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Abstract

We add to the discussion of how to assess the creativity of
programs which generate artefacts such as poems, theorems,
paintings, melodies, etc. To do so, we first review some exist-
ing frameworks for assessing artefact generation programs.
Then, drawing on our experience of building both a mathe-
matical discovery system and an automated painter, we argue
that it is not appropriate to base the assessment of a system
on its output alone, and that the way it produces artefacts also
needs to be taken into account. We suggest a simple frame-
work within which the behaviour of a program can be cat-
egorised and described which may add to the perception of
creativity in the system.

Introduction
Increasingly, computer programs are written to perform
tasks which, if undertaken by people, require an element of
creativity. Within the computational creativity community,
there are certain programs which are described as perform-
ing artefact generation, because they output valuable objects
(artefacts) such as paintings, melodies, poems, theorems,
etc., which can be assessed in their own right. While it is not
a necessary requirement, there is an implicit assumption that
to produce the most pleasing artefacts, aspects of human cre-
ative behaviour will have to be simulated. As a brief and in-
complete survey, these programs work in domains of (i) lit-
erature and linguistics, e.g., poetry (Gervas 2000), story gen-
eration (Theune, Slabbers, & Hielkema 2007), joke genera-
tion (Binsted & Ritchie 1997), word invention (Veale 2006);
(ii) music, e.g., composition (Baggi 1992), harmonisation
(Phon-Amnuaisuk & Wiggins 1999); (iii) pure mathemat-
ics, e.g., theory formation (Colton 2002), conjecture mak-
ing (Fajtlowicz 1988); and (iv) the visual arts, e.g., painterly
renditions (Collomosse & Hall 2003), scene invention (Mc-
Corduck 1991), abstract art generation (Machado & Cardoso
2000).

We have developed two artefact generation programs.
The first system, called HR, performs mathematical theory
formation, and produces examples, concepts, conjectures
and proofs. The second system, called The Painting Fool,
is an automated artist which produces painterly renditions in

Copyright c© 2008, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

a variety of ways. In both cases, assessment of the creativ-
ity of the system was a guiding factor in its development –
we wanted to show an increase in creativity with each new
version. In principal, there are two main factors we might
take into account when we want to assess the creativity of
an artefact generation program. Firstly, we can look at the
output from the system, and assess the artefacts it produces.
Secondly, we can look at the processes that the software per-
forms, and assess its functionality.

As a research community, we have largely focused on as-
sessment of creativity via assessment of the artefacts pro-
duced. We found that this was more than adequate in the de-
velopment of HR, indeed a driving factor has always been a
desire to increase the variety and quality of the mathematical
artefacts it outputs. However, as we developed The Painting
Fool, we began to understand that when consumers of paint-
ings assess them, they do not strictly separate the process
and the artefact. Indeed, their perception of how a piece of
art was produced can have a major influence on their over-
all enjoyment of the artwork. This led us to consider more
deeply how creativity in human artists is assessed. In par-
ticular, one might expect a consumer to assess the artwork
and then project creativity onto the artist or not, depending
on aspects of the artwork. While this model is certainly used
in some situations, it other situations, more complex models
are used. In particular, a consumer might endeavour to find
out the process (intellectual, practical or otherwise) which
was undertaken to produce an artwork. They might then use
this information to make a judgement about the creativity of
the artist, and finally use this judgement in their assessment
of the artwork: a piece is better if it has been more creatively
produced.

This more complex model of artistic assessment, and vari-
ants of it, seem prevalent in modern art circles. Indeed, in
conceptual art, the aesthetic qualities of a piece seem to have
little impact on a consumer’s appreciation of the artwork. A
classic example of this is Duchamp’s displaying of a uri-
nal as a piece of art. In situations like these, consumers are
really celebrating the creativity of the artist rather then the
value of the artefact. We argue that this complex model of
artistic assessment is more pertinent when consumers assess
the value of computer generated artworks. Hence, assessing
software purely on its output is probably misguided. In re-
sponse to this, we have developed a simple framework for



managing the perception of creativity in the behaviour of
software, and we describe this methodology here. To do
so, we first give an overview of some methodologies for
assessing the creativity of software, and then we describe
some approaches to artefact generation in the visual arts. We
then concentrate on how the creativity of visual arts soft-
ware may be assessed, and we use this to present our ap-
proach to managing the perception of creativity. To highlight
this approach, we present the HR system and The Painting
Fool as case studies. While we have used the visual arts
to highlight deficiencies in artefact-only based assessment
methodologies, we conclude by arguing that our supplemen-
tary process-based approach may be used to drive the devel-
opment of creative systems in general.

Assessment of Creativity in Software
Due to space considerations here, we discuss contributions
by only three authors on the question of how to assess cre-
ativity in software. For a more comprehensive overview, we
recommend (Ritchie 2007). Firstly, Boden not only sug-
gested that, under certain circumstances, software could be
considered creative, but also introduced a distinction in the
assessment of artefacts, and a distinction in the assessment
of the behaviour of creative systems (Boden 2003). In par-
ticular, Boden introduced the distinction between H-creative
and P-creative artefacts: the former is novel to mankind,
whereas the latter is novel only to the person/computer
which discovered/invented it. Boden also introduced the dis-
tinction between exploratory and transformational searches
for artefacts. In exploratory creativity, a search is undertaken
within a well defined search space, whereas in transforma-
tional creativity, the space itself is modified. For a formal
framework of creative processes which leads on from Bo-
den’s notions, see (Wiggins 2006).

Koza is well known for using evolutionary approaches
to produce artefacts such as circuit board designs which
are patentable. As such, while he doesn’t make claims of
creativity directly, his software could certainly be consid-
ered so. In (Koza et al. 2003), the authors justify their
statement that “genetic programming now routinely deliv-
ers high-return human-competitive machine intelligence”,
by explaining the terminology expressed. In particular,
they touch on aspects of artefact-based assessment, such as
whether the result is competitive with those produced by a
human, as evidenced by the re-invention of patentable ideas,
or the invention of new patentable ideas. They also touch on
process-based assessment, by describing the usage of soft-
ware as ‘routine’ if it requires little or no tweaking to work
on a new application. For more discussion of fine-tuning,
see (Colton, Pease, & Ritchie 2001).

The most extensive contribution to the discussion of
how we could assess creativity in software has come from
Ritchie. Over a series of papers, culminating in (Ritchie
2007), he has introduced a framework for assessing the cre-
ativity of an artefact generation program. He starts with
some clear assumptions, including relying only on the arte-
facts produced by the system to assess its creativity. He
states that:

“For the purposes of setting up an initial framework, we shall

adopt the (possibly over-simplified) assumption that the inter-
nal workings of a program are not part of the relevant data.”

Ritchie claims that the creativity of an individual is manifest in
the artefacts they produce, so we can ignore the process behind
the production of the artefact. He adds that “this may be our most
contentious working assumption”, and gives these reasons for the
simplification: (a) the creativity of humans is normally judged by
what they produce, and so this gives a level-playing field when
assessing artefacts produced by humans or computer (b) underly-
ing processes are not observable factors, hence not reliable, and
(c) there is a risk of circularity in the argument if we assess both
artefact and process. This last point is quite subtle: Ritchie sug-
gests that we should think of innovation in a production method as
the generation of an abstract artefact. As this manifests creativity
which can be assessed, we only need to consider the assessment of
creativity via artefacts, not processes (and if we consider processes
separately, we may make the argument circular).

Ritchie develops his framework to capture two intuitively key
properties of artefacts, namely their quality and their novelty. With
respect to quality, he explains that in certain domains, most no-
tably computational literature, many systems aren’t able to reli-
ably produce artefacts which satisfy the definition of the class of
artefacts they should belong to, e.g., joke generators often produce
sentences which would not be recognised as jokes. Hence notions
of class membership and the quality of class members are taken
into account in his framework. In terms of novelty, Ritchie uses the
notion of an inspiring set of artefacts. This set is used in the devel-
opment of the software, hence the output of these artefacts should
not be seen as a great success. For instance, the development of
each concept production rule in our HR system (Colton 2002) was
inspired by one or two concepts which we wanted HR to re-invent.
The fact that each production rule was subsequently used to dis-
cover dozens of interesting concepts outside the inspiring set adds
to any claims of creativity for HR, and Ritchie captures this idea
in his framework. As it is well developed, Ritchie’s framework has
been applied to certain creative systems, e.g., (Gervas 2002). De-
tails of these applications are given in (Ritchie 2007), as are some
suggestions for extending the framework.

Artefact Generation in the Visual Arts
There are a myriad of ways in which visual artefacts have been pro-
duced, and, as computer graphics is a huge area, for space consid-
erations, we discuss only the most pertinent subareas: evolutionary
art, Non-photorealistic Rendering (NPR), and automated painting.
The aim of evolutionary art projects is largely to generate abstract
images, by enabling the evolution of programs which generate the
images. The evolution is usually guided by the user making aes-
thetic preferences amongst the phenotypes (images) generated by
the genotypes (programs) he/she is presented with. Their choices
inform the production of new genotypes via the crossover of mate-
rial from parent programs into offspring, and the phenotypes evolve
accordingly, until an artwork which the user is happy with emerges.
An important project within evolutionary art has been Latham et.
al’s development of the Mutator system (Todd & Latham 1992).
Also, Machado et. al’s NEvAr evolutionary art system is distin-
guished by it being able to work fully automatically using a fitness
function (Machado & Cardoso 2000). Our contribution to this area
is described in (Hull & Colton 2007).

The aim in Non-Photorealistic Rendering (NPR) is, broadly
speaking, to produce images that look like they may have been
painted/drawn/sketched by a human artist. For instance, numerous
implementations can turn a digital photograph into a passable sim-
ulated impressionistic painting, e.g., (Litwinowicz 1997). Some of
the techniques used in NPR methods include segmentation (turn-



ing an image into a relatively small number of regions of colours)
and the simulation both of natural media such as paints, charcoals
and pastels, and their usage, e.g., painting with a brush, smudging
charcoals, etc. NPR methods have become highly sophisticated. A
good example is the work of Collomosse et. al, for instance: the
usage of saliency maps to enable fine detail painting of regions of
interest in an image, e.g., facial features (Collomosse & Hall 2006);
and the simulation of cubist renderings (Collomosse & Hall 2003).

NPR systems aim to simulate the results of human painting with-
out necessarily having to simulate the painting process itself. While
some physical aspects are simulated, e.g., the placing of paint
strokes, most NPR software doesn’t simulate the many cognitive
aspects of the artistic process, such as choosing subject matter and
painting style to embed a concept, scene invention, abstraction, at-
tention to detail, etc. Human artists regularly use simulated paint
brushes, such as those within Adobe Illustrator to produce their art-
works, e.g., (Faure-Walker 2006). When doing so, they worry more
about higher level details (subject matter, abstraction, scene layout,
etc.) than what an individual paint stroke should look like, or the
physics underlying paint flow. When software is written to use
similar tools and to consider similar high-level details to automat-
ically generate entire paintings, we call these programs automated
painters. The most well known program in this area is AARON
(McCorduck 1991), which has been developed by artist Harold
Cohen over dozens of years to simulate aspects of his own paint-
ing process. These aspects include colour and abstraction choices,
the invention of scenes including people and objects in rooms, and
the painting of large colour regions. Our contribution in this area
has been The Painting Fool project (described below). While NPR
projects aim to produce pleasing images which could have been
painted by humans, we want The Painting Fool to produce pleas-
ing images which couldn’t have been painted by humans.

A Note on Art Appreciation
In a simple appreciation model, a consumer likes the paintings of
a particular artist, then – maybe over a period of time – the con-
sumer bestows the label of creativity onto the artist as they begin
to appreciate the artist’s aesthetics, style and innovative methods.
It is important to note that there is no collective notion of beauty
within art intelligencia. Moreover, if there were such a collective
notion, artists would willfully rebel, and would be expected to do
so. Such willful disrespect of collective notions of beauty within
the wider community are commonplace by art critics and artists
alike, as witnessed by the critical dislike of the hugely popular
artist Jack Vettriano, and by the production of shock art pieces, ex-
emplified by the sculptures of the Chapman brothers. Artists gen-
erally want to show a progression in their work, and so they change
their own aesthetic considerations, along with their painting style,
subject matter, etc., as their career progresses. For instance, talk-
ing about Willem de Kooning (whose style eventually became ex-
tremely non-representational), Rudolph Burckhardt recalled that:

“Once he said he’d like to paint like Ingres and Soutine... He
made a few exquisite, Ingres-like drawings... but then he said
that if he kept this up he’d go crazy.” [(Hess 2007), page 11].

We contend that while this simplified view of art/artist appreci-
ation may be the default in society, there are other, more complex
models of art appreciation. In particular, a model of real relevance
to computer generated art is as follows: the consumer endeavours
to discover the process behind the production of a particular art-
work by a particular artist. They then make various judgements
about, amongst other things: (a) the effort behind the process (b)
the ingenuity in devising the process, and (c) the skill required to
undertake the process. These judgements – possibly accompanied

by an aesthetic judgement – are used to determine how much the
consumer likes the piece.

Imagine an art-lover at an exhibition entitled ‘Dots 2008’. He
speaks to two artists, each displaying a painting. In both cases,
the art-lover cannot see past the seemingly random arrangement of
dots of paint. He mentions this to the first artist, who says: “Oh,
no, they’re not randomly placed. Each dot represents a friend of
mine. The colour of the dot represents how I feel about them, and
the position indicates how close I am to them.” The art-lover moves
on to the next artist, and mentions again that the dots look like they
have been randomly placed. The artist replies: “Yes, that’s right –
I just mixed a random colour and dabbed it onto the canvas”. Re-
turning a week later with a friend, our art-lover wants to purchase
the first painting, explaining to the friend that it represents feel-
ings. Neither artist is present, and the art-lover cannot remember
which painting is which. The friend points out that perhaps they
could work out which one represents feelings, but they fail to see
anything but randomness in both works. Finally, when the friend
points out that both paintings look alike, so they should just choose
one, our art-lover is inconsolable, and buys neither.

We believe that this situation is plausible, and more importantly,
that it is perfectly reasonable for the art-lover of this story to pre-
fer one painting over another, even though they are so similar on
the surface. We are in an age where the photograph has largely re-
placed fine art for representational purposes; an age which has seen
various movements in art such as impressionism, cubism, abstract
expressionism and many more, which were instigated by artists
moving from being craftsmen to intellectuals who use artistic tech-
niques as their medium of expression. It is therefore not difficult to
see why, in many circumstances, the creativity of an artist is a pri-
mary consideration, with the beauty of their work being secondary.
At one end of the scale, conceptual art embodies this the most ex-
plicitly:

“Conceptual art is not about forms or materials, but about
ideas and meanings ... In particular, conceptual art chal-
lenges the traditional status of the art object as unique, col-
lectable or saleable.” [(Godfrey 1998), page 4].

Even at modest positions on the scale, artists are expected to
create both at the conceptual and the craft level, and art-lovers are
expected to appreciate both. In many cases, the conceptual inno-
vation will occur at a level where it is exhibited visually in the
artwork. In other cases, as with the ‘Dots 2008’ artist, innovation
may occur in a way that it is not obviously exhibited in the artwork,
but was exhibited in the process.

The Perception of Creativity in Software
We can use Ritchie’s idea of considering an artistic process as an
abstract artefact which manifests the creativity of its inventor, to
explain that, in the story above, the art-lover’s overall aesthetic in-
cludes aspects of the creativity behind the process, and they have
identified more creativity in the first artist than in the second. We
believe that it is not just creativity that the art-lover is looking for
in the process, but also effort and skill, and possibly many other
aspects. Even if this is not the case in general, we can still con-
clude that the assessment of an artwork can include information
about the artistic process behind it. This adds to a number of dif-
ficulties associated with computer generated art. The first of these
difficulties is that artists using computers in any fashion tend to be
kept as outsiders in the art world. This is probably due to a gen-
eral reluctance to admit that hard-learned traditional crafts can be
replaced with digital substitutes, and possibly the incorrect percep-
tion that engineering skills such as computer programming do not
lend themselves well to artistic expression. This has left computer-



based artists feeling like outsiders, although this suits some people
(Paul Brown, personal communication).

Computational creativity in the visual arts causes even more
concern in the art world. Fortunately for them, however, the de-
fault position has always been resolutely negative on this point.
For instance, in the June 1934 edition of the Meccano magazine,
an article entitled ‘Are Thinking Machines Possible?’, reporting
on some meccano machines able to solve mathematical equations,
concluded by stating that:

“Truly creative thinking of course will always remain beyond
the power of any machine.”

We can add to this a general reluctance in the non-photorealistic
rendering (NPR) community to discuss issues of creativity. Indeed,
some researchers seem almost apologetic for simulating processes
too close to human creativity. For instance, in a key textbook on
NPR techniques, the authors state unequivocally that:

“Simulating artistic techniques means also simulating human
thinking and reasoning, especially creative thinking. This is
impossible to do using algorithms or information processing
systems.” [(Strothotte & Schlechtweg 2002), page 113].

This leaves the general impression with art consumers that com-
puters aren’t and will never be creative. This wouldn’t be a prob-
lem if the artworks produced by computers were assessed in their
own right, but we have argued that the process – and in particu-
lar the creativity – underlying the process is taken into account in
this assessment. This leads computer generated art into a vicious
circle: the default position that software is not creative leads to a
low assessment of an artefact which it produces, but then if the
software produces bad artefacts, it really cannot be creative. As
an aside, the idea of a Turing-style test for computer generated art
is often touted: can people tell which of two paintings was com-
puter generated, and which was painted by a human artist? This is
asking the wrong question. A more pertinent question would be:
which artwork would people buy? In this case, to simulate a real
gallery situation, full disclosure of the origin of each work would
be required. In the current climate, for good reasons, this would
not favour the computer artist, as its (seemingly) uncreative artistic
methods would go against it.

Our first reason to consider how people perceive the behaviour
of software is therefore to try to break the vicious circle and enable
computer generated art to compete on a level playing field with hu-
man art. Our second reason is that ultimately, automated painters
should – like human painters – transcend any information they are
given about the nature of good and bad artefacts, and should de-
velop their own aesthetic along with their own styles. Hence, fix-
ing measures of how good or bad generated artefacts are is missing
the point in the visual arts. This is only useful in the long run for
software where there is no ambition for it to be creative in its own
right (as is the case in most NPR applications).

The Creative Tripod
To begin to prescribe how we might portray the behaviour of arte-
fact generation processes, we first note that under normal circum-
stances, only the artist and, in some situations the audience, can
have creativity attributed to them. When computers are used, how-
ever, it is commonplace for people to attribute creativity to the pro-
grammer in addition (or instead of) the software. This could be
seen as a double standard, as creativity wouldn’t ordinarily be at-
tributed to the teacher of a student who produced an artwork, but
because the training of software is far more explicit than that of an
art student, it is understandable. It is our responsibility to point out
that the inclusion of random processes and the alteration of code

through evolutionary means and/or machine learning methods will
often mean that the behaviour of the software cannot be predicted
by the programmer (which is the effect we are looking for). We
must also note that there is a potential dichotomy in explaining
computational processes: too little information will not feed the
desire to understand what it is doing, but too much information
might re-inforce the impression that the software is purely carrying
out pre-defined (programmed) instructions.

Given the default position in the popular perception of machines
that software cannot be creative, we can expect a certain amount of
criticism towards any implication that software is being creative.
We can identify such criticisms as a set of necessary conditions,
and manage them in our portrayal of the software processes. We
propose to concentrate on three such necessary conditions, namely
that the software exhibits behaviour which could be described as
skillful, appreciative and imaginative. One can imagine a painter
(human or otherwise) who lacks one of these three behaviours.
Without skill, they would never produce anything; without appre-
ciation, they would never produce anything of value; and without
imagination, at best they would only produce pastiches of other
people’s work.

To aid in describing the behaviour of creative software in
straightforward terminology, we introduce the notion of the cre-
ative tripod. The three legs of the tripod represent the three be-
haviours we require in our system: skill, appreciation and imagi-
nation, and only if all of these are present will the tripod support
the perception of creativity. Moreover, the legs of tripods are ex-
tensible and are themselves split into three sections. We use this to
highlight that there are three parties which could be perceived as
contributing creatively when a consumer experiences a computer
generated artwork, namely the programmer, the computer and the
consumer. Moreover, each party can contribute skill, appreciation
and imagination to the experience, and the relative extension of the
nine sections spread over the three legs can be used to represent the
relative size of the contribution. Our position is that, if we perceive
that the software has been skillful, appreciative and imaginative,
then, regardless of the behaviour of the consumer or programmer,
the software should be considered creative. Without all three be-
haviours, it should not be considered creative, but the more aspects
which extend each leg of the tripod, the more creativity we should
project onto the software.

This analogy provides both a very straightforward way of cate-
gorising and describing the behaviours of creative software for non-
technical consumers, and a way of assessing the amount (if any) of
creativity exhibited. We can use the framework to make concrete
decisions about the creativity of pieces of software. Looking at
the AARON program, we note that it doesn’t have any notion of
the value of its own artwork. Cohen might investigate using ma-
chine learning techniques to derive some rules governing which of
AARON’s paintings he keeps each morning when he checks the
output, but this seems unlikely to happen (Harold Cohen, personal
communication). Hence, in our perception of how AARON works,
it is difficult to describe any of its behaviours as appreciative. So,
even though we could describe its scene generation and painting of
the scenes as imaginative and skillful respectively, we cannot call
the software creative. Conversely, the saliency detection behaviour
of Collomosse’s cubist image generation software (Collomosse &
Hall 2003) can be described as an appreciation of the important
aspects its subject matter, and the ability to construct cubist repre-
sentations from a digital photograph could be described as (perhaps
mildly) imaginative. Given the skill that the software has in simu-
lating paint strokes to render the image, we would be prepared to
describe this software as creative. For similar reasons, working in
fully automated mode, we would use the word creative to describe
the NEvAr system – in this case, its fitness function provides ap-



preciation that evolutionary art programs rarely have.
We can also refer back to other frameworks for assessing cre-

ativity in software. In particular, one might consider that software
performing exploratory search in Boden’s terminology should be
described as less imaginative than software performing transfor-
mational search. We might also look at Koza’s notion of software
performing ‘routinely’, and say that the lack of fine-tuning required
is an indicator of greater appreciation of the software to adapt to
new applications. Finally, one might consider that when assessing
the creativity of a program, a simple framework in which the pro-
cesses behind artefact generation are considered in informal terms
is a good complement to Ritchie’s framework which considers the
artefacts generated in more formal terms. Moreover, we argue that
we should be implementing Ritchie’s criteria into artefact genera-
tion software, so that it could better appreciate its own creativity.

Case Studies
The HR system is named after mathematicians Hardy and Ramanu-
jan, and has been designed to form theories in domains of pure
mathematics. HR’s input is typically minimal information about
a domain, such as the axioms of an algebra like group theory, or
some simple concepts such as the arithmetic operators in number
theory. HR operates by building new concepts from old ones us-
ing a set of production rules which essentially impose structure or
constraints on the examples which satisfy the definition of the new
concept. In addition to inventing new concepts, HR also looks for
empirical relationships between the concepts. For instance, if the
examples of one concept are exactly the same as those for another,
HR makes a conjecture that the two concepts are logically equiv-
alent. HR then employs third party automated reasoning software
such as Otter (McCune 1990) and MACE (McCune 1994) to try
and prove (respectively disprove) that each conjecture follows from
a set of user supplied axioms. The heuristic search for concepts
and conjectures is driven by a set of measures of interestingness,
as described in (Colton, Bundy, & Walsh 2000). That is, at each
round, the most interesting concept – as specified by a user given
weighted sum of measures – is identified and then new concepts
are built from it. HR has been quite successful in various domains
of pure mathematics, including number theory (Colton 1999) and
algebraic domains (Colton et al. 2004). A formal description of
HR, and a summary of some of the mathematical applications to
which we have applied HR can be found in (Colton & Muggleton
2006), and a more extensive description can be found in (Colton
2002).

HR was developed before the creative tripod framework. In fact,
we developed HR strictly according to an assessment scheme in-
volving only the artefacts. It didn’t matter whether a description of
our techniques would add to the perception of creativity as a whole
or not, as long as each new version of HR produced better quality
and/or more types of mathematical artefacts. We have been pre-
pared to use the word ‘creativity’ to describe HR for a number of
years, and we can now justify this (somewhat) by appealing to the
creative tripod. HR’s skills include its ability to form new concepts
from old, to make conjectures empirically and to prove/disprove
theorems (including Otter/MACE as a process in HR’s theory for-
mation). HR’s measures of interestingness enable it to appreciate
the concepts and conjectures in the theory it is producing, and to
change its behaviour accordingly. We can describe the search that
HR performs as imaginative, for example, we can give HR just
the ability to multiply two numbers together, and come back ten
minutes later to find that it has discovered that odd refactorable
numbers are perfect squares (refactorable numbers x are such that
the number of divisors of x is itself a divisor). If we gave a child
(or even an undergraduate) the same ability to multiply two num-

bers and 10 minutes, and it produced the same result, we might be
inclined to describe him/her as imaginative (or at least inventive).
While refactorable numbers were a P-creative invention (Colton
1999), the conjecture above was (we believe) a H-creative inven-
tion, which adds weight to our claim of imaginative behaviour on
HR’s part.

The second system we have built for artefact generation is called
The Painting Fool. This produces pieces of visual art, such as (sim-
ulated) paintings, sketches and drawings. To do this, it simulates
both natural media such as pens, pencils, brushes, canvases, paints,
etc., and it simulates the way in which those media could be used.
In particular, working from a given digital image, it first segments
the image into paint regions, and abstracts the borders of the re-
gions to be fairly smooth. Then, working in painting layers, it sim-
ulates different methods for using natural media to both outline and
fill each region. In addition, The Painting Fool has been trained
with a knowledge base of different settings for the segmenting and
rendering processes, and it has an expert system which is able to
take high level information in the form of keywords and map these
to settings. In effect, this enables keyword control of all aspects of
the artistic style it uses for a particular artwork, including the level
of abstraction, the colour palette, the natural media which are sim-
ulated and the painting style. Details about The Painting Fool have
not yet been published, but there is a web page devoted to it here:
www.thepaintingfool.com.

The Painting Fool was developed very much as an art project
rather than a scientific project. That is, no technical papers about
it have been published (although one has been recently submitted
to a conference). Instead, we have opted to attempt to dissemi-
nate artworks by The Painting Fool, by preparing online galleries
and publicising them, taking part in exhibitions, giving demonstra-
tions, entering competitions, etc. In addition, The Painting Fool
has been designed to operate in real time, i.e., it adds each stroke
to a canvas with painstaking detail. We have added videos of this
process to the web site, so that people can see it working. All of
these decisions were taken to aid in presenting The Painting Fool
as an artist rather than a program, and the website is written in The
Painting Fool’s voice to further emphasise this. The dissemination
of its artwork was in order to receive critical feedback about it as an
artist and about the paintings it produces. The feedback has been
generally positive. Although we have only anecdotal evidence, it
is apparent that being able to watch The Painting Fool create its
paintings means that people project more value onto them than they
would if the paintings were rapidly generated through, say, an im-
age filtering process. This seems to be because they can project
critical thought processes onto the software, and empathise with it
more. We also believe that the description of its behaviour in terms
of skill, appreciation and imagination helps to add to the empathy
people have for The Painting Fool.

The development of The Painting Fool has been heavily influ-
enced by the creative tripod framework. The first gallery we dis-
played was designed to stretch its skills: a series of nine cityscape
and building paintings/sketches, which required the implementa-
tion of abilities to simulate various styles in acrylic paints, pencils,
pastels, charcoals and chalks. The second gallery was designed to
increase The Painting Fool’s appreciation, both of its subject mat-
ter and the way in which its painting materials and styles can affect
the artefacts it produces. The gallery contains 222 portraits of Au-
drey Tatou from the film Amelie, and in each one she is expressing
an emotion. We added around fifty artistic styles to The Painting
Fool’s knowledge base and tagged each one with an emotion key-
word. The keywords could then be used as a high level way to
choose settings for it to paint with. For instance, there is a mapping
of the keyword ‘happy’ onto a vivid colour palette and a slapdash
painting style which simulates acrylic paints.



At this stage, the Painting Fool was able to act like an expert
system, but needed to be told the emotion expressed in the image
to be able to choose from its knowledge base accordingly. To fur-
ther increase its automation, and to increase the perception of the
appreciation it has, we combined it with a machine vision program
which is able to detect the emotion that a person expresses in a
short video clip (Valstar & Pantic 2006). The vision system passed
the emotion keyword to The Painting Fool, which chose its artistic
style accordingly when painting a portrait of the person in the video
clip. We entered this combined system into (and won) the British
Computer Society’s annual Machine Intelligence competition.

Driven by the desire for The Painting Fool to exhibit skill, appre-
ciation and imagination, we have started to give it abilities which
might be described as imaginative. In particular, we wrote a scene
generation module that uses an evolutionary approach to build
scenes containing objects of a similar nature, such as city skylines
and flower arrangements (Colton 2008). Taking the approach to a
meta-level, we combined the system with HR, which we used to
generate fitness functions, so that it produced scenes which max-
imised a fitness function that we had not explicitly specified. This
added greatly to our perception of imagination in the system. At
present, The Painting Fool does not exhibit behaviour which is
skillful, appreciative and imaginative at the same time, but we are
working on a project where a natural language module will be used
to parse some text, and then construct a scene which The Paint-
ing Fool will paint. We hope this will exhibit multiple behaviours
on each leg of the tripod, and that we will be able to describe The
Painting Fool as creative.

Conclusions
Consideration of how to assess the level of creativity of an artefact
generation program is a key issue in computational creativity. Most
work in this area has concentrated on how to assess creativity using
only the artefacts produced by the system. We have argued that – at
least in the visual arts – the process of creating an artefact is often
a deciding factor in the assessment of that artefact. This causes a
problem in computer generated art, because the general impression
is that computers cannot be creative, and hence assessment of their
artwork suffers. We have also described other problems related to
assessing artefacts in a domain where the assessment criteria are
themselves in flux. Moreover, we have pointed out that software
which we want to ultimately be accepted as creative in its own right
needs to subvert any given notions of good and bad artefacts.

Given these considerations, we have argued that we should be
providing consumers of the artefacts with some high-level details
of how the software operates. By introducing the creative tripod
for this purpose, we hope to be able to level the playing field some-
what when people assess the value of computer generated artefacts.
Moreover, we hope that developers of creative systems in future
will refer to the creative tripod to estimate whether consumers will
perceive their software as creative or not. We further hope that de-
velopers will improve their system to exhibit behaviours which are
skillful, appreciative and imaginative. We hope to have shown that
in certain domains, not least the visual arts, considerations about
how creative software is perceived to be are as important as aes-
thetic considerations, and how creative the software actually is.
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