Some Results on the Completeness of Approximation Based Reasoning

Tran Cao Son, Enrico Pontelli, To Thanh Son
Department of Computer Science
New Mexico State University
P.O. Box 30001, MSC CS
Las Cruces, NM 88003, USA

Abstract

We present two results that relate the completeness condi-
tions for the O-approximation for two formalisms: the action
description language A and the situation calculus. The first
result indicates that the completeness condition for the situa-
tion calculus formalism implies the corresponding condition
for the action language formalism. The second result indi-
cates that an action theory in .4 can sometimes be simplified
to an equivalent action theory whose completeness condition
is weaker than the original theory for certain queries.

Introduction

Intelligent agents need to be able to reason about the effects
of their actions (RAC) and to make decisions based on this
reasoning. This has been the main thesis of the agent ar-
chitecture proposed in (Baral & Gelfond 2000) and further
developed in (Balduccini & Gelfond 2003). One of the most
important problems in RAC is to determine whether a fluent
formula ¢ is true after the execution of an action sequence
« from an initial state 0—denoted by the query ¢ after «
(a.k.a. hypothetical reasoning). Most formalisms for RAC
solve this problem by defining an entailment relationship,
denoted by =, between action theories and queries (see, e.g.,
(Gelfond & Lifschitz 1993)). Let D denote an action domain
and 0 an initial state. We write (D, 0) |= ¢ after « to denote
that the action theory (D, §) entails ¢ after a—i.e., ¢ is true
after the execution of o from the initial state. The majority
of the original approaches to RAC define |= assuming that §
is a complete description of the initial state.

The possible world semantics can be employed to reason
about effects of actions in presence of incomplete informa-
tion (Moore 1985). In this approach, a fluent formula ¢ is
true after the execution of an action sequence « iff it is true
after the execution of « in every possible initial state of the
world. In simple words, an entailment relationship ):P is
defined by adapting |= to deal with incomplete information.
It states that (D,8) = ¢ after « iff for every possible
completion ¢’ of §, (D, d’) |E p after a. §’ is a completion
of § if it contains § and it is a complete description of the
initial state.

One main disadvantage of the possible world semantics
is its high complexity. For example, (Baral, Kreinovich,

Copyright (© 2008, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

& Trejo 2000) showed that, even for deterministic action
theories, determining whether a fluent is true or false after
the execution of a single action is co-NP complete. More-
over, the presence of incomplete information makes the
planning problem—another important problem in RAC—
computationally harder (see, e.g., (Baral, Kreinovich, &
Trejo 2000)).

An alternative to the possible world semantics is the rea-
soning based on approximations (Son & Baral 2001). In-
stead of considering all possible states, approximations de-
fine what will definitely be true or false after the execution of
an action. This approach reduces the complexity of the hy-
pothetical reasoning but is in general incomplete. This stipu-
lates the research in (Liu & Levesque 2005; Son & Tu 2006;
Tu 2007) to determine conditions under which the approxi-
mation is complete. While the approach in (Liu & Levesque
2005) addresses the question “when does the reasoning
based on approximation coincide with the possible world se-
mantics?”, the approach in (Son & Tu 2006) focuses on an-
swering the question “when does the reasoning based on ap-
proximation for a particular fluent formula  coincide with
the possible world semantics?”

In this paper, we investigate the relationship between
these two completeness conditions. We will review the ba-
sic definitions associated to the completeness conditions of
(Liu & Levesque 2005; Son & Tu 2006) in the next section.
We discuss the relationships between them, and develop a
transformation for simplification of action theories. Finally,
we present a result that directly relates the two conditions.

Approximation Based Reasoning

We review the situation calculus language, the action lan-
guage A, and the 0-approximation in these two formalisms.

Situation Calculus

Situation calculus was introduced by McCarthy (1959) and
further developed by McCarthy and Hayes (1969). It is
probably the oldest formalism for representing and reason-
ing about actions. In situation calculus, actions and their ef-
fects are encoded directly into a first order theory. The basic
components of the situation calculus language in the nota-
tion of Reiter (1991) include a special constant Sy, denot-
ing the initial situation, a binary function symbol Do, where
Do(a, s) denotes the successor situation to s resulting from



executing the action a, fluent relations of the form F'(s)
(or F(Z,s)), denoting that the fluent F' (resp. F(¥)) is true
in the situation s, and a special predicate Poss(a, s) (resp.
Poss(a(Z), s)), denoting that action a (resp. a(Z)) is exe-
cutable in situation s.!

A dynamic domain can be represented by a theory D com-
posed of (i) axioms describing the initial situation Sy; (if)
action precondition axioms (one for each primitive action
A, characterizing Poss(A, s)); (iii) successor state axioms
(SSA) (one for each fluent F', stating under what condition
F(Do(a, s)) holds, as a function of what holds in s); (iv)
unique name axioms for the primitive actions; and some
foundational, domain independent axioms. In particular,
each domain D is given by a set of axioms

D = DO U Dap UDss U Duna

where Dy, Dgp, Dss, and D, encode the axioms about
initial situation, the action preconditions, the successor state
axioms, and the unique name axioms, respectively. Each
axiom in Dy, is in the form Poss(a,s) = II,[s] and each
axiom in D, is of the form
F(Do(a, s)) = ~vf(a,s) vV (F(s) A~y (a, s)).
Example 1. Let us consider the bomb in the toilet example
from (McDermott 1987), assuming that we do not have any
knowledge about the initial situation. In this domain, we
have two actions Dunk and Flush and two fluents C'logged
and Armed. Dunking a packet into the toilet disarms the
bomb but causes the toilet to be clogged. Flushing the toilet
makes it unclogged.
The basic action theory for this domain is given next?
D’ =DyuD),UDS, UD,

una

e The action precondition axioms (DZP) are
— Poss(Flush,s) =T (i.e., Uppysn = T).
— Poss(Dunk, s)=-Clogged(s) M pynr=—Clogged).
Note that II4 is a formula in the language £, whose

propositions are the fluents in D, where A is either Flush
or Dunk.

e The successor state axioms (D2,) for the fluents:
- Clogged(Do(a, s)) = (a = Dunk)V
(Clogged(s) A —(a = Flush))

Here, 7¢;00004(@) = (@ = Dunk) and g, (a) =
(a = Flush).

- Armed(Do(a, s)) = LV(Armed(s)A—(a = Dunk))

(Vered(a) = Landvy,,,.4(a) = (a = Dunk)).

e Db contains the following axiom: Dunk # Flush.
This is because we only have 0-ary actions.

e D} is empty. O

In the situation calculus, to determine whether ¢ is true

after the execution of the action sequence «, we deter-

mine whether D | p(Do(a, Sy)) A Poss(a, Sy) where,

'For simplicity, we omit the parameters of actions and fluents.
2We use T and L to denote true and false respectively.

for an action a and action sequence «, Do([a, ], s) stands
for Do(a, Do(a, s))), Poss([a,a], s) is the shorthand for
Poss(a, s) A\ Poss(a, Do(a, s))), and |= is the logical en-
tailment relationship in first order logic. * In this way, the
possible world semantics is naturally employed as Sy can be
incomplete. In fact, we can easily check that

D* | Poss([Flush, Dunk], So)A )
—Armed(Do([Flush, Dunk], Sp)).

As we have mentioned, the progression problem becomes
computationally harder (assuming that NP # P) in the
presence of incomplete information about the initial situa-
tion. This has motivated Liu and Levesque (2005) to ex-
plore the use of approximation for the progression task and
develop conditions under which the reasoning based on the
approximation is complete. Their formulation is inspired
by the reasoning algorithm developed for proper knowledge
bases (Levesque 1998) and is restricted to local effect theo-
ries. Formally, these notions are defined as follows.*

e Situations are described by proper knowledge bases
(proper KBs), i.e., theories X which are consistent (w.r.t.
the axioms of equality) and where all formulae can be ex-
pressed in the form V(e D {), where e is a quantifier-
free formula containing only equalities and ¢ is a literal.
We denote with £, the maximal disjunction of ground in-
stances of the literal ¢ such that ¥ |= &,.

e A proper KB ¥ is complete w.r.t. a fluent F if either ¥ =
F or ¥ | —F. X is context-complete w.r.t. the theory D
if it is complete w.r.t. each F' appearing in any 725 or vg-

e The theory D is assumed to be local effect, i.e., ’y;f
and 7y are finite disjunctions of formulae of the form
(a = AN @), where A is a ground action and the vari-
ous ¢ are ground formulae. Given a ground action A and
a ground fluent F', we will denote with FZ (resp. F)
the formula \/{p | (a = A A @) appears in v} (resp.

Vi{e | (a = AN @) appearsin g }).

Evaluation of formulae ¢ w.r.t. a proper KB X is based on
a 3-value interpretation function V' (X, ), which is sound,
and can be proved complete when the formula meets certain
criteria (A F normal form).

Liu and Levesque provide a definition of progression
which preserves the proper property of the encoding of situ-
ations. In presence of a finite domain of constants, progres-
sion of a proper KB ¥ w.r.t. a ground action A (P4 (X)) is
defined as the sentences: for each ground fluent F'

def truep V (€p A —poss_falsep) D F
def_falsep V (éop A —poss_truerp) DO —F

3Strictly speaking, we need to add foundational axioms to D.
*For simplicity, we assume a propositional language.



where

V%, Fj{) =1
otherwise
V(S.F]) £0
otherwise
V(X,F;y)=1and
V(Z, FX) =0

otherwise

V(S Fy) #0

otherwise

def truep =

poss_truep =

def_falsep =

FA- A4 FAFA

poss_falsep = {

The notion can be generalized to sequences of actions o =
[A1,...,An), as Py = Pa, 0...0Py,. If Xy is context
complete and D is local effect then P4 (X¢) can be shown to
be a classical progression.

Example 2. For the theory DY, the language of the knowl-
edge base Y, consists of two predicates, Armed and
Clogged, and there is no constant or function symbol in this
language. The formulae expressing progression for the the-
ory D are given below:

e for the action Dunk we have

LV (Earmeda N T) D Armed
TV (-armea N0L) D —Armed
TV (§czOgged A\ —|J_) D C’logged
LV (&-cioggea N=T) D —Clogged

This simplifies to T O = Armed and T D Clogged.
e for the action F'lush we have

LV (€armea N L) > Armed
LV (E-armea AN0L) D —Armed
LV (Ecioggea AN T) D Clogged

TV (€-cioggea N L) D —Clogged

So, we have & Apmeq D —Armed and T D —Clogged.

This computation allows us to conclude that the approxima-
tion based reasoning in D° will yield the same conclusion as
in Eq. 1. Observe that this can also be inferred from the fact
that D? is context-complete. O

Language .4 and the 0-approximation Semantics

Gelfond and Lifschitz (1993) defined the language A for
representing actions and reasoning about their effects. Dy-
namic domains are represented by action descriptions,
whose semantics is defined by a transition function which
maps pairs of actions and states into states.

The alphabet of a domain consists of a set A of action
names and a set F of fluent names. A (fluent) literal [ is
either a fluent f € F or its negation —f. Fluent literals of
the forms f and —f are said to be complementary to each
other. By L we denote the set of all fluent literals, i.e., L =
{f,~f | f € F}. A fluent formula is a formula constructed
from fluent literals using connectives A, V, and —. A domain
description D is a set of statements of the following forms:

a causes [ if i 2)
executable a if 3)

where a € A is an action, [ is a fluent literal, and 1 is a set
of fluent literals. (2) is called a dynamic law, describing the
effect of action a. It says that, if a is performed in a situation
where 1) holds, then [ will hold in the successor state. (3) is
an executability condition on a, stating that a is executable
in any situation in which v holds.

Given a domain description D, for a fluent literal [, we
denote by —l its complementary literal. For a set of fluent
literals o, we denote by —o the set {—l | | € o}. A set
of fluent literals o is consistent if for every fluent f, either
f or = f does not belong to 0. We will use the two terms
consistent set of fluent literals and partial state interchange-
ably. A set of fluent literals o is complete if, for every fluent
f, either f or —f belongs to . When o is consistent and
complete, it is called a state. A state s containing a partial
state § is called a completion of §. For a partial state §, we
denote with ext(d) the set of all completions of ¢. For a set
of partial states A, we denote with ext(A) the set of states
Useaext(0).

A fluent literal [ (resp. set of fluent literals ) holds in a
consistent set of fluent literals o if [ € o (resp. v C o). [
(resp. ) possibly holds in ¢ if =l & o (resp. =y N o = ).
The value of a formula ¢ in ¢ may be either true, false, or
unknown and is defined as usual. It is easy to see that if o
is a state then for every formula ¢, the value of ¢ is known
(either true or false) in o. From now on, to avoid confusion,
we will use letters (possibly indexed) o, , and s to denote a
set of fluent literals, a partial state, and a state respectively.

An A action theory is a pair (D, A) where D is a domain
description and A is a set of partial states.

Example 3. The bomb in the toilet example is represented
by A; = ) and the action theory

Dunk causes - Armed
Dunk causes Clogged

D1 =< Flush causes =Clogged
executable Dunk if -Clogged
executable Flush if T

O

The 0-approximation semantics is introduced in (Son &
Baral 2001) and is reviewed next. Let D be a domain de-
scription. An action a is executable in a partial state ¢ if
there exists an executability condition

executable a if ¢

in D such that % holds in 0.

For an action a and a partial state J s.t. a is executable in
d, the set of effects of a in d, denoted by e(a, d), and the set
of possible effects of a in §, denoted by pe(a, 9), are:

e(a,8) = {l] there exists [a causes [ if 9] in D
s.t. ¢ holds in 6}
pe(a,d) = {l| there exists [a causes [ if 1] in D

s.t. ¢ possibly holds in '}

Intuitively, e(a,d) and pe(a,d) are the sets of literals that
certainly hold and may hold, respectively, in the successor
state of every state s € ext(d). The successor partial state
of a state s after the execution of an action a, denoted by
®0(a, ), is defined as follows.



Definition 1. For any action a and partial state 9,
1. if a is not executable in § then ®°(a, ) = L;
2. otherwise, ®°(a, ) = e(a,d) U (§ \ —pe(a,d)).
The final partial state of a partial state J after the execution

of a sequence of actions «, denoted by @)(oz7 9), is defined
as follows.

Definition 2. For any sequence of actions o = [a, 3] and
partial state 6,

1. ®°([),6) = 6 and if B = [| then ®°(av, §) = ¥°(a, 0);
2. otherwise, ®°(a,§) = ®°(3,®°(a, 8)).

Given the extended transition function ®°, the entailment
relationship between an action theory and a query with re-
spect to the O-approximation semantics, denoted by =9, is
defined as follows (recall that A is a set partial states).

Definition 3. An action theory (D,A) entails a query
[p after o] with respect to the 0-approximation semantics,
denoted by (D,A) =° ¢ after a, if for every § € A,
(e, 8) # L and  is true in <T>0(oz7 9).

It should be noted that the transition function ®g(a,d)
coincides with the transition function defined for complete
action theories in (Gelfond & Lifschitz 1993) if ¢ is com-
plete. As such, the possible world semantics for an ac-
tion theory (D, A) can be characterized by ®° of the the-
ory (D, ext(A)). For convenience of our discussion, we say
(D,A) P ¢ after aiff (D, ext(A)) £ ¢ after a. The
following example demonstrates the use of the 0-entailment
in reasoning about the effects of actions.

Example 4. Consider the action theory (D;,A;) from
Example 3. We have e(Flush,)) = pe(Flush,() =
{~Clogged}. Hence, ®°(Flush,)) = e(Flush,() U
(@ \ —pe(Flush,0)) = {-Clogged} = é;. Further-
more, we have e(Dunk,§,) = {Clogged, 7 Armed} and
pe(Dunk,d1) = {Clogged, ~Armed}. Thus,

®(Dunk,6,) = e(Dunk,d;)U (61 \ ~pe(Dunk,d))
= {Clogged, ~Armed}

This also implies that
(D1, Ar) E° ~Armed after [Flush; Dunk]  (4)

O

The 0-approximation is sound (Son & Baral 2001), but it
is, in general, incomplete.

Example 5. Let Dy be the domain obtained from D; by
replacing the axiom [Dunk causes —Armed)] by the axiom

Dunk causes ~Armed if Armed

We can easily check that = Armed is true after the execution
of [Flush; Dunk] if the possible world semantics is used.
However, (D2, A1) #E° —Armed after [Flush; Dunk].
This shows that the 0-approximation is incomplete. 0

The incompleteness of the 0-approximation motivated
Son and Tu (2006) to find conditions for its completeness.
In particular, given a fluent formula ¢ and (D, A), they in-
vestigate the conditions under which (D, A) Y ¢ after o

iff (D, A) =P ¢ after o holds. Their conditions are based
on the notion of dependency between fluent literals and the
reducibility of a set of states to a partial state.

Definition 4. Let D be a domain description. A fluent literal
[ depends on a fluent literal g, written as | < g, iff one of the
following conditions holds.

1. 1=y

2. D contains a law [a causes [ if 9| such that g € .
3. There exists a fluent literal h such that [ <h and h < g.
4.

The complement of | depends on the complement of g, i.e.,
-l <4g.

Note that the dependency relationship between fluent lit-
erals is reflexive, transitive but not symmetric. We next de-
fine the dependency between actions and fluent literals.

Definition 5. Let D be a domain description. An action a
depends on a fluent literal I, written as a < 1, iff one of the
following conditions is satisfied.

1. D contains the statement [executable a if 1] such that
l e

2. There exists a fluent literal g such that a < g and g <.

For a fluent literal [ (resp. action a), we will denote by
Q(l) (resp. €2(a)) the set of fluent literals that [ (resp. a)
depends on. A fluent literal [ (resp. an action a) depends on
a set of fluent literals o, denoted by [ < o (resp. a < o), iff
l < g (resp. a < g) for some g € 0.

A disjunction of fluent literals v = [y V ... V [} depends
on a set of fluent literals o, denoted by v < o if there exists
1 < j < ksuch that [; < o; otherwise, v does not depend on
o, denoted by v 4 o.

Example 6. For the domain description Ds, we have

Q(Clogged) = {Clogged}

Q(—=Clogged) = {~Clogged}

Q(Armed) = {Armed, - Armed}

Q(—Armed) = {Armed, ~Armed}

Q(Dunk) = {~Clogged} Q(Flush) =0 O

Definition 6. Let D be a domain description. Let S be a
belief state (i.e., a set of states), § be a partial state, and
© =1 A ...\, be a fluent formula where each ~; is a
disjunction of fluent literals. We say that S is reducible to §
with respect to o, denoted by S >, ¢ if

1. § is a subset of every state s in S
2. For every 1 < i < n, there exists a state s € S such that

Vi 4 (s\0)

3. For any action a, there exists a state s € S such that

a4 (s\9).

Intuitively, the above definition specifies a condition un-
der which reasoning using belief states (represented by S)
can be done using the 0-approximation using the approxi-
mation state §. For a set of partial states A, we say that
ext(A) >, Aif forevery 6 € A, ext(d) >, 0. Indeed, it
has been shown in (Tu 2007) that

Theorem 1. Ler (D,A) be an action theory and
ext(A) >, A.  For every sequence of actions c,
(D, A) P  after o iff (D, A) E° ¢ after a.



Example 7. Consider Dy (Example 5). Let §; = (). Then,
S1 = ext(d1) is not reducible to §; with respect to ¢ =
—Armed, i.e., ext(0) % - Armea 0, because for each s € Sy,
either fluent literal Armed or —Armed belongs to s \ J;
and the fluent literal = Armed depends on both Armed and
= Armed (Condition 2 in Def. 6 is not satisfied). Similarly,

ext({Clogged}) % - armea {Clogged}
ext({—Clogged}) % - armed {—Clogged}

Let 62 = {Armed}. Then we have ext(ds) =
{s1,82}, where s = {Armed, Clogged} and
sa = {Armed,—Clogged}. We can easily check

that ext(d2) >_Armed  O2. Hence, we have
ext({Armed}) > Armed {Armed}. Similarly, we can
check that ext({—Armed}) >_ Armed {—Armed}. O

Relating the Two Completeness Conditions
Some Results

The equivalence between situation calculus and the action
language A has been proved in (Kartha 1993) for the case
where the initial situation is completely described. A the-
ory in situation calculus D is complete if Dg, = F'(Sp) or
Dgs, = —F(Sp) for each fluent F' in D. We wish to ex-
plore the relationship between the two completeness condi-
tions described above. Let us first discuss some differences
between the two formulations through some examples.

Example 8. Consider the theory D with one action A and
three fluents F, P, and Q). We assume v} (a) = (a = A A
P)V(a = ANQ), vp(a) = L, and, for X € {P,Q},
7% (a) = yx(a) = L. Furthermore, let Dg, = {P(So)}.
For D to be context-complete, we have that P and () should
be known in Sy. That is, Sy should also contain @ or =@ to
guarantee that V (F, Xg) is either O or 1.

A reasonable description of D in the language A, say
D4, consists of two dynamic laws A causes F' if P and
A causes F' if Q) and A = {Jp}, where g = { P}. Itis easy
to check that ext(dp) > do and

(D4, A) E° F after A.

Thus, the knowledge about () is not necessary in determin-
ing whether V (F, %) is 1 or 0. O

This example shows that, to answer certain queries, the
context-complete requirement of (Liu & Levesque 2005)
might be too strong. The next example shows that, on the
other hand, the 0-approximation is somewhat more sensitive
to the specification of effects of actions in 4.

Example 9. Consider the action theories (Di,A;) and
(D2, A1). Recall that the difference between D; and Dy
lies in that [Dunk causes = Armed] in D; is replaced by

Dunk causes —Armed if Armed

in Dsy. Intuitively, these two representations are equivalent,
in the sense that, for each complete state of the world s, the
execution of Dunk in s results in the same state in which the
bomb is disarmed, as it is either a direct effect of Dunk or
it is true by inertia. On the other hand, Examples 4-7 show
that =0 is complete for the fluent formula —=Armed w.r.t.
D, but not w.r.t. Ds. O

The second example shows a weakness of the O-
approximation in that it is more sensitive to the domain
specification than the situation calculus formalism. This
is reflected by the completeness condition in (Son & Tu
2006): we have that ext(A1) >_ armeq A1 W.r.t. Dy but
ext(A1) B -armed A1 W.rt. Dy Why does the situation
calculus formulation not suffer from this problem? The main
reason is in the encoding of the successor state axioms. For
example, the successor state axiom for Armed is

Armed(Do(a, s))=1V
(Armed(s)A—(a=DunkAArmed(s)))

Here, the precondition Armed of the conditional
effect —Armed of Dunk (in the dynamic law
Dunk causes —Armed if Armed) is encoded as
part of the formula v, _.(Dunk). However, this can be
simplified to

Armed(Do(a, s)) = LV (Armed(s) A =(a = Dunk))

which effectively makes —Armed an effect of Dunk. This
argument can be seen as a justification for the simplification
of Dy to Dy in the action language A.

At this point, one might be tempted to conclude that, if the
complement of a fluent literal L appears in ¢ of a dynamic
law A causes L if ¢, then we can remove it from ¢ and the
resulting action theory remains faithful to its original repre-
sentation. This is, however, not the case. Consider a domain
with one action F'lip, that toggles a light bulb switch. Its ef-
fect is to makes the switch On and —-On if it was -On and
On, respectively. This is expressed by the two laws

Flip causes On if -On and F'lip causes =On if On

Removing =On or On in the if part from the first or sec-
ond law respectively would create an inconsistent domain.
Interestingly, the successor state axiom for On is

On(Do(a, 8)) = 75,(a)ls] V (On(s) A =75, (a)ls])

where 77, (a) = a = Flip A =On and v, (a) = a =
Flip A On. The SSA for On could be simplified to

On(Do(a,S)) = fygn(a)[s] V (On(s) A —=(a = Flip))

Observe that the second representation would yield the
same set of models for the theory. Nevertheless, setting
Yon(a) = a = Flip would violate the consistency con-
dition by Reiter (1991) which says that As.[Poss(a,s) D
77 (a, s) Ay~ F(a, s)]. This means that 7, cannot be sim-
plified in this case. On the other hand, the simplification for
Y armea (@) to a = Dunk is acceptable since the consistency
condition is satisfied by the new formula. This discussion
suggests a simplification of A action theories.

Definition 7. For a fluent literal L, a dynamic law
A causes L if ¢ is (A, L)-cyclic if =L € . L and —~L
are A-relevant in D if D contains at least one (A, L)-cyclic
and one (A, —L)-cyclic dynamic law.

L and —L are A-irrelevant if they are not A-relevant. Let
D be a domain description and D be the domain descrip-
tion obtained from D by replacing each (A, L)-cyclic dy-
namic law A causes L if ¢ with A causes L if ¢ \ {-L} if
L and —L are A-irrelevant.



We can see that Armed and —Armed are Dunk-
irrelevant in both theories D; and Dy. On the other hand,
Examples 4-7 show that D; is preferable to Dy for dealing
with incomplete information. We can show that

Theorem 2. For every set of partial states A, (D,A) is
equivalent to (Dg, A) w.rt. the possible world semantics.

From Situation Calculus Theory to Action Theory
We will now show a result relating the context-completeness
condition in (Liu & Levesque 2005) and the reducibility
condition in (Son & Tu 2006). We begin with a translation of
local effect situation calculus theories into .4 action theories
and conclude with a theorem relating these two conditions.
Our translation from a situation calculus theory D into
(D4, A ) is inspired by the translation in (Kartha 1993) (we
will only deal with propositional theories). Assume that

D =Dyp UDgs UDyna UDy
Let F and A denote the set of fluents and actions of
(D4, A 4) respectively. The translation is done as follows.

e For each action precondition axiom
Poss(A,s) =114[s] in Dy,
A belongs to A and D 4 contains executable A if 1T 4.

e For each successor state axiom
F(doa, ) = 7 (@)[s] V (F(s) A =7 (a)ls]) in Dy,
F belongs to F and
— For each disjunct [a = A A ¢] in vﬁ(a), D4 contains

A causes F' if ¢.
— for each disjunct [a = A A ¢] in vz (a), D 4 contains
A causes —F' if ¢

o Let Ay = {00 | do is a minimal set of fluent literals
satisfying Dg, }.

It is easy to check that the action theory (D1, A;) (Example
3) is the result of the above translation from the theory D°
in Example 1. Similarly to (Kartha 1993), we can prove:

Theorem 3. For every fluent formula v and action sequence
a = lag,..., an]L in D, D |E Poss(a, So) A p(Do(a, Sp))
iff (Da,A) EY @ after o

The next theorem relates the context-complete condition
on D and the reducibility condition on (D4, A 4).

Theorem 4. Let D be a context-complete situation calcu-
lus theory and (D, Ay) be its translation to A. Then
ext(A4) >, A4 holds for each fluent formula .

Observe that, in order to obtain the same form of action
theory described earlier, it is necessary to convert the for-
mulae in the conditions of the dynamic causal laws to dis-
junctive normal form and distribute the disjuncts in separate
laws. We are working on extending the 0-approximation to
allow the use of arbitrary propositional formulae in the dy-
namic causal laws.

Conclusions

In this paper, we studied the relationship between two com-
pleteness conditions for the 0-approximation. The insights
gained through the study allowed us to develop a simpli-
fication procedure of an .4 action theory to an equivalent
theory whose completeness condition can be weakened for
certain queries. We also showed that the context-complete
condition on local effect action theories proposed in (Liu &
Levesque 2005) implies the reducibility condition for action
theories in the language A developed in (Son & Tu 2006).

References
Balduccini, M., and Gelfond M. 2003. Diagnostic Reason-
ing with A-Prolog. TPLP, 3(4,5):425-461.
Baral, C., and Gelfond M. 2000. Reasoning agents in dy-
namic domains. LBAI:257-279.

Baral, C.; et al. 2000. Computational complexity of plan-
ning and approximate planning in the presence of incom-
pleteness. Artificial Intelligence 122:241-267.

Gelfond, M., and Lifschitz, V. 1993. Representing actions
and change by logic programs. JLP 17(2,3,4):301-323.
Kartha, G. 1993. Soundness and completeness theorems
for three formalizations of action. In IJCAI, 724-729.

Levesque, H. 1998. A completeness result for reasoning
with incomplete first-order knowledge bases. In KR.

Liu, Y., and Levesque, H. 2005. Tractable reasoning with
incomplete first-order knowledge in dynamic systems with
context-dependent actions. In IJCAL

McCarthy, J., and Hayes, P. 1969. Some philosophical
problems from the standpoint of artificial intelligence. In
Meltzer, B., and Michie, D., eds., Machine Intelligence,
volume 4. Edinburgh University Press. 463-502.

McCarthy, J. 1959. Programs with common sense. In
Teddington Conference on the Mechanization of Thought
Processes, 75-91. Her Majesty’s Stationery Office.

McDermott, D. 1987. A critique of pure reason. Compu-
tational Intelligence 3:151-160.

Moore, R. 1985. A formal theory of knowledge and action.
In Hobbs, J., and Moore, R., eds., Formal theories of the
commonsense world. Ablex, Norwood, NJ.

Reiter, R. 1991. The frame problem in the situation cal-
culus: A simple solution (sometimes) and a completeness
result for goal regression. In Al and Mathematical Theory
of Computation. Academic Press. 359-380.

Reiter, R. 2001. Knowledge in Action: Logical Foun-
dations for Describing and Implementing Dynamical Sys-
tems. MIT Press.

Son, T., and Baral, C. 2001. Formalizing sensing actions -
a transition function based approach. AIJ 125(1-2):19-91.
Son, T. C., and Tu, P. H. 2006. On the Completeness of
Approximation Based Reasoning and Planning in Action
Theories with Incomplete Information. In KRR, 481-491.

Tu, P. H. 2007. Reasoning and Planning with Incomplete
Information in the Presence of Static Causal Laws. Disser-
tation, New Mexico State University.



