

• Relative Visual Occlusion: the percentage of an object
that is obstructed from vision. This value is equivalent to
the ratio between Absolute Visual Occlusion and Size for
a particular object.

It is important to note the difference between representing
visual occlusion on a fixation level vs. a time window level.
First, two objects may be considered visually occluded dur-
ing the entire time window, but not during any fixation in
W . This occurs, when two overlapping objects are fixated
duringW , but never at the same time. Notably, if an object
is visually occluded during any fixation inW , its Absolute
Visual Occlusion and Relative Visual Occlusion measures
must have non-zero values. The other important difference
is how this feature is used in our model. When considering
visual occlusion on a time window level, this feature is one
of the features used to create models for attention predic-
tion. However, when considering visual occlusion on a fixa-
tion level, it is not directly used in model creation. Instead,
it is used to preprocess the data, disambiguating indistinct

fixations supplied to the logistic regression framework.

Fixation Frequency Fixation frequency, which represents
the number of times an object is fixated inW , may be an
important feature to consider (2005). For example; if a user
looks at an object, then looks away from it, and then looks
back; the fixation frequency for this object will be 2. When
a user looks back and forth toward an object, it is likely that
the user is interested in this object.

Logistic Regression Model
Approximately half of all eye gaze fixations made during
interaction with a multimodal conversation system are ir-
relevant to the attention prediction task. Additionally, even
when a fixation is determined to be relevant it can encom-
pass multiple objects. This makes predicting object activa-
tion quite difficult. However, several features exist to help
this process. We applied the logistic regression model to ex-
amine how these features contribute to automated prediction
of attention.

We formulate the attention prediction task as anobject
activation problem. This task involves identifying for each
object on the graphic display, whether it is activated or not.
An object is considered activated if it is, indeed, the focusof
attention. Fixation intensity and the auxiliary visual features
for a particular object during a specific time frame comprise
the feature set for this problem, while a boolean value spec-
ifying if this object is deemed to be the focus of attention by
a human annotator comprises the class label.

The binary decision of whether an object is activated
or not seems to be too coarse to reflect the usefulness of
our features. Therefore, instead of attempting to determine
whether an object is activated or not, we determine the like-
lihood that an object is activated. This method allows us to
make a more fine-grained evaluation because an object may
have many more possible ranking scores than boolean val-
ues.

To serve our purpose, we chose the logistic regression
model in our investigation because this model can be used
combine an unlimited number of continuous numerical fea-
tures for predicting object activation and because it directly
computes the probability of an object to be activated—this
value can be used to rank object of activations. This ap-
proach computes a model that best describes the data while
minimizing assumptions made about how the data is gen-
erated (maximizing entropy). It can be used to objectively
determine the reliability of various features for the object ac-
tivation task. Features that consistently cause the model to
achieve higher performance can be considered more reliable.

Logistic regression uses a well-known objective function
to determine the likelihood that a given data instance belongs
to a particular class. This model assumes that the log-ratio
of the positive class to the negative class can be expressed as
a linear combination of features as in the following equation:

log

(

p(y = true|−→x )

p(y = false|−→x )

)

= −→x −→w + c

where the following constraint holds:

p(y = true|−→x ) + p(y = false|−→x ) = 1



Here, y refers to the class label (in our case, activated or
not activated),−→x refers to the feature vector, and−→w andc
are parameters to be learned from the data.−→w refers to the
weights associated with features.

Thus, the likelihood for a particular object to be activated
(y = true) given a set of features−→x can be expressed as
follows:

p(y = true|−→x ) =
1

1 + e−
−→
x
−→
w−c

(1)

This likelihood will allow us to rank object activation.
Based on the general model of logistic regression, in

our current investigation, we use the following features dis-
cussed earlier: fixation intensity, visual occlusion, object
size, and fixation frequency.

Features are combined in the logistic regression frame-
work as show in Equation (1) (So 1993; Genkin, Lewis, &
Madigan 2004).

Activation Model Training The Bayesian Logistic Re-
gression Toolkit (Genkin, Lewis, & Madigan 2004) pro-
vided by Rutgers University is used to create computational
models that rank objects of interest in a given time window
W based on their likelihood of activation. In the training
phase the system automatically learns the influence weights
of our various features that maximize this function’s corre-
spondence with our data (or equivalently, minimizes devia-
tion from our data). Given an unknown data instance, the re-
sulting model provides the likelihood that this data instance
belongs to theactivated class.

Data Collection
User Study
We have conducted user studies to collect data involving
user speech and eye gaze behavior. In these studies, users
interact with a graphical display to describe a scene and an-
swer questions about the scene in a conversational manner.
The Eyelink II head-mounted eye tracker sampled at 250 Hz
is used to track gaze fixations.

Experimental Design A simplified conversational inter-
face is used to collect speech and gaze data. Users view a
static scene of a room containing objects such as a door, a
bed, desks, chairs, etc. Some of the objects in the room are
arranged in a typical fashion, while other objects are out of
place. Many objects visually overlap other objects. Users
are asked to answer a series of 14 questions about various
objects in the scene. These questions range from factual
questions about particular objects to open-ended questions
about collections of objects. The following are three exam-
ples of such questions:

• Is there a bed in this room?

• What do you dislike the most in this room?

• How would you like to change the furniture in the room?

The scene used in this experiment is a 2-dimensional
snapshot of a 3-dimensional virtual bedroom. This scene
is shown in Figure 1. The rationale behind using this scene

lies in the fact that it contains many distinct objects, mostof
which users are familiar with. Each object is defined as a
Region of Interest and forms a candidate for activation dur-
ing each user utterance. No visual feedback is given to the
user about which object is activated.

Data Corpus
The collected raw gaze data is extremely noisy. The raw
data consists of the screen coordinates of each gaze point
sampled at every four milliseconds. As can be seen in Fig-
ure 1(a), this data is not very useful for identifying fixated
objects. The raw gaze data can be processed to eliminate in-
valid and saccadic gaze points, leaving only pertinent eye
fixations. Invalid fixations occur when subjects look off
the screen. Saccadic gaze points occur during ballistic eye
movements between fixations. Vision studies have shown
that no visual processing occurs during saccades (i.e., sac-
cadic suppression) (Matin 1974). In addition, to remov-
ing invalid gaze points, the data is smoothed by aggregating
short, consecutive fixations. It is well known that eyes do
not stay still, but rather make small frequent jerky move-
ments. In order to best determine fixation locations, five
consecutive gaze locations are averaged together to identify
fixations. The processed eye gaze data can be seen in Figure
1(b).

The collected eye gaze data consists of a list fixations,
each of which is time-stamped and labeled with a set of in-
terest regions. Speech data is manually transcribed and time-
stamped using the Audacity toolkit. Each referring expres-
sion in the speech utterance is manually annotated with the
correct references to either a single object (region of interest
found in the eye gaze data) or multiple objects.

The collected data are further processed and segmented
into a list of frames. Here a frame denotes a list of data in-
stances occurring in the same time windowW . Currently,
we have setW to [0..1500] ms prior to the onset of an utter-
ance referring to an on-screen interest area. However, other
time windows are possible. Note that a single frame may
consist of multiple data instances. In total, we have collected
449 frames containing 1586 data instances.

For each frame, all features are extracted from the eye
gaze data and labeled using the id of the referenced object.
The fixation intensity, fixation frequency, and visual occlu-
sion are calculated within a particular time window from the
gaze data log. These features along with visual occlusion
are calculated relative toW and all of the objects that are
fixated duringW . This procedure can be more easily under-
stood with the following example:

Imagine that thedresser object is referenced at time 6050
ms. This means that time windowW is set to [4550..6050].
During this time, imagine that the user fixatesdresser
throughout most ofW , looks away, and fixates it again. Dur-
ing W , the user also looks atbed, bed cabinet and photo
frame. The four resulting data instances for this frame are
shown in Table 1.

Empirical Results
In this section, we present the empirical results that address
the four questions raised in the Introduction Section. Since



(a) Raw fixation on the display (b) Smoothed fixation on the display

Figure 1: The 3D room scene for user studies and eye fixations on the interface

Object dresser photo bed bed
frame cabinet

AFI 0.6020 0.0953 0.2807 0.1967
RFI 1.0000 0.1584 0.4662 0.3267
Relative Visual 0.0000 0.0000 0.0000 0.1500
Occlusion
Size 0.4312 0.0214 1.0000 0.0249
Frequency 2 1 1 1
Class Label TRUE FALSE FALSE FALSE

Table 1: Sample Data Frame with Four Instances

we need to use some metrics to evaluate the performance
on attention prediction based on different features, we first
explain how to apply the activation model to our dataset and
present a novel evaluation metric for the object activation
problem (addressesing the fourth question). We then discuss
the answers to the first three questions in turn.

Application of Activation Model
Here we discuss how to apply an activation model to rank
objects of interest in a given time window (represented as a
frame of unclassified data instances). As we have already
mentioned, an activation model can provide the probability
that a particular data instance belongs to theactivated class.
Given a data frame associated with a particular time window,
the model is applied to each instance in the frame. The data
instances are then ranked in descending order based on their
likelihood of activation as determined by the model. Note
that our data collection scheme guarantees that each data in-
stance in a particular data frame must correspond to a unique
object of interest. Thus, the result is a ranked list of objects.

Q4: Evaluation Metrics
To evaluate the impact of different features on attention pre-
diction, we borrowed the evaluation metrics used in the
Information Retrieval (IR) and Question Answering (QA)
fields. In these fields, three key metrics have been widely

used to assess system performance are Precision, Recall,
and Mean Reciprocal Ranking (MRR). In IR, Precision mea-
sures the percentage of retrieved relevant documents out of
the total number of retrieved documents and Recall mea-
sures the percentage of retrieved relevant document out of
the total number of relevant documents. In QA, MRR mea-
sures the average reciprocal rankings of the first correct an-
swers to a set of questions. For example, given a question,
if the rank of the first correct answer retrieved isN , then
the reciprocal ranking is1/N . MRR measures the average
performance across a set of questions in terms of their recip-
rocal rankings.

Given these metrics, we examined whether they could be
applied to our problem of attention prediction. In the context
of attention prediction, thedocument retrieved or answer re-
trieved should be replaced byobjects activated. For exam-
ple, the precision would become the percentage of correctly
identified activated objects (i.e., those objects are indeed the
attended objects) out of the total number of activated ob-
jects. The reciprocal ranking measurement would become
the reciprocal ranking of the first correctly activated object.

Since the result from the logistical regression model is
the likelihood for an object to be activated, it is difficult
to precisely determine the number of objects that are acti-
vated based on the likelihood. Presumably, we can set up
a threshold and consider all the objects with the likelihood
above that threshold activated. However, it will be difficult
to determine such a threshold. Nevertheless, the likelihood
of activation can lead to the ranking of the objects that are
likely to be activated. Thus, the desired evaluation metric
for this investigation should determine how well our model
ranks the objects in terms of their possible activation. For
these reasons, we decided that the precision and recall met-
rics are not suitable for our problem and MRR seems more
appropriate.

Even with the MRR measurement, there is still a problem.
MRR in QA is concerned with the reciprocal ranking of the
first correct answer; but, here in attention prediction, mul-
tiple objects could be simultaneously attended to (i.e., acti-



Object dresser lamp bed lamp bed
Class Label FALSE TRUE TRUE FALSE
Rank 1 2 3 4

Table 2: Sample Test Data Frame with Four Ranked In-
stances

vated) in a given frame. We need to consider the reciprocal
ranking for each of these objects. Therefore, we extended
the traditional MRR to anormalized MRR (NMRR) which
takes all attended objects into consideration. The normal-
ized MRR is defined in Equation (2)

NMRR =
MRR

UpperBoundMRR
(2)

where the upper bound MRR represents the MRR of the best
possible ranking.

For example, suppose the logistic regression model ranks
the likelihood of activation in a frame of four objects as
shown in Table 2. Among these objects, onlylamp and
bed lamp are referenced in user speech within this frame. In
this case,

NMRR =
1/2 ∗ (1/2 + 1/3)

1/2 ∗ (1 + 1/2)
= 0.556

Here, the numerator represents the mean reciprocal ranking
of the predicted activations in this frame. The denomina-
tor represents the MRR of the best possible ranking, which
in this case would rank lamp and bed lamp as the top two
ranked objects.

With the evaluation metrics defined, next we report em-
pirical results that address the remaining three questions.

Q1: Temporal Distribution of Gaze Fixations
Previous psycholinguistic studies have shown that eye gaze
fixations to an object in a visual scene occur, on average, be-
tween 630 to 932 ms before the onset of a spoken reference
in a language production task. Pertinent eye fixations—that
is, those to objects that will be referenced—can range any-
where from 1500 ms before onset up until onset of a spoken
reference. Knowing the range and the mean does not provide
sufficient information about the nature of pertinent eye fixa-
tions in our complex scenes. We conducted an investigation
to obtain a more accurate picture of the temporal distribu-
tion of eye gaze fixations relative to the onset of a spoken
reference in a multimodal conversational domain.

Figure 2 shows a histogram reflecting the percentage of
pertinent fixations. Here the X-axis represents the starting
point of a fixation within time window W, occurring prior
to the onset of a reference to an object. This value ranges
from 1500 ms before onset until precisely at onset. Fixations
are clumped together into interval bins of 100 ms. The Y-
axis represents the proportion of fixations that contain an
object matching the referenced object. This proportion was
calculated with the following procedure:

1. Each fixation is classified as pertinent or irrelevant. Irrel-
evant fixations are those that do not contain an object that

is reference within time window W. Note that a several
objects may be fixated during a single fixation. Also, note
that this classification occurs relative to a particular spo-
ken reference. Thus, a particular fixation can be classified
as pertinent for one reference, but irrelevant for another.

2. Each fixation is classified into a bin of length 100 ms.
The bins represent the amount of time that passes between
the start of an eye fixation and an object reference. For
example, the bin labeled 200 contains all fixations starting
between 200 and 300 ms prior to an object reference.

3. To calculate the percentage, the number of pertinent fixa-
tions in each bin is divided by the total number of fixations
in this bin.

Figure 2: Proportion of Pertinent Eye Fixations Divided into
100 ms Interval Bins

It is important to determine which time periods are most
likely to generate a pertinent fixation. In order to determine
this, we found the mean (µ) time weighted by the likeli-
hood of a pertinent fixation appearing during this time bin.
Assuming that the data represents a skew-normal distribu-
tion, we also found the standard deviation (σ2), and skew-
ness (γ1). We obtained the following results:µ = 758,
σ2 = 466, andγ1 = −1.22.

The large standard deviation indicates that pertinent fixa-
tions are fairly evenly distributed during the 1500 ms time
interval prior to a spoken reference. Nevertheless, as can be
seen from Figure 2, there is a general trend that a fixation is
more likely to be pertinent close to the mean rather than far
from the mean. The fixation data is shown to have a nega-
tive skew. That is, the left (lower value) tail of the graph is
longer. Thus, a fixation is more likely to be pertinent if its
to the right of the mean—further from the spoken reference,
but still within the 1500 ms time range—than to the left.

Q2: Evaluation of Fixation Intensity
To evaluate the role of fixation intensity (i.e., Question 2)
and auxiliary features (i.e., Question 3) in attention predic-
tion, we conducted a five-fold cross validation. More specif-
ically, the collected data are randomly divided into five sets.
Four of these sets are used for training, while the remain-
ing set is used for testing. This procedure is repeated five
times and the averaged results are reported in the following
sections. The object activation models were created using
two data sets. The first is the original data set described in



NMRR evaluation
Fixation Intensity Original Preprocessed Data Set
Variation Data Set (Disambiguated Fixations)
AFI 0.661 0.752
WAFI 0.656 0.745
RFI 0.652 0.754
WRFI 0.650 0.750

Table 3: Evaluation of Fixation Intensity Weighting

Data Corpus section, while the second is a version of this
same data set that is preprocessed to partially disambiguate
fixations to multiple objects. Fixations in the preprocessed
data set are disambiguated using the visual occlusion feature
considered on a fixation level.

In this section we compare object activation models cre-
ated by using each of the four variations of the fixation in-
tensity measure. The goal here is to determine the effect
of weighting fixations based on their distributions of start-
ing times relative to a spoken reference versus treating every
fixation equally. First, we discuss the methodology for cre-
ating weighted fixation intensity measures. Then we present
results comparing the various object activation models and
discuss their implications.

To create our two weighted fixation intensity measures
(WAFI and WRFI) we use the statistics acquired about the
distribution of fixations starts. More precisely, we weight
each fixation by a skew-normal density function (Azzalini
& Valle 1996) with mean, standard deviation, and skewness
discovered while addressing Question 1.

The results of each model constructed from its corre-
sponding variation of the fixation intensity feature are are
shown in Table 3. These results clearly indicate that there
is very little variation among the different representations of
fixation intensity across each of the two datasets. The first
thing to note is that this lack of variation is to be expected
between relative and absolute versions of the same fixation
intensity measurement (AFI vs. RFI and WAFI vs. WRFI).
This is because the evaluation conducted here is based on
mean reciprocal ranking. Given two objects in a single time
frame W, the one with the higher absolute fixation inten-
sity is guaranteed to have a higher relative fixation intensity.
Thus, the object ranking remains unchanged.

The effect of weighting fixation intensity seems to de-
crease performance of the object activation task. This de-
crease is very slight and likely insignificant. Nonetheless,
this result is somewhat vexing as we expected that weight-
ing the fixation intensity would improve prediction of ob-
ject activation. One possible explanation for this lack of im-
provement is that fixations are fairly evenly distributed dur-
ing each time frame W. This makes the weight function very
flat and virtually insignificant. Another possibility is that the
distribution of fixation starts has multiple peaks rather than
a single peak at the mean as is the assumption of the normal
distribution. Thus, neither the normal distribution nor the
skew-normal distribution accurately models the distribution
of eye fixation starts relative to spoken object references.

Q3: Evaluation of Auxiliary Visual Features
In this section we evaluate the performance of auxilliary vi-
sual features in the object activation task. Configurationsof
various combinations of these features with fixation inten-
sity are examined. Given that the effect of weighting fixation
intensity is insignificant, only AFI and RFI are considered.
The results are shown in Table 4 and discussed separately
for each feature.

Visual Occlusion As Table 4 shows, all configurations
that use the preprocessed data set, which augments the fix-
ation intensity measurement with a fixation-level account
of visual occlusion, perform significantly better than their
counterparts that use the original data set. The only differ-
ence between the preprocessed and original data sets is the
incorporation of the fixation-level visual occlusion feature.
This clearly means that visual occlusion is a reliable feature
for the object activation prediction task. However, it is also
clear that the representation of visual occlusion is very im-
portant. Adding the frame-based visual occlusion feature to
the logistic regression model (rows 2 and 3) has almost no
effect. It may be possible that a better representation for vi-
sual occlusion remains unexplored.

On average, the effect of both absolute and visual occlu-
sion is more significant for the original data set (especially
when RFI is used). This is not surprising because the pre-
processed data set partially incorporates the visual occlu-
sion feature, so the logistic regression model does not get
an added bonus for using this feature twice.

Object Size The object size feature seems to be a weak
predictor of object activation. Using only the fixation inten-
sity and object size features (row 4 of Table 4), the logistic
regression model tends to achieve approximately the same
performance as when the object size feature is excluded.

This result is quite unexpected. As we have already men-
tioned, human eye gaze is very jittery. Our expectation is
that small objects can have a low fixation intensity and still
be activated. Thus, in our model small objects should need a
lower fixation intensity to be considered as activated than do
large objects. Our results do not support this general trend.
A possible explanation is that this trend should only be ap-
parent when using a visual interface with a mixture of large
and small objects. In our interface, most of the objects are
fairly large. For large object, jittery eye movements do not
alter fixation intensity because the eye jitter does not cause
fixations to occur outside of an object’s interest area bound-
ary. Even when some objects are smaller than others, they
are not sufficiently small to be affected by eye jitter. Thus,it
is likely that the size feature should only be considered when
comparing fixation intensities of sufficiently small objects to
larger counterparts. At this point, it is unclear how small is
sufficiently small.

Fixation Frequency Fixation frequency is a weak predic-
tor of object activation. Incorporating the fixation frequency
feature into the Bayesian Logistic Regression framework
creates models that tend to achieve worse performance than



Row Features Original Preprocessed Data Set
Data Set (Disambiguated Fixations)

AFI RFI AFI RFI
1 Fixation Intensity Alone 0.661 0.652 0.752 0.754
2 Fixation Intensity + Absolute Visual Occlusion0.667 0.666 0.758 0.754
3 Fixation Intensity + Relative Visual Occlusion 0.667 0.669 0.762 0.751
4 Fixation Intensity + Size 0.656 0.657 0.763 0.759
5 Fixation Intensity + Fixation Frequency 0.653 0.644 0.743 0.756
6 All features (Absolute Visual Occlusion) 0.662 0.663 0.768 0.760
7 All features (Relative Visual Occlusion) 0.660 0.669 0.764 0.768

Table 4: Evaluation of Auxiliary Features

when this feature is left out. At best, models using fixation
frequency achieve a comparable performance to those not
using it. According to Qvarfodt (Qvarfordt & Zhai 2005),
fixation frequency is an important feature to consider be-
cause one way of signifying interest in objects is looking
back and forth between two or more objects. In this case,
each of these objects would have a fairly low fixation inten-
sity as time is spent across multiple objects, but each of the
objects should be considered activated. In our user studies,
however, we did not find this user behavior. This behavior is
likely to be specific to the map-based route planning domain
where users often need to look back and forth between their
starting and destination location.

Conclusion

We have shown that fixations that are pertinent in the object
activation problem are fairly evenly distributed between the
onset of a spoken reference and 1500 ms prior. Fixation in-
tensity can be used to predict object activation. Weighting
fixations based on a skew-normal distribution does not im-
prove performance on the object activation task. However,
preprocessing our fixation data by including the fixation-
level visual occlusion feature considerably improves relia-
bility of the fixation intensity feature. Moreover, since per-
formance is so sensitive to feature representation, there is
much potential for improvement. We have also presented
the NMRR evaluation metric that can be used to evaluate
the quality of a ranked list.

This work can be extended to combine our activation
model with spoken language processing to improve inter-
pretation. This question can be addressed by constructing
an N-best list of spoken input with an Speech Recognizer
(ASR). The speech-based ranked lists of utterances and the
gaze-base ranked lists of activations can be used to mutu-
ally disambiguate (Oviatt 1999) each other in order to more
accurately determine the object(s) of interest given an utter-
ance and a graphical display. This knowledge can be used
to plan dialog moves (e.g. detect topic shifts, detect low-
confidence interpretations, determine the need for confirma-
tion and clarification sub-dialogs, etc.) as well as to perform
multimodal reference resolution (Chaiet al. 2005). We be-
lieve that this work will open new directions for using eye
gaze in spoken language understanding.
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