
Quantum Econophysics

Esteban Guevara Hidalgo
Departamento de Física, Escuela Politécnica Nacional, Quito, Ecuador

Abstract

The relationships between game theory and quantum me-
chanics let us propose certain quantization relationships
through which we could describe and understand not only
quantum but also classical, evolutionary and the biological
systems that were described before through the replicator dy-
namics. Quantum mechanics could be used to explain more
correctly biological and economical processes and even it
could encloses theories like games and evolutionary dynam-
ics. This could make quantum mechanics a more general the-
ory that we had thought.
Although both systems analyzed are described through two
apparently different theories (quantum mechanics and game
theory) it is shown that both systems are analogous and thus
exactly equivalents. So, we can take some concepts and defi-
nitions from quantum mechanics and physics for the best un-
derstanding of the behavior of economics and biology. Also,
we could maybe understand nature like a game in where its
players compete for a common welfare and the equilibrium
of the system that they are members.

Introduction
Could it have an relationship between quantum mechan-
ics and game theories? An actual relationship between
these theories that describe two apparently different systems
would let us explain biological and economical processes
through quantum mechanics, quantum information theory
and statistical physics.

We also could try to find a method which let us make
quantum a classical system in order to analyze it from a
absolutely different perspective and under a physical equi-
librium principle which would have to be exactly equivalent
to the defined classically in economics or biology.

Physics tries to describe approximately nature which is
the most perfect system. The equilibrium notion in a physi-
cal system is the central cause for this perfection. We could
make use of this physical equilibrium to its application in
conflictive systems like economics.

The present work analyze the relationships between quan-
tum mechanics and game theory and proposes through cer-
tain quantization relationships a quantum understanding of
classical systems.
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The von Neumann Equation & the Statistical
Mixture of States

An ensemble is a collection of identically prepared physi-
cal systems. When each member of the ensemble is char-
acterized by the same state vector |Ψ(t)〉 it is called pure
ensemble. If each member has a probability pi of being in
the state |Ψi(t)〉 we have a mixed ensemble. Each member
of a mixed ensemble is a pure state and its evolution is given
by Schrödinger equation. To describe correctly a statistical
mixture of states it is necessary the introduction of the den-
sity operator

ρ(t) =

n∑
i=1

pi |Ψi(t)〉 〈Ψi(t)| (1)

which contains all the physically significant information we
can obtain about the ensemble in question. Any two ensem-
bles that produce the same density operator are physically
indistinguishable.

The density operator can be represented in matrix form.
A pure state is specified by pi = 1 for some |Ψi(t)〉 , i =
1, ..., n and the matrix which represents it has all its ele-
ments equal to zero except one 1 on the diagonal. The di-
agonal elements ρnn of the density operator ρ(t) represents
the average probability of finding the system in the state |n〉
and its sum is equal to 1. The non-diagonal elements ρnp

expresses the interference effects between the states |n〉 and
|p〉 which can appear when the state |Ψi〉 is a coherent linear
superposition of these states.

Suppose we make a measurement on a mixed ensemble
of some observable A. The ensemble average of A is de-
fined by the average of the expected values measured in
each member of the ensemble described by |Ψi(t)〉 and with
probability pi, it means 〈A〉ρ = p1 〈A〉

1
+ p2 〈A〉

2
+ ... +

pn 〈A〉n and can be calculated by using

〈A〉 = Tr {ρ(t)A} . (2)

The time evolution of the density operator is given by the
von Neumann equation

i�
dρ

dt
=

[
Ĥ, ρ

]
(3)

which is only a generalization of the Schrödinger equation
and the quantum analogue of Liouville’s theorem.



The Replicator Dynamics & EGT
Game theory (von Neumann & Morgenstern 1947; Myer-
son 1991; Nowak & Sigmund 1999) is the study of decision
making of competing agents in some conflict situation. It
has been applied to solve many problems in economics, so-
cial sciences, biology and engineering. The central equilib-
rium concept in game theory is the Nash Equilibrium which
is expressed through the following condition

E(p, p) ≥ E(r, p). (4)

Players are in equilibrium if a change in strategies by any
one of them (p → r) would lead that player to earn less than
if he remained with his current strategy (p).

Evolutionary game theory (Smith 1982; Hofbauer & Sig-
mund 1998; Weibul 1995) has been applied to the solution
of games from a different perspective. Through the replica-
tor dynamics it is possible to solve not only evolutionary but
also classical games. That is why EGT has been considered
like a generalization of classical game theory. Evolutionary
game theory does not rely on rational assumptions but on the
idea that the Darwinian process of natural selection (Fisher
1930) drives organisms towards the optimization of repro-
ductive success (Hammerstein & Selten 1994). Instead of
working out the optimal strategy, the different phenotypes
in a population are associated with the basic strategies that
are shaped by trial and error by a process of natural selection
or learning.

The model used in EGT is the following: Each agent in
a n-player game where the ith player has as strategy space
Si is modelled by a population of players which have to
be partitioned into groups. Individuals in the same group
would all play the same strategy. Randomly we make play
the members of the subpopulations against each other. The
subpopulations that perform the best will grow and those
that do not will shrink and eventually will vanish. The
process of natural selection assures survival of the best
players at the expense of the others. The natural selec-
tion process that determines how populations playing spe-
cific strategies evolve is known as the replicator dynamics
(Hofbauer & Sigmund 1998; Weibul 1995; Cressman 1992;
Taylor & Jonker 1978)

dxi

dt
= [fi(x) − 〈f(x)〉] xi, (5)

dxi

dt
=

⎡
⎣

n∑
j=1

aijxj −

n∑
k,l=1

aklxkxl

⎤
⎦xi. (6)

The element xi of the vector x is the probability of play-
ing certain strategy or the relative frequency of individuals
using that strategy. The fitness function fi =

∑n
j=1

aijxj

specifies how successful each subpopulation is, 〈f(x)〉 =∑n
k,l=1

aklxkxl is the average fitness of the population, and
aij are the elements of the payoff matrix A. The replicator
dynamics rewards strategies that outperform the average by
increasing their frequency, and penalizes poorly performing
strategies by decreasing their frequency. The stable fixed
points of the replicator dynamics are Nash equilibria (Myer-
son 1991). If a population reaches a state which is a Nash
equilibrium, it will remain there.

The bonestone of EGT is the concept of evolutionary sta-
ble strategy (ESS) (Smith 1982; Smith & Price 1973) that
is a strengthened notion of Nash equilibrium. It satisfies the
following conditions

E(p, p) > E(r, p),

If E(p, p) = E(r, p) then E(p, r) > E(r, r), (7)

where p is the strategy played by the vast majority of the
population, and r is the strategy of a mutant present in small
frequency. Both p and r can be pure or mixed. An ESS
is described as a strategy which has the property that if all
the members of a population adopt it, no mutant strategy
could invade the population under the influence of natural
selection. If a few individuals which play a different strategy
are introduced into a population in an ESS, the evolutionary
selection process would eventually eliminate the invaders.

Relationships between Quantum Mechanics &
Game Theory

A physical or a socioeconomical system (described through
quantum mechanics or game theory) is composed by n
members (particles, subsystems, players, states, etc.). Each
member is described by a state or a strategy which has as-
signed a determined probability (xi or ρij). The quantum
mechanical system is described by the density operator ρ
whose elements represent the system average probability of
being in a determined state. In evolutionary game theory
the system is defined through a relative frequencies vector x
whose elements can represent the frequency of players play-
ing a determined strategy. The evolution of the density op-
erator is described by the von Neumann equation which is a
generalization of the Schrödinger equation. While the evo-
lution of the relative frequencies is described through the
replicator dynamics (5).

It is important to note that the replicator dynamics is a
vectorial differential equation while von Neumann equation
can be represented in matrix form. If we would like to com-
pare both systems the first we would have to do is to try to
compare their evolution equations by trying to find a matrix
representation of the replicator dynamics (Guevara 2006c)

dX

dt
= G + GT , (8)

where the matrix X has as elements

xij = (xixj)
1/2 (9)

and

(
G + GT

)
ij

=
1

2

n∑
k=1

aikxkxij

+
1

2

n∑
k=1

ajkxkxji

−

n∑
k,l=1

aklxkxlxij (10)

are the elements of the matrix
(
G + GT

)
.



Although equation (8) is the matrix representation of the
replicator dynamics from which we could compare and find
a relationship with the von Neumann equation, we can more-
over find a Lax representation of the replicator dynamics by
calling

(G1)ij =
1

2

n∑
k=1

aikxkxij , (11)

(G2)ij =
1

2

n∑
k=1

ajkxkxji, (12)

(G3)ij =
n∑

k,l=1

aklxkxlxij (13)

the elements of the matrixes G1, G2 and G3 that compose
by adding the matrix

(
G + GT

)
. The matrixes G1, G2 and

G3 can be also factorized in function of the matrixes Q and
X

G1 = QX , (14)

G2 = XQ, (15)

G3 = 2XQX , (16)

where Q is a diagonal matrix and has as elements qii =
1

2

∑n
k=1

aikxk . By using the fact that X2 = X we can write
the equation (8) like

dX

dt
= QXX + XXQ − 2XQX (17)

and finally, by grouping into commutators and defining Λ =
[Q, X ]

dX

dt
= [Λ, X ] . (18)

The matrix Λ has as elements (Λ)ij =
1

2
[(
∑n

k=1
aikxk)xij − xji (

∑n
k=1

ajkxk)]. This ma-
trix commutative form of the replicator dynamics (18)
follows the same dynamic as the von Neumann equation
(3) and the properties of their correspondent elements
(matrixes) are similar, being the properties corresponding to
our quantum system more general than the properties of the
classical system.

The next table shows some specific resemblances between
quantum statistical mechanics and evolutionary game theory
(Guevara 2006d).

Table 1

Quantum Statistical Mechanics Evolutionary Game Theory

n system members n population members

Each member in the state |Ψk〉 Each member plays strategy si

|Ψk〉 with pk → ρij si → xi

ρ,
∑

i ρii = 1 X,
∑

i xi = 1

i�dρ
dt =

[
Ĥ, ρ

]
dX
dt = [Λ, X ]

S = −Tr {ρ ln ρ} H = −
∑

i xi lnxi

In table 2 we show the properties of the matrixes ρ and X .
Table 2

Density Operator Relative freq. Matrix

ρ is Hermitian X is Hermitian

Trρ(t) = 1 TrX = 1
ρ2(t) � ρ(t) X2= X

Trρ2(t) � 1 TrX2(t) = 1

Although both systems are different, both are analogous
and thus exactly equivalents.

Quantum Replicator Dynamics & the
Quantization Relationships

The resemblances between both systems and the similarity
in the properties of their corresponding elements let us to
define and propose the next quantization relationships

xi →
n∑

k=1

〈i |Ψk 〉 pk 〈Ψk |i〉 = ρii,

(xixj)
1/2 →

n∑
k=1

〈i |Ψk 〉 pk 〈Ψk |j 〉 = ρij . (19)

A population will be represented by a quantum system in
which each subpopulation playing strategy si will be rep-
resented by a pure ensemble in the state |Ψk(t)〉 and with
probability pk. The probability xi of playing strategy si or
the relative frequency of the individuals using strategy si in
that population will be represented as the probability ρii of
finding each pure ensemble in the state |i〉 (Guevara 2006c).

Through these quantization relationships the replicator
dynamics (in matrix commutative form) (18) takes the form
of the equation of evolution of mixed states (3). And also

X −→ ρ, (20)

Λ −→ −
i

�
Ĥ , (21)

where Ĥ is the Hamiltonian of the physical system.
The equation of evolution of mixed states from quantum

statistical mechanics (3) is the quantum analogue of the
replicator dynamics in matrix commutative form (18).

Games through Statistical Mechanics & QIT
There exists a strong relationship between game theories,
statistical mechanics and information theory. The bonds be-
tween these theories are the density operator and entropy
(Guevara 2006a; 2006b). From the density operator we can
construct and understand the statistical behavior about our
system by using the statistical mechanics. Also we can de-
velop the system in function of its accessible information
and analyze it through information theories under a criterion
of maximum or minimum entropy.

Entropy is the central concept of information theories
(Guevara 2006a). The Shannon entropy expresses the av-
erage information we expect to gain on performing a prob-
abilistic experiment of a random variable A which takes the
values ai with the respective probabilities pi. It also can be
seen as a measure of uncertainty before we learn the value



of A. We define the Shannon entropy of a random variable
A by

H(A) ≡ H(p1, ..., pn) ≡ −

n∑
i=1

pi log
2
pi. (22)

The entropy of a random variable is completely determined
by the probabilities of the different possible values that the
random variable takes. Due to the fact that p = (p1, ..., pn)
is a probability distribution, it must satisfy

∑n
i=1

pi = 1 and
0 ≤ p1, ..., pn ≤ 1. The Shannon entropy of the probabil-
ity distribution associated with the source gives the minimal
number of bits that are needed in order to store the infor-
mation produced by a source, in the sense that the produced
string can later be recovered.

The von Neumann entropy (von Neumann 1927; 1932)
is the quantum analogue of Shannon’s entropy but it ap-
peared 21 years before and generalizes Boltzmann’s expres-
sion. Entropy in quantum information theory plays promi-
nent roles in many contexts, e.g., in studies of the classi-
cal capacity of a quantum channel (Schumacher & West-
moreland 1997; Holevo 1998) and the compressibility of a
quantum source (Schumacher 1995; Jozsa & Schumacher
1994). Quantum information theory appears to be the basis
for a proper understanding of the emerging fields of quan-
tum computation (Bennett & DiVincenzo 1995; DiVincenzo
1995), quantum communication (Bennett & Wiesner 1992;
C. Bennett 1993), and quantum cryptography (Ekert 1992;
C. Bennett & Mermin 1992).

Suppose A and B are two random variables. The joint
entropy H(A, B) measures our total uncertainty about the
pair (A, B) and it is defined by

H(A, B) ≡ −
∑
i,j

pij log
2
pij (23)

while
H(A) = −

∑
i,j

pij log
2

∑
j

pij , (24)

H(B) = −
∑
i,j

pij log
2

∑
i

pij , (25)

where pij is the joint probability to find A in state ai and B
in state bj .

The conditional entropy H(A | B) is a measure of how
uncertain we are about the value of A, given that we know
the value of B. The entropy of A conditional on knowing
that B takes the value bj is defined by

H(A | B) ≡ H(A, B) − H(B),

H(A | B) ≡ −
∑
i,j

pij log
2
pi|j , (26)

where pi|j =
pijP
i
pij

is the conditional probability that A is
in state ai given that B is in state bj .

The mutual or correlation entropy H(A : B) measures
how much information A and B have in common. The mu-
tual or correlation entropy H(A : B) is defined by

H(A : B) ≡ H(A) + H(B) − H(A, B),

H(A : B) ≡ −
∑
i,j

pij log
2
pi:j , (27)

where pi:j =
P

i pij

P
j pij

pij
is the mutual probability. The

mutual or correlation entropy also can be expressed through
the conditional entropy via

H(A : B) = H(A) − H(A | B), (28)

H(A : B) = H(B) − H(B | A). (29)

The joint entropy would equal the sum of each of A’s and
B’s entropies only in the case that there are no correlations
between A’s and B’s states. In that case, the mutual entropy
or information vanishes and we could not make any predic-
tions about A just from knowing something about B.

The relative entropy H(p ‖ q) measures the closeness of
two probability distributions, p and q, defined over the same
random variable A. We define the relative entropy of p with
respect to q by

H(p ‖ q) ≡
∑

i

pi log
2
pi −

∑
i

pi log
2
qi,

H(p ‖ q) ≡ −H(A) −
∑

i

pi log
2
qi. (30)

The relative entropy is non-negative, H(p ‖ q) ≥ 0, with
equality if and only if p = q. The classical relative entropy
of two probability distributions is related to the probability
of distinguishing the two distributions after a large but finite
number of independent samples (Sanov’s theorem) (Cover
& Thomas 1991).

By analogy with the Shannon entropies it is possible to
define conditional, mutual and relative quantum entropies.
Quantum entropies also satisfies many other interesting
properties that do not satisfy their classical analogues. For
example, the conditional entropy can be negative and its neg-
ativity always indicates that two systems are entangled and
indeed, how negative the conditional entropy is provides a
lower bound on how entangled the two systems are (Nielsen
& Chuang 2000).

By other hand, in statistical mechanics entropy can be
regarded as a quantitative measure of disorder. It takes its
maximum possible value in a completely random ensemble
in which all quantum mechanical states are equally likely
and is equal to zero in the case of a pure ensemble which
has a maximum amount of order because all members are
characterized by the same quantum mechanical state ket.

From both possible points of view and analysis (statisti-
cal mechanics or information theories) of the same system
its entropy is exactly the same. Lets consider a system com-
posed by N members, players, strategies, states, etc. This
system is described completely through certain density op-
erator ρ, its evolution equation (the von Neumann equation)
and its entropy. Classically, the system is described through
the matrix of relative frequencies X , the replicator dynamics
and the Shannon entropy. For the quantum case we define
the von Neumann entropy as

S = −Tr {ρ ln ρ} (31)

and for the classical case

H = −
∑
i=1

xii lnxii (32)



which is the Shannon entropy over the relative frequencies
vector x (the diagonal elements of X).

In general entropy can be maximized subject to different
constrains. In each case the result is the condition the system
must follow to maximize its entropy. Generally, this condi-
tion is a probability distribution function. We can obtain the
density operator from the study of an ensemble in thermal
equilibrium. Nature tends to maximize entropy subject to
the constraint that the ensemble average of the Hamiltonian
has a certain prescribed value. We will maximize S by re-
quiring that

δS = −
∑

i

δρii(ln ρii + 1) = 0 (33)

subject to the constrains δT r (ρ) = 0 and δ 〈E〉 = 0. By
using Lagrange multipliers∑

i

δρii(ln ρii + βEi + γ + 1) = 0 (34)

and the normalization condition Tr(ρ) = 1 we find that

ρii =
e−βEi∑
k e−βEk

(35)

which is the condition that the density operator and its ele-
ments must satisfy to our system tends to maximize its en-
tropy S. If we maximize S without the internal energy con-
strain δ 〈E〉 = 0 we obtain

ρii =
1

N
(36)

which is the β → 0 limit (“high - temperature limit”) in
equation (35) in where a canonical ensemble becomes a
completely random ensemble in which all energy eigenstates
are equally populated. In the opposite low - temperature
limit β → ∞ tell us that a canonical ensemble becomes
a pure ensemble where only the ground state is populated.
The parameter β is related to the “temperature” τ as follows

β =
1

τ
. (37)

By replacing ρii obtained in the equation (35) in the von
Neumann entropy we can rewrite it in function of the parti-
tion function Z =

∑
k e−βEk , β and 〈E〉 through the next

equation
S = lnZ + β 〈E〉 . (38)

From the partition function we can know some parameters
that define the system like

〈E〉 = −
1

Z

∂Z

∂β
= −

∂ lnZ

∂β
, (39)

〈
ΔE2

〉
= −

∂ 〈E〉

∂β
= −

1

β

∂S

∂β
. (40)

We can also analyze the variation of entropy with respect to
the average energy of the system

∂S

∂ 〈E〉
=

1

τ
, (41)

∂2S

∂ 〈E〉2
= −

1

τ2

∂τ

∂ 〈E〉
(42)

and with respect to the parameter β

∂S

∂β
= −β

〈
ΔE2

〉
, (43)

∂2S

∂β2
=

∂ 〈E〉

∂β
+ β

∂2 〈E〉

∂β2
. (44)

From Classical to Quantum
The resemblances between both systems (described through
quantum mechanics and EGT) apparently different but anal-
ogous and thus exactly equivalents and the similarity in the
properties of their corresponding elements let us to define
and propose the quantization relationships like in section 5.

It is important to note that equation (18) is nonlinear while
its quantum analogue is linear. This means that the quantiza-
tion eliminates the nonlinearities. Also through this quanti-
zation the classical system that were described through a di-
agonal matrix X can be now described through a density op-
erator which not neccesarily must describe a pure state, i.e.
its non diagonal elements can be different from zero repre-
senting a mixed state due to the coherence between quantum
states that were not present through a classical analysis.

Through the relationships between both systems we could
describe classical, evolutionary, quantum and also the bio-
logical systems that were described before through evolu-
tionary dynamics with the replicator dynamics. We could
explain through quantum mechanics biological and econom-
ical processes being a much more general theory that we had
thought. It could even encloses theories like games and evo-
lutionary dynamics.

Problems in economy and finance have attracted the in-
terest of statistical physicists. Kobelev et al (L. Kobelev
2006) used methods of statistical physics of open systems
for describing the time dependence of economic character-
istics (income, profit, cost, supply, currency, etc.) and their
correlations with each other.

Antoniou et al (I. Antoniou 2002) introduced a new ap-
proach for the presentation of economic systems with a
small number of components as a statistical system de-
scribed by density functions and entropy. This analysis is
based on a Lorenz diagram and its interpolation by a con-
tinuos function. Conservation of entropy in time may in-
dicate the absence of macroscopic changes in redistribution
of resources. Assuming the absence of macro-changes in
economic systems and in related additional expenses of re-
sources, we may consider the entropy as an indicator of ef-
ficiency of the resources distribution.

Statistical physicists are also extremely interested in eco-
nomic fluctuations (Stanley 2000) in order to help our world
financial system avoid “economic earthquakes”. Also it is
suggested that in the field of turbulence, we may find some
crossover with certain aspects of financial markets.

Statistical mechanics and economics study big ensem-
bles: collections of atoms or economic agents, respectively.
The fundamental law of equilibrium statistical mechanics
is the Boltzmann-Gibbs law, which states that the probabil-
ity distribution of energy E is P (E) = Ce−E/T , where T
is the temperature, and C is a normalizing constant. The



main ingredient that is essential for the derivation of the
Boltzmann-Gibbs law is the conservation of energy. Thus,
one may generalize that any conserved quantity in a big sta-
tistical system should have an exponential probability dis-
tribution in equilibrium (Drăgulescu & Yakovenko 2000).
In a closed economic system, money is conserved. Thus, by
analogy with energy, the equilibrium probability distribution
of money must follow the exponential Boltzmann-Gibbs law
characterized by an effective temperature equal to the aver-
age amount of money per economic agent. Drăgulescu and
Yakovenko demonstrated how the Boltzmann-Gibbs distri-
bution emerges in computer simulations of economic mod-
els. They considered a thermal machine, in which the differ-
ence of temperature allows one to extract a monetary profit.
They also discussed the role of debt, and models with bro-
ken time-reversal symmetry for which the Boltzmann-Gibbs
law does not hold.

Recently the insurance market, which is one of the im-
portant branches of economy, have attracted the attention
of physicists (Darooneh 2006). The maximum entropy
principle is used for pricing the insurance. Darooneh ob-
tained the price density based on this principle, applied it
to multi agents model of insurance market and derived the
utility function. The main assumption in his work is the
correspondence between the concept of the equilibrium in
physics and economics. He proved that economic equi-
librium can be viewed as an asymptotic approximation to
physical equilibrium and some difficulties with mechanical
picture of the equilibrium may be improved by consider-
ing the statistical description of it. TopsØe (TopsØe 1979;
1993) also has suggested that thermodynamical equilibrium
equals game theoretical equilibrium.

Quantum games have proposed a new point of view for
the solution of the classical problems and dilemmas in game
theory. Quantum games are more efficient than classical
games and provide a saturated upper bound for this effi-
ciency (Meyer 1999; J. Eisert & Lewenstein 1999; Marinatto
& Weber 2000; Flitney & Abbott 2003; Piotrowski & Slad-
kowski 2003; Iqbal 2004).

Nature may be playing quantum survival games at the
molecular level (Dawkins 1976; Axelrod 1984). It could
lead us to describe many of the life processes through quan-
tum mechanics like Gogonea and Merz (Gogonea & Merz
1999) who indicated that games are being played at the
quantum mechanical level in protein folding. Gafiychuk and
Prykarpatsky (Gafiychuk & Prykarpatsky 2004) applied the
replicator equations written in the form of nonlinear von
Neumann equations to the study of the general properties
of the quasispecies dynamical system from the standpoint of
its evolution and stability. They developed a mathematical
model of a naturally fitted coevolving ecosystem and a the-
oretical study a self-organization problem of an ensemble of
interacting species.

The genetic code is the relationship between the sequence
of the bases in the DNA and the sequence of amino acids
in proteins. Recent work (R. Knight & Landweber 2001)
about evolvability of the genetic code suggests that the code
is shaped by natural selection. DNA is a nonlinear dynami-
cal system and its evolution is a sequence of chemical reac-

tions. An abstract DNA-type system is defined by a set of
nonlinear kinetic equations with polynomial nonlinearities
that admit soliton solutions associated with helical geome-
try. Aerts and Czachor (Aerts & Czachor ) shown that the
set of these equations allows for two different Lax represen-
tations: They can be written as von Neumann type nonlinear
systems and they can be regarded as a compatibility con-
dition for a Darboux-covariant Lax pair. Organisms whose
DNA evolves in a chaotic way would be eliminated by natu-
ral selection. They also explained why non-Kolmogorovian
probability models occurring in soliton kinetics are natu-
rally associated with chemical reactions. Patel (Patel 2001a;
2001b) suggested quantum dynamics played a role in the
DNA replication and the optimization criteria involved in
genetic information processing. He considers the criteria
involved as a task similar to an unsorted assembly oper-
ation where the Grover’s database search algorithm fruit-
fully applies; given the different optimal solutions for clas-
sical and quantum dynamics. Turner and Chao (Turner &
Chao 1999) studied the evolution of competitive interactions
among viruses in an RNA phage, and found that the fitness
of the phage generates a payoff matrix conforming to the
two-person prisoner’s dilemma game. Bacterial infections
by viruses have been presented as classical game-like situa-
tions where nature prefers the dominant strategies. Azhar
Iqbal (Iqbal 2004) showed results in which quantum me-
chanics has strong and important roles in selection of stable
solutions in a system of interacting entities. These entities
can do quantum actions on quantum states. It may simply
consists of a collection of molecules and the stability of so-
lutions or equilibria can be affected by quantum interactions
which provides a new approach towards theories of rise of
complexity in groups of quantum interacting entities.

Neuroeconomics (Glimcher 2002; 2003) may provide an
alternative to the classical Cartesian model of the brain and
behavior (Piotrowski & Sladkowski a) through a rich dia-
logue between theoretical neurobiology and quantum logic
(Piotrowski & Sladkowski b; Collum 2002).

The results shown in this study on the relationships be-
tween quantum mechanics and game theories are a reason of
the applicability of physics in economics and biology. Both
systems described through two apparently different theories
are analogous and thus exactly equivalents. So, we can take
some concepts and definitions from quantum mechanics and
physics for the best understanding of the behavior of eco-
nomics and biology. Also, we could maybe understand na-
ture like a game in where its players compete for a common
welfare and the equilibrium of the system that they are mem-
bers.

On a Quantum Understanding of Classical
Systems

If our systems are analogous and thus exactly equivalents,
our physical equilibrium (maximum entropy) should be also
exactly equivalent to our socieconomical equilibrium. If in
an isolated system each of its accessible states do not have
the same probability, the system is not in equilibrium. The
system will vary and will evolution in time until it reaches



the equilibrium state in where the probability of finding the
system in each of the accessible states is the same. The sys-
tem will find its more probable configuration in which the
number of accessible states is maximum and equally proba-
ble. The whole system will vary and rearrange its state and
the states of its ensembles with the purpose of maximize its
entropy and reach its maximum entropy state. We could say
that the purpose and maximum payoff of a physical system
is its maximum entropy state. The system and its members
will vary and rearrange themselves to reach the best possible
state for each of them which is also the best possible state for
the whole system.

This can be seen like a microscopical cooperation be-
tween quantum objects to improve their states with the pur-
pose of reaching or maintaining the equilibrium of the sys-
tem. All the members of our quantum system will play a
game in which its maximum payoff is the equilibrium of
the system. The members of the system act as a whole be-
sides individuals like they obey a rule in where they prefer
the welfare of the collective over the welfare of the individ-
ual. This equilibrium is represented in the maximum system
entropy in where the system resources are fairly distributed
over its members. A system is stable only if it maximizes the
welfare of the collective above the welfare of the individ-
ual. If it is maximized the welfare of the individual above
the welfare of the collective the system gets unstable and
eventually it collapses (Collective Welfare Principle (Gue-
vara 2006c; 2006d; 2006b)).

Fundamentally, we could distinguish three states in every
system: minimum entropy, maximum entropy, and when the
system is tending to whatever of these two states. The nat-
ural trend of a physical system is to the maximum entropy
state. The minimum entropy state is a characteristic of a
manipulated system i.e. externally controlled or imposed. A
system can be internally or externally manipulated or con-
trolled with the purpose of guide it to a state of maximum or
minimum entropy depending of the ambitions of the mem-
bers that compose it or the people who control it.

There exists tacit rules inside a system. These rules do
not need to be specified or clarified and search the system
equilibrium under the collective welfare principle. The other
prohibitive and repressive rules are imposed over the system
when one or many of its members violate the collective wel-
fare principle and search to maximize its individual welfare
at the expense of the group. Then it is necessary to establish
regulations on the system to try to reestablish the broken
natural order.

Conclusions
The relationships between game theory and quantum me-
chanics let us propose certain quantization relationships
through which we could describe and understand not only
classical and evolutionary systems but also the biological
systems that were described before through the replicator
dynamics. Quantum mechanics could be used to explain
more correctly biological and economical processes and
even encloses theories like games and evolutionary dynam-
ics.

The quantum analogues of the relative frequencies ma-
trix, the replicator dynamics and the Shannon entropy are
the density operator, the von Neumann equation and the von
Neumann entropy. Every game (classical, evolutionary or
quantum) can be described quantically through these three
elements.

The bonds between game theories, statistical mechanics
and information theory are the density operator and entropy.
From the density operator we can construct and obtain all the
mechanical statistical information about our system. Also
we can develop the system in function of its information and
analyze it through information theories under a criterion of
maximum or minimum entropy.

Although both systems analyzed are described through
two apparently different theories (quantum mechanics and
game theory) both are analogous and thus exactly equiva-
lents. So, we can take some concepts and definitions from
quantum mechanics and physics for the best understanding
of the behavior of economics and biology. Also, we could
maybe understand nature like a game in where its players
compete for a common welfare and the equilibrium of the
system that they are members.

We could say that the purpose and maximum payoff of
a system is its maximum entropy state. The system and its
members will vary and rearrange themselves to reach the
best possible state for each of them which is also the best
possible state for the whole system. This can be seen like a
microscopical cooperation between quantum objects to im-
prove their states with the purpose of reaching or maintain-
ing the equilibrium of the system. All the members of our
system will play a game in which its maximum payoff is the
equilibrium of the system. The members of the system act
as a whole besides individuals like they obey a rule in where
they prefer to work for the welfare of the collective besides
the individual welfare.
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