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Abstract

Intelligent planning algorithms such as the Partially Observ-
able Markov Decision Process (POMDP) have succeeded in
dialog management applications (Roy, Pineau, & Thrun 2000;
Williams & Young 2005; Williams, Poupart, & Young 2005)
because they are robust to uncertainties in human-robot inter-
action. Like all dialog planning systems, POMDPs require an
accurate model of what the user might say and how he wishes
to interact with the robot. In the POMDP framework, the
user’s vocabulary and preferences are generally specified us-
ing a large probabilistic model with many parameters. While
it may be easy for an expert to specify reasonable values for
these parameters, gathering data to specify the parametersac-
curatelya priori is expensive.
In this paper, we take a Bayesian approach to learning the user
model while simultaneously refining the dialog manager’s
policy. First, we show how to compute the optimal dialog
policy with uncertain parameters (in the absence of learning),
along with a heuristic that allows the dialog manager to intel-
ligently replan its policy given data from recent interactions.
Next, we present a pair of approaches which explicitly con-
sider the robot’s uncertainty about the true user model when
taking actions; we show these approaches can learn user pref-
erences more robustly. A key contribution of this work is the
use of “meta-actions,” queries about what the robot should
have done, to discover a user’s dialog preferences without
making mistakes that may potentially annoy the user.

Introduction
Spoken dialog managers allow for natural human-robot in-
teraction, especially in environments where the user has lim-
ited mobility. However, several issues can make it diffi-
cult to determine how the dialog manager should react to a
user. Voice recognition technology produces noisy outputs,
and even with perfect voice recognition, the dialog manager
must decipher the user’s intent in the face of linguistic ambi-
guity. As the dialog manager attempts to discover what the
user wants, it must also be sensitive to the types of queries
it makes: each user will have different preferences on what
type of questioning they will tolerate before they become
frustrated with the system.

Partially Observable Markov Decision Processes
(POMDPs) are a planning technique that have led to
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Figure 1: Our dialog manager allows more natural human commu-
nication with a robotic wheelchair.

more robust dialog management because they effec-
tively handle uncertainty and ambiguity in the dia-
log (Roy, Pineau, & Thrun 2000; Williams & Young 2005;
Williams, Poupart, & Young 2005). The typical POMDP
model operates by assuming that the user’s intent, or “state”
is hidden from the robot. Instead, the user’s intent is
inferred from a stream of noisy or ambiguous observations,
such as utterances from a speech recognition system. Given
a reward model of the user’s interaction preferences, the
dialog manager chooses actions to maximize the expected
long-term reward. By choosing actions based on how
clearly it understands the user, the system can model the
value of asking additional confirmation questions now to
avoid doing an incorrect action later.

The ability to manage the trade-off between gathering in-
formation and gathering rewards have made POMDP dialog
managers particularly effective in health care domains (Roy,
Pineau, & Thrun 2000; Hoeyet al. 2005). Especially
in these populations, the observed utterances may be quite
noisy, and the cost of dialog errors may be high because the
dialog may involve large motions of assistive devices. One
example is our our robotic wheelchair (Figure 1). The cost
of misunderstanding a desired destination—and having the
wheelchair start going to the wrong location—is greater than
the annoyance of having the user repeat a request.

The POMDP has been shown to manage the dialog well
if it has an accurate user model, and most POMDP dialog-
management research (Williams, Poupart, & Young 2005;



Pineau, Roy, & Thrun 2001; Williams & Young 2005) as-
sumes that such a model is available. In domains where large
amounts of data are available—for example, automated tele-
phone operators—an accurate user model may be relatively
easy to obtain. For human-robot interaction, however, col-
lecting sufficient user data to learn a statistically accurate
model may take may require a lot of time from users, and
specifying the model from expert knowledge may also be
difficult. For example, how does one specify the probability
that the user appeared to ask for the time when they actually
wanted the weather? Just as tricky is specifying a user’s dia-
log preferences: how often should the robot confirm a user’s
utterances before going to the specified location?

Some learning algorithms have designed systems to train
parameters from scratch while maintaining reasonable di-
alogs (Litmanet al. 2000), and in general there are several
reinforcement learning approaches for planning in unknown
environments. These approaches, however, do not take ad-
vantage of the fact that while specifying an accurate model
may be difficult, it is often possible to specify a reasonable
model from domain knowledge. We take a Bayesian ap-
proach to reinforcement learning, which allows us to include
any domain knowledge we may have as part of our initial be-
lief over possible user models.

Another issue with using the standard reinforcement
learning model in a dialog manager is that the user must
provide the robot with reward feedback at every stage of the
training process; in this way the dialog manager builds a
model of the user’s preferences. This training process can
be tedious, and people often find it difficult to quantify their
preferences. We explore the use of “meta-actions,” queries
about actions that the dialog manager should have taken, as
a more natural way for the dialog manager to gain informa-
tion about the user. For example, by asking the wheelchair
user if he would like to hear a list of locations when choos-
ing a destination, the dialog manager can determine whether
the user prefers directed confirmation questions or a more
free-form conversation.

Combining the ideas of priors and meta-actions, the fol-
lowing sections present three Bayesian extensions to the ba-
sic POMDP model that allow a robot to learn a user’s dialog
model online:

• I. Maximizing Expected Performance. This section de-
scribes how an robot should act in the face of parameter
uncertainty if it does not have the opportunity to learn,
and then extends this approach to incorporate an efficient
form of online learning.

• II. Improving Dialog Manager Robustness. This section
describes how we can increase robustness by making the
dialog manager explicitly aware of the uncertainty of its
parameters (so it can take actions as needed to reduce that
uncertainty).

• III. Meta-Actions. This section describes how we can re-
duce our reliance on explicit user feedback (required in
the first two approaches) while still learning the user’s
preferences robustly.

POMDP Dialog Manger Formulation
A POMDP consists of the n-tuple{S,A,O,T ,Ω,R,γ}. S, A,
andO are sets of states, actions, and observations. For our
dialog manager, the states represent the user’s (hidden) in-
tent, in this case the places where the user would like the
robotic wheelchair to go. The observations are the actual
utterances that the dialog manager hears, and the actions
include queries to get additional information and physical
movements to destinations.

We assume that the state, action and observation sets
are discrete and finite to make learning the parameters and
updating the POMDP tractable for real-time dialogs (al-
though work has extended dialog managers to large state
spaces (Williams & Young 2005) and continuous observa-
tion spaces (Williams, Poupart, & Young 2005)). In our
tests, user could choose from one of five goal locations, and
our basic dialog manager chose from three action types: it
could ask a general question, such as “Where would you like
to go?”; it could confirm a specific location; or it could drive
to a specific location. The observations were keywords fil-
tered from the output of voice recognition software (Glass
2003). Figure 2 shows an example dialog flow.
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Figure 2: A toy example of a dialog POMDP. Solid lines represent
more likely transitions; we assume that user is unlikely to change
their intent before their original request is fulfilled (dashed lines).
The system automatically resets once we enter the ‘done’ state.

The remaining functionsR(s, a), T (s′|s, a), and
Ω(o|s, a) together model the user’s communication style and
preferences. The transition functionT (s′|s, a) gives the
probability P (s′|s, a) of transitioning from states to s′ if
the robot takes actiona. In our model, we assume that the
user is unlikely to change where he wishes to go during the
course of a single dialog. The observation functionΩ(o|s, a)
gives the probabilityP (o|s, a) of seeing observationo from
states after taking actiona. The rewardR(s, a) specifies
the immediate reward for taking actiona in states. The
rewards specify what actions the user prefers in different
states; the dialog manager uses this information to deter-
mine how much the user is willing to tolerate clarification
questions before becoming frustrated.

Finally, the discount factorγ ∈ [0, 1] allows us to bias the
dialog manager towards satisfying user intents more quickly.
A discount factor of 0 means that we only value current re-
wards; thus we will not take low-yield actions (such as addi-
tional clarifications) now that may result in higher user satis-
faction in the future. A discount factor of 1 means that future
rewards are just as valuable as current rewards; such a robot



may spend a long time asking clarification questions before
taking an action.

Since the POMDP’s state is hidden, the dialog manager
must decide its next action based on its previous history of
actions and observations. Defining a policy in terms of the
history can get quite cumbersome, so we typically keep a
probability distribution over the states (known as the belief
b), which is a sufficient statistic for the previous history of
actions and observations. Given a new action and observa-
tion, we can update the beliefb using Bayes rule:

bn(s) = ηΩ(o|s′, a)
∑

s∈S

T (s′|s, a)bn−1(s) (1)

whereη is a normalizing constant. The goal of the POMDP
dialog manager is to find a policy mapping the set of be-
liefs B to actionsA to maximize the expected reward
E[

∑
n γnR(sn, an)].

In order to find a good dialog manager, that is, to find
a policy that maximizes our reward for each belief, we use
the concept of a value function to represent our policy. Let
the value functionV (b) represent the expected reward if we
start with beliefb. The optimal value function is piecewise-
linear and convex, so we representV with the vectorsVi;
V (b) = maxiVi · b. The optimal value function is unique
and satisfies the Bellman equation:

V (b) = max
a∈A

Q(b, a), (2)

Q(b, a) = R(b, a) + γ
∑

b′∈B

T (b′|b, a)V (b′), (3)

Q(b, a) = R(b, a) + γ
∑

o∈O

Ω(o|b, a)V (bo
a), (4)

Q(b, a) = max
i

~qa · b. (5)

qa(s)=R(s, a)+γ
∑

o∈O

∑

s′∈S

T (s′|s, a)Ω(o|s′, a)αi(s) (6)

The Q(b, a) values represent the total expected reward if
we start fromb, do a, and then act optimally. Equation 2
chooses the action that maximizes the expected reward to
derive the optimal dialog policy. Equation 4 follows from
equation 3 if we note that there are only|O| beliefs that we
can transition to after taking actiona in belief b (one corre-
sponding to each observation). The beliefbo

a is the new be-
lief after a Bayesian update ofb using equation 1.Ω(o|b, a),
the probability of seeingo after performinga in belief b, is∑

s∈S Ω(o|s, a)b(s). The linear properties of the value func-
tion further decompose theQ function into equations 5 and
6; this decomposition allows us to see that theQ function is
an expectation over the belief (uncertainty in user’s intent,
equation 5) and the user model (ambiguities in the user’s
communication, equation 6).

These equations may be solved iteratively:

Vn(b) = max
a∈A

Qn(b, a), (7)

Qn(b, a) = R(b, a) + γ
∑

o∈O

Ω(o|b, a)Vn−1(b
o
a). (8)

Each iteration, orbackup, brings the value function closer
to its optimal value (Gordon 1995). Once the value func-
tion has been computed, it is used to choose actions. After
each observation, we update the belief using equation 1 and
then choose the next action usingarg maxa∈A Q(b, a) with
Q(b, a) given in equation 3.

Note that the exact solution to equation 7 using an itera-
tive backup approach is exponentially expensive in compu-
tation time, so we must approximate the solution. The Point-
Based Value Iteration, PBVI, (Pineau, Gordon, & Thrun
2003) is an approximation technique for solving POMDPs
that backs up the POMDP solution only at certain belief
points. The quality of the solution depends on the density of
the belief points in the reachable portion of the belief space.
PBVI suggests a heuristic that begins with an initial belief
(or belief set). For each actiona, we sample a user response
o from the observation distribution, compute the updated be-
lief stateba

o (simulating the effect of one exchange between
the user and the dialog manager), and add the farthest new
beliefs to our set. In this way, we focus computation on con-
fusions that the dialog manager is likely to experience.1

I. Maximizing Expected Performance
In the previous section, we described the basic POMDP
model. Here we describe some of our work initially pre-
sented in (Doshi & Roy 2007) to show how this model
changes when the parameters that govern the user model (T ,
Ω, andR) are uncertain. We demonstrate a simple update
heuristic on our robotic wheelchair.

Acting with Uncertain User Models
If we do not know the model parameters, then a reasonable
approach is to assume a distribution over both the state and
the model itself. Once we have a distribution over user pa-
rameters, we must add an additional expectation in Equation
6:

qa(s) = E[R(s, a) +

γ
∑

o∈O

∑

s′∈S

T (s′|s, a)Ω(o|s′, a)αi(s)]

= E[R(s, a)] +

γ
∑

o∈O

∑

s′∈S

E[T (s′|s, a)]E[Ω(o|s′, a)]αi(s)]

The second line follows from the linearity of expectations
and the independence of parameter distributionsT andΩ.
Thus, we show that, in the absence of learning, solving the
POMDP with the expected parameter values will maximize
the expected reward.

In our experiments, we place Dirichlet priors, which pro-
vide a probability measure over valid multinomial distribu-
tions, over the observation and transition distribution param-
eters and Gaussian priors over the reward parameters. Up-
dating the model distributions as we observe transitions and
utterances is straightforward, but we need to know the user’s

1For our tests, we vary the PBVI algorithm and belief sampling
heuristics to optimize for the symmetries in our problem.



(hidden) state to update the correctR(s, a), T (s′|s, a), and
Ω(o|s, a) distributions. The simple dialog structure allows
us to infer the user’s state history from the action that ended
the exchange.

After each update, we have an improved understanding of
the model, and we can update the dialog manager’s policy
to reflect the new model. Unfortunately, recomputing a new
policy after an update can require large amounts of computa-
tion, and computing a fully-converged policy may be wasted
effort if the parameters are fairly uncertain. Therefore, we
tested two termination heuristics in addition to backing up
to convergence: backing up once, and backing up propor-
tionally to the variance reduction in the parameters. The
intuition behind the final heuristic is that we wish to expend
more computational effort when parameters become more
certain.

Simulation Results
We first tested our approach on a simulated dialog manager.
The user’s states corresponded to five goal locations; actions
included clarification queries (low cost) and motions (high
cost if incorrect). The most likely model under our prior
distribution over models (used to compute the initial dialog
management policy) assumed observations had half the true
error rate and that the user was more forgiving of mistakes.
Averaged over 100 simulated trials, all heuristics improved
performance similarly, but backing up proportionally to vari-
ance reduction did so with less computation.

Wheelchair Results
We also tested our algorithm on a real wheelchair dialog
manager. More complex than the simulation model, the
wheelchair’s vocabulary included not only keywords asso-
ciated with particular locations, but also several words—
such as elevator—not initially mapped to any goal location.
Our adaptive dialog manager learned associations for the un-
mapped keywords and the user’s preferences (see example in
Table 1). As seen in Figure 3, the learning dialog manager
generally out-performed the non-learner.
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Figure 3: The learner (solid) generally outperforms the non-learner
(dashed), only making one serious mistake (far right).

II. Improving Dialog Manager Robustness
The planning model in the previous section maximized the
expected reward over the uncertain user model, but for more
robust performance in a learning context, we would like to
consider the uncertainty of the model itself in making deci-
sions. For example, consider a scenario in which there are

Table 1: Part of a wheelchair-user dialog. The dialog specification
failed to specify how to handle the word ‘elevator.’ The learner
realizes that while there are multiple elevators, the user most often
uses it in the context of the Gates Tower.

Without learning
USER: Take me to the elevator.
The system does not know what ‘elevator’ means.
ROBOT: Where did you want to go?
USER: The Gates elevator please.
ROBOT: Do you want to go to the Gates Tower?
USER: Yes.
ROBOT: Going to the Gates Tower.
After learning:
USER: Take me to the elevator.
ROBOT: Do you want to go to the Gates Tower?
USER: Yes.
ROBOT: Going to the Gates Tower.

only two actions:askandconfirm. Suppose that under some
prior beliefp over reward parameters, we have the follow-
ing relationship between the true rewards and their expected
values under the prior:

Rask > Rconf = Ep[Rconf ] > Ep[Rask], (9)

whereRask is the reward for asking a general query and
Rconf is the reward for asking a confirmation question. If
the dialog manager attempted actionask, it would discover
that its belief aboutRask was incorrect. However, if the
dialog manager only makes decisions based on the rewards
it expects to receive,Ep[Rconf ] andEp[Rask], it will never
try the actionask. Thus, the dialog manager will be stuck
with a suboptimal policy. This situation will occur if the
domain expert estimates the reward means incorrectly, even
if the expert states that he is very unsure about some of the
values he chose. We can avoid such mishaps by considering
uncertainty in the user model when making decisions.

Parameter POMDP Formulation
To make the learning process more robust, we include the
parameters of the POMDP as explicit additional hidden state
in our model. Thus, the dialog manager can trade-off be-
tween actions that provide information about the user, pro-
vide information about the user’s desired destination, or
travel to a particular location. The dialog manager “learns”
about the user’s model as necessary, and learning does not
require heuristics outside of the POMDP solver. Since large
POMDPs can be computationally challenging to solve, in
this section we focus only on learning user preferences, that
is, the reward values associated with various actions.

Figure 4 shows how we incorporate the unknown reward
parameters into the POMDP model to create a more robust
dialog manager. Our new state space consists of a vector
{su, ~sr}, wheresu is the user’s state (where he wishes to go)
and ~sr is vector of the user’s preferences. We use the word
“user state” to refer tosu and “preference state” to refer to
~sr. Our dialog manager contains five rewards for general
queries, correct confirmations, incorrect confirmations, cor-



rect movements, and incorrect movements. Of the five un-
known reward values, we can arbitrarily set two of them (in
our case, we set the values of correct movements and confir-
mations); these values fix the translation and scale factor of
the reward set. The remaining values must be learned.

We assume that we have a discrete set of reward values
from which to choose and that these reward values are sta-
tionary over time. While assuming a discrete set of reward
values may seem like a severe limitation, we note that poli-
cies are surprisingly robust to the choice of values. Intu-
itively, this should make sense because the changes in the
policy—such as how many times to confirm a goal before
performing a physical movement—are discrete, encompass-
ing a range of possible user preference states.

For this approach, we require the user to give the dialog
manager explicit reward feedback after every action. We
extend our observation space to be{od, or}, whereod is the
speech to the dialog manager andor is a reward entered by
the user. Our new belief b(su, ~sr) represents the probability
that the user is in statesu and the rewards are given by~sr.

Including the reward parameters in the POMDP increases
the size of the state space and thus increases the computa-
tion required. As seen in Figure 4, however, independencies
between the user’s current goal (su) and his overall reward
preferences (~sr) allow us to factor transition and observation
probabilities in the POMDP. For example, consider the prob-
ability of observing a particular{od, or} in a state{su, ~sr}.
The observed speech input does not depend on the user’s
reward model, so the observation probability factors as:

P (od, or|su, ~sr) = P (od|su) · P (or|su, ~sr)

Similar factorizations exist for the other transition and ob-
servation probabilities.

Simulation Results
We tested our approach on a sample problem with 48 prefer-
ence states (for 336 total states) and 9 discrete reward values
(making 72 possible observations). While the factorizations
help when solving the POMDP, this POMDP was still too
large to solve efficiently. Not only are many more belief

sr

o d
o r

a us

sr

o d
o r

a us

time t time t+1
Figure 4: Arrows in the POMDP influence diagram connect el-
ements that affect other elements. The robot’s actiona and the
previous user state affect the current user statesu, while the user’s
preferencessr never changes. The observed rewardor depends
on the user’s state and his preferences and the observed dialog od

depends only on the user’s state.

points required, but the matrix computations for solving the
POMDP are nearly cubic in the size of the state space. The
computations become more tractable, however, if we note
that our dialog manager’s initial policy need not be refined
for all the possible users it may encounter: at the beginning,
all the dialog manager really needs to know is how to behave
when it knows little about the user’s preferences.

Although the dialog manager knows little about the user
in its starting belief, the user’s reward inputs will quickly
make some preference states highly unlikely. As we gain
additional information about the user’s preferences, the dia-
log manager can resample beliefs in the relevant parts of the
belief space: for example, once it is fairly sure about how
the user feels about the wheelchair driving to the wrong lo-
cation, it can focus on how the user may feel about general
queries or incorrect confirmation questions. By performing
additional backups on the new belief set, we can then refine
the dialog policy in the parts of the belief space where it is
most likely to matter. Thus, our overall policy improves as
we discover the user’s true set of preferences. (Regarding
how much we should refine a policy given a new observa-
tion, we can choose either to backup to convergence or fol-
low the variance-reductionheuristic from the first approach.)

Recall that one pitfall of using the expected values of
the parameters is that we can get stuck in an incorrect user
model because the dialog manager is afraid of trying a cer-
tain action. Figure 5 shows how incorporating the parame-
ters into the model prevents this issue; as long as our prior
places a non-zero probability over all possible users prefer-
ences, we will still converge to the correct dialog policy.
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expected value pomdp − good initialization
expected value pomdp − poor initialization
parameter pomdp − correctly initialized

Figure 5: Performance of parameter POMDP initialized with a
good prior compared to different initializations of the expected
value POMDP. The parameter POMDP achieves the higher (cor-
rect) level of performance without sensitivity to initialization. The
parameter POMDP seems to do slightly worse than the well-
initialized expected value POMDP, but the difference is notsta-
tistically significant: on the final trial, the expected value POMDP
has median 85 and IQR 16.5, and the parameter POMDP has me-
dian 86 and IQR 11. The poorly-initialized expected value POMDP
reaches a median of 26.5 and IQR of 207 after 120 trials.

The question remains of what starting belief we should
choose. An obvious choice, if we had no knowledge of the
user’s preferences, would be a prior that gave equal weight
to each preference state. This approach will converge to the
correct model, but since our initial policy was not fully re-
fined, we may do better by being more conservative in our



initial prior (that is, biasing our prior to preference states
with more severe penalties). If this prior also has full sup-
port, we will still converge to the user’s actual preference
state. However, since we will initially act more conserva-
tively, we will often suffer from fewer major failures during
the learning process. Figure 6 shows simulation results in
which a conservative prior aids the learning process.
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Figure 6: All three priors converge to the same steady-state perfor-
mance, but choosing a conservative prior allows us to do as well as
if we had known the user’s preference state initially. All solutions
were backed up to convergence.

III. Applying Meta-Actions
In the planning and learning models described so far, we
required the user to give the agent explicit feedback after
each interaction and encoded the rewards as part of the ob-
servation space. While requiring explicit feedback is a stan-
dard element of the reinforcement learning framework, it is
unsatisfactory in an assistive robotics setting for two rea-
sons. First, providing feedback after each action may be
tiresome to the user. Second, the robot must make mistakes
to learn about consequences of a poor decision. In our fi-
nal approach, we remedy these issues by introducing “meta-
actions,” or queries about what the dialog manager should
have done.

In the context of learning a user’s preference model, meta-
actions may take the form of questions such as “If I am 90%
certain that you wish to go to some destination, should I con-
firm this with you or proceed directly to the goal location?”
If the user tells dialog manager to confirm the action in the
future, we can infer that the user places a high penalty on in-
correct decisionswithout experiencing its effects. However,
if the user tells the wheelchair to proceed without confir-
mation, we have learned that the user is willing to risk an
incorrect decision to avoid being asked multiple questions.

The user’s response to the meta-action allows us to prune
inconsistent preference states~sr from the belief space. For
example, to determine which~sr are feasible for the previous
question, we first find the optimal POMDP policy without
including the meta-actions. Next, for all~sr andb(su) with
90% probability mass in one state, we check if predicted
action matches the user’s response. Although we have to
solve the dialog manager POMDP in two stages—without
and with meta-actions—all computations may be performed
before user interactions begin. We also note that in order to
know the policy for a specific user preference state, we do
not need to solve the entire large POMDP—we only need to

solve our small dialog model (as described in Figure 2) for
a specified user reward model.

Note that our meta-actions are not of the form, “My cur-
rent belief isb, what should I have done?” Instead, we phrase
them as hypothetical questions, independent of the dialog
manager’s current beliefs of the user’s goals and preferences.
Phrasing the questions in such a way helps make solving the
larger POMDP tractable—if the results of a meta-action de-
pended on the agent’s belief, instead of the underlying state,
the resulting POMDP would have to solved over a continu-
ous belief space instead of over the discrete state space.

Since the meta-actions are hypothetical, and not grounded
to the dialog manager’s current belief, one may be con-
cerned that the robot will ask meta-actions during “random”
times in the conversation and frustrate the user. However,
the POMDP will ensure that the meta-actions are only used
when the robot has reached a point in the conversation where
it is unsure about the user’s preference model, and the differ-
ent possible preference models have different optimal poli-
cies. For example, at the beginning of a conversation, the
correct action for the dialog manager may be to ask “Where
do you want to go?” If the robot receives a somewhat noisy
utterance that might be “cafe,” then the next correct action
may depend on the user’s preferences: if they don’t mind
occasional mistake, perhaps the robot should go to the cafe,
but if the user finds incorrect movements extremely frustrat-
ing, the robot should confirm what it thinks it heard. Thus,
the dialog manager will now ask a meta-action to determine
the user’s tolerance to movement mistakes.
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Figure 7: Box-plot of total rewards for the scenario where the
“real” user has reward -50 for incorrect confirmations and -500 for
incorrect movements. By asking about the user’s preferences, the
dialog manager with meta-actions is able to avoid actions that will
frustrate the user. Each test had 100 trials of 30 dialogs.

Simulation Results
Solving the large POMDP still poses computational chal-
lenges, and because the meta-actions have effects spanning
many preference states, we cannot use the resample-and-
refine method from the previous approach. We focus on
a single example to demonstrate the effectiveness of meta-
actions. As in the last approach, we assumed that the tran-
sition and observation models were known. General queries
cost -5, correct confirmations -1, and correct movements
100. Incorrect movements cost either -500 or -100, and in-
correct confirmation cost either -10 or -5. (The optimal pol-
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Figure 8: Box-plot of total rewards for the scenario where the
“real” user has reward -5 for incorrect confirmations and -100 for
incorrect movements. The agent still takes meta-actions, but the
information is less useful since there reward for an incorrect con-
firmation, which has a larger impact on the policy, does not contain
a major pitfall to avoid. Each test had 100 trials of 30 dialogs.

icy is fairly insensitive to the user’s reward model, so we
chose these somewhat extreme values to demonstrate how
meta-actions affect the dialog.) In this scenario, the dialog
manager could ask three meta-action queries:

1. If I am 90% certain of where you want to go, should I still
confirm with you before going there?

2. If I’m clueless, should I list options for you to confirm?

3. If I’m only 40% sure that you want to go to a certain loca-
tion, should I still try confirming that location with you?

Figure 7 shows a box-plot of the total rewards received
with and without meta-actions where the “real” user has re-
ward -10 for incorrect confirmations and -500 for incorrect
movements. Questions about the user’s preferences allow
the dialog manager to avoid asking confirmation questions
that are likely to be incorrect. (As it turns out, the reward
for incorrect confirmation, which effectively trades between
whether the robot should ask a general query and try to con-
firm a possible goal location, plays a much larger role in the
policy than the reward for the incorrect movement.) We also
note that even the dialog manager without meta-actions, al-
though suboptimal, does not fare too badly because its belief
is always split between the four possible reward states. Thus
it is still more conservative than a policy that believed itself
to be in an incorrect user state.

Meta-actions provide the most improvements when there
are pitfalls to avoid, but they can also safely discover that
the user is actually more forgiving than the robot previ-
ously considered. Figure 8 shows a box-plot of the total
rewards received with and without meta-actions where the
“real” user has reward -100 for incorrect movements and -5
for incorrect confirmations. While both dialog policies have
similar performance, the policy without meta-actions fares
slightly worse because part of its belief always thinks that
the simulated user’s preference state might be more severe
than it actually is (and thus it is more conservative).

Wheelchair Results
We implemented the meta-action version of our parame-
ter POMDP on our robotic wheelchair using the model de-

Table 2: The following three dialogs (collected from a volunteer
in our lab), demonstrate how a typical conversation changesmeta-
actions are introduced.

Typical conversation
USER: Hello.
ROBOT: Where do you want to go?
USER: I want to go to Bryt’s desk.
ROBOT: Do you want to go to Bryt’s desk?
USER: Yes.
ROBOT: Going to Bryt’s desk.
With Meta-Actions: Conversation One
This user preferred to be asked confirmation questions.
USER: Hello.
ROBOT: If I don’t know where you want to go, should I
list options?
The system uses this query to determine if the user is tol-
erant to incorrect confirmation questions.
USER: Yes.
ROBOT: Do you want to go to Seth’s office?
USER: No, I want to go to Nick’s office.
ROBOT: Do you want to go to Nick’s office?
USER: No, I mean yes.
Unfortunately, the user’s response is ambivalent enough
that the system does not recognize the user’s intent.
ROBOT: Do you want to go to Bryt’s desk?
USER: No.
ROBOT: Do you want to go to the group meeting?
USER: No.
ROBOT: Do you want to go to coffee machine?
USER: No.
ROBOT: Do you want to go to Nick’s office?
The robot continues to operate by listing locations, but it
picks the most likely one to repeat.
USER: Yes.
ROBOT: Going to Nick’s office.
With Meta-Actions: Conversation Two
This user preferred to be asked more general questions.
USER: Hello.
ROBOT: If I don’t know where you want to go, should I
list options?
USER: No, now take me to the coffee machine.
ROBOT: If I’m 95% sure about where you want to go,
should I still confirm with you first?
Knowing the user’s tolerance to going to the wrong place
didn’t matter in the previous context, but now it does af-
fect how the conversation proceeds.
USER: Yes.
ROBOT: Where do you want to go?
The robot has some idea of where the user wishes to go
from the first utterance, but it needs additional informa-
tion. It also knows that the user is not tolerant to incor-
rect confirmations.
USER: The coffee machine.
ROBOT: Going to the coffee machine.



scribed above. While it is difficult to provide quantitative
results without explicit reward feedback, Table 2 contains
snippets of dialogs between the wheelchair and a human that
show how the dialog manager’s actions change after it uses
meta-actions to learn more about the human’s preferences.

Related Work
As we mentioned before, most POMDP-based dialog
managers assume that an accurate user model is avail-
able (Williams, Poupart, & Young 2005; Pineau, Roy, &
Thrun 2001; Williams & Young 2005). In the field of
POMDP learning, the Medusa algorithm (Jaulmes, Pineau,
& Precup 2005) places priors over the POMDP parameters,
samples and solves many POMDPs from these prior dis-
tributions, and uses this sample to vote for a good policy.
While guaranteed to converge, Medusa does not have an ex-
plicit method for choosing actions to reduce uncertainty in
the parameters. Our first method shares Medusa’s Bayesian
approach; however, we begin with only one POMDP dialog
manager instead of several samples.

The Beetle algorithm (Poupartet al. 2006), another
Bayesian approach to planning with uncertain models, plans
in uncertain MDPs by incorporating the MDP parameters as
hidden state in a POMDP. As in our later two approaches,
this allows the robot to trade between actions that will im-
prove its knowledge of the model and actions that will gain
rewards. While Beetle focuses on learning system dynam-
ics (which are readily available in the MDP setting, since
the state is fully observable), we focus on learning the user’s
preference or reward model.

While we focus exclusively on Bayesian approaches to
planning with uncertain models, there do exist minimax ap-
proaches to finding robust MDP policies when transition
matrices are uncertain (Nilim & Ghaoui 2004; Xu & Man-
nor 2007). Geared toward applications where variations are
unavoidable, such as tolerances on factory machinery, these
approaches do not incorporate learning into their model.

Conclusions
We presented three POMDP-based approaches to dialog
management on a robotic wheelchair. Our first approach
learned all aspects of the POMDP user model—transitions,
observations, and rewards—and based its decisions only the
expected values of the uncertain parameters. To improve the
quality of this approach, we noted that replanning only cor-
rects for loss in performance due to incomplete convergence;
by estimating the variance due to the uncertainty in both the
dialog and the user model we can judge the effectiveness of
additional planning. While efficient, our first approach was
not necessarily robust.

In our second two approaches, we folded the unknown pa-
rameters of the user model into an even larger POMDP. We
also introduced the idea of meta-actions, or questions about
what the dialog manager should have done. Since the large
POMDPs are difficult to solve, we focused only on learn-
ing the user’s reward model. We showed that we were able
to learn the user’s preferences robustly and that we could
meta-actions as a form of implicit user feedback. In our fu-

ture work, we plan to extend the use of meta-actions to also
gaining information about other aspects of the user model,
such as what words they tend to use when referring to par-
ticular locations.
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