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Abstract 
A drama manager (DM) monitors an interactive experience, 
such as a computer game, and intervenes to shape the global 
experience so that it satisfies the author's expressive goals 
without decreasing a player's interactive agency. Most 
research work on drama management has proposed AI 
architectures and provided abstract evaluations of their 
effectiveness. A smaller body of work has evaluated the 
effect of drama management on player experience, but little 
attention has been paid to evaluating the authorial leverage 
provided by a drama management architecture: determining, 
for a given DM architecture, the additional non-linear story 
complexity a DM affords over traditional scripting methods. 
In this paper we propose three criteria for evaluating the 
authorial leverage of a DM: 1) the script-and-trigger 
complexity of the DM story policy, 2) the degree of policy 
change given changes to story elements, and 3) the average 
story branching factor for DM policies vs. script-and-trigger 
policies for stories of equivalent quality. We present 
preliminary work towards applying these metrics to 
declarative optimization-based drama management, using 
decision-tree learning to capture the equivalent trigger logic 
for a DM policy. 

Introduction 
Technology can expand the possibilities of narrative both 
for those who experience and those who tell stories, in 
particular by making narrative be interactive. Authoring 
interactive narratives, however, has proven quite 
challenging in practice. Narrative in games, although 
sharing some qualities with non-interactive storytelling, 
delivers a highly interactive experience, which requires 
new ways of approaching authoring. Traditional 
approaches to authoring interactive stories in games 
involve a scripted and heavily linear process, and 
extending this process to large stories with complicated 
interactivity is difficult. Drama managers provide an 
alternative approach, by allowing the author to assume a 
system that knows something at run-time about how to 
manage the story. Such approaches, however, are difficult 
to evaluate from the perspective of authors looking for 
reasons to use a drama manager rather than traditional 
authoring approaches. 
 Authorial leverage is the power a tool gives an author to 
define a quality interactive experience in line with their 
goals, relative to the tool’s authorial complexity. It has 
been pointed out that the “burden of authoring high quality 
dramatic experiences should not be increased because of 
the use of a drama manager” (Roberts & Isbell, 2008), but 

determining whether that is the case depends on 
determining both the complexity of an authoring approach 
and the gains it provides. 
 Previous work has studied how experience quality can 
be improved by drama management. This does not directly 
imply an authorial benefit, however. To show that, there 
needs to be some reason to believe that traditional 
authoring methods could not have achieved the same 
results, or that they would have required considerably more 
effort to do so. 
 A way to get at that comparison is to look at the set of 
traditional trigger-logic rules that would be equivalent to 
what a drama manager is doing. We propose three criteria 
for evaluating the authorial leverage of drama managers in 
this manner: equivalent script-and-trigger complexity of 
their policies, policy change complexity, and average 
branching factor of their policies. We present preliminary 
work applying these metrics to declarative optimization-
based drama management (DODM), by examining the 
equivalent trigger-logic for a drama-manager policy as 
captured by a decision-tree learner. 

Drama Management 
In this work, we focus on DODM, an approach to drama 
management based on plot points, DM actions, and an 
evaluation function (Weyhrauch, 1997). 
 Plot points are important events that can occur in an 
experience. Different sequences of plot points define 
different player trajectories through games or story worlds. 
Examples of plot points include a player gaining story 
information or acquiring an important object. The plot 
points are annotated with ordering constraints that capture 
the physical limitations of the world, such as events in a 
locked room not being possible until the player gets the 
key. Plot points are also annotated with information such 
as where the plot point happens or its subplot.  
 The evaluation function, given a total sequence of plot 
points that occurred in the world, returns a “goodness” 
evaluation for that sequence. This evaluation is a specific, 
author-specified function that captures story or experience 
goodness for a specific world. While an author can create 
custom story features, the DODM framework provides a 
set of additive features that are commonly useful in 
defining evaluation functions (e.g. Weyhrauch, 1997; 
Nelson & Mateas, 2005). 
 DM actions are actions the DM can take to intervene in 
the unfolding experience. Actions can cause specific plot 
points to happen, provide hints that make it more likely a 
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plot point will happen, deny a plot point so it cannot 
happen, or un-deny a previously denied plot point.  
 When DODM is connected to a concrete game world, 
the world informs the DM when the player has caused a 
plot point to happen. The DM then decides whether to take 
any actions, and tells the world to carry out that action.  
 Given this model, the DM’s job is to choose actions (or 
no action at all) after the occurrence every plot point so as 
to maximize the future goodness of the complete story. 
This optimization is performed using game-tree search in 
the space of plot points and DM actions, using expectimax 
to backup story evaluations from complete sequences. 

Measuring Authorial Leverage 
The evaluation of DODM thus far has established at least 
preliminary positive results for: the technical features of 
optimization (Weyhrauch, 1997; Nelson et al, 2006; 
Nelson & Mateas, 2008), the effect on player experience 
(Sullivan, Chen, & Mateas, 2008), and the correspondence 
of some evaluation functions to expert notions of 
experience quality (Weyhrauch, 1997). None of this 
establishes the usefulness of DODM for authors, however, 
if similarly impressive results could have been achieved 
just as easily using traditional trigger-logic authoring 
techniques. 

Script-and-trigger authoring and DM equivalents 
Traditionally, interactive story experiences are authored 
with sets of scripts and triggers: the author specifies 
particular events or world states that trigger scripts, which 
then perform some sequence of actions in response. 
 One way to understand the operations of a DM is to 
generate a set of script-and-trigger logic that acts 
equivalently to the way the DM does. We do that by 
generating a large set of traces of the DM operating on a 
number of different stories, and then using a decision-tree 
learner to summarize the DM’s operation. The internal 
nodes in the learned decision tree, which split on state 
values, correspond to the tests that exist in triggers; the 
leaves then correspond to scripts to execute, represented by 
DM actions. A particular path from the root node to a leaf 
defines a script to execute given the conjunction of the set 
of triggers along the path. 

Evaluating DM via equivalents 
We propose looking at the equivalent trigger-logic 
formulations of DODM policies to establish the authorial 
leverage of DODM from three perspectives. 
 Complexity of script-and-trigger equivalents. First, if 
the script-and-trigger equivalent of a DM policy is 
unreasonably complex, then it is an infeasible way of 
authoring that policy. We can determine the smallest 
decision tree that achieves performance reasonably close to 
the drama manager, and qualitatively consider whether it 
would be reasonable to hand-author it. Alternately, we can 
start with a reasonable hand-authored policy for a small 

story world, and see how the complexity of required new 
additions scales as we add additional events and locations 
in the story world. 
 Ease of policy change. Second, if experiences can be 
tuned and altered easily by changing some DM parameters 
(e.g. the author decides the experience should be faster 
paced), and the equivalent changes in a trigger-logic 
equivalent would require many complicated edits 
throughout the system, DM adds authorial leverage. 
DODM in particular uses a number of numerical 
values/weights/probabilities to define experience goals, 
which can be changed to re-weight criteria in decisions 
throughout the story. Other drama managers can allow for 
changes such as adding or removing story goals in a 
planning formalism. If simple changes at those levels of 
authorship result in a noticeably different script-and-trigger 
equivalent policy, DM effectively allows an author to re-
script the original from a compact representation, or to 
easily create a set of variations on a given experience. 
 Variability of experiences. The first two leverage 
metrics were based off of the relationship between the 
amount of work and the quality of the work’s outcome.   
This third measure of leverage is necessary to ensure that 
there is a variety of diverse experiences in addition to 
stories of great quality.  Its necessary to consider frequency 
of variability because high quality stories are easily hand 
authored, although difficult to author in large numbers.  An 
AI system that had the same high quality experience every 
time could, according to the first two metrics, yield 
significant leverage.   

Decision Trees 
We induced decision trees from example drama-managed 
story traces using the J48 algorithm implemented in Weka, 
a machine-learning software package.1 Each drama-
manager decision is made in the context of a partially 
completed story, so the training data is a set of (partial-
story, dm-action) pairs, generated by running the search-
based drama manager to generate thousands of examples of 
its actions. Partial stories (the independent variable) are 
represented by a set of boolean flags indicating whether 
each plot point and DM action has happened thus far in 
this story, and, for each pair of plot points a and b, whether 
a preceded b if both happened. 
 The tree that results can be interpreted as a script-and-
trigger system. Each interior node, which splits on one of 
the boolean attributes, is a test of a flag. The path from a 
root node to a leaf passes through a number of such flag 
tests, and their conjunction is the trigger that activates the 
script at the leaf node, represented by a DM action to take. 
The tree format is simply a compact (and inducible from 
data) representation of the total set of triggers. Decision 
trees of various sizes can be induced by varying the 
pruning parameters: a low degree of pruning will 
effectively memorize the training examples, while a high 
                                                 
1 http://www.cs.waikato.ac.nz/ml/weka/ 
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degree of pruning captures a small script-and-trigger 
system that accounts for as much of the DM’s behavior as 
possible, given the small permitted tree. 
 Any of the policies—the actual DM policy or any of the 
decision trees—can be run with a simulated player to 
generate a histogram of how frequently experiences of 
various qualities occur. More successful drama 
management will increase the proportion of highly rated 
experiences and decrease that of lower-rated experiences.  
 Varying the degree of pruning allows us to see how 
much performance is sacrificed by limiting to a simple 
script-and-trigger system; or alternately to see what level 
of script-and-trigger complexity is needed to achieve 
performance similar to the drama manager. 

DM policy evaluations in EMPath 
We performed our preliminary evaluations on EMPath, a 
Zelda-like adventure game (Sullivan, Chen, & Mateas, 
2008) that was developed to test DODM in a traditional 
game genre.  It is set in a 25-room dungeon and has, at 
most, 10 plot points that can possibly occur.  In addition to 
the game, there are 32 DM actions that DODM may 
choose to employ at various points in the story (33 DM 
actions when counting the choice to do nothing). The 
figure below shows the world’s 10 plot points and their 
required precedence relationships: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1: This is the directed-acyclic graph for the story world 
 
 We ran DODM in this world to generate 2500 drama-
managed story traces, producing 22,000 instances of 
training data from which to induce a decision tree. To vary 
pruning, we varied minimal terminal node size, with a 
larger minimal terminal node size resulting in smaller trees 
as splitting does not continue as far. 
 The following histogram shows the performance of the 
drama manager in the EMPath story world, compared to 
the performance of a null policy (which always takes no  
DM actions) and a number of trees at various levels of 
pruning. It is apparent that the performance of the smallest 
trees   (greatest  pruning),  such  as  the  one  labeled  1000, 
performs only slightly better than the null  policy,  whereas 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
the best match with the search-based policy (the actual DM  
policy) is found at moderately low levels of pruning, 
labeled 200. In addition, the least-pruned trees (e.g. 50) 
overfit to the particular  runs  in  the  training  set,  as  we’d 
expect, resulting in worse overall performance, so aren’t a 
good capture of an equivalent policy. 
 The tree trees below represent the highly pruned (1000) 
policy, and the best performing (200) policy, respectively: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Although this zoomed-out view gives only a general idea 
of the policies, the second policy is already clearly quite 
complex for such a small story world, and the more 
reasonable first policy empirically doesn’t perform as well. 

Figure 2: Story quality histogram of search, null, and decision 
tree policies.  

Figure 4: The highest evaluating decision 200-tree (70 nodes). 

Figure 3: The poorly evaluating decision 1000-tree (17 nodes). 
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The zoomed-in view of part of the best-performing (200) 
tree below shows some of the equivalent script-and-trigger 
logic that it captures: 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5: Zoomed in view of the 200 pruned tree. 
 
One trace through this segment specifies the following 
rule. If info_key_guard_BEFORE_get_key is false (i.e. 
either info_key_guard or get_key plot points haven’t 
happened, or the info_key_guard plot point happened 
second); and the DM action temp_deny_info_use_wax has 
not been used; and the DM action temp_deny_wax has not 
been used; and the plot point give_flute has happened; all 
conjoined with any tests further up the tree; then take the 
DM action temp_deny_info_use_wax. This is specifying a 
series of exclusion tests (for which other DM actions 
would be appropriate), followed by a choice of what to do 
if all of them pass; that choice depends on whether the 
flute has been given yet. Hundreds of these sorts of rules 
get automatically generated; while they could all be 
authored by hand in principle, the fact that even in such a 
small story world it requires a tree of this size to 
reasonably approximate the DM’s performance gives some 
indication of the infeasibility of doing so. 

Decision-tree policy issues 
Although decision trees are a nice way of automatically 
capturing a form of a DM policy that can be interpreted as 
a script-and-trigger system, there are a few difficulties with 
the policies they produce. The generalization that takes 
place in decision-tree induction can produce choices of 
actions that would not be permitted in a particular state: 
The decision-tree-learning algorithm has no notion of the 
internal structure of DODM so may make unsafe 
generalizations. Two instances where the decision trees 
produced invalid choices of DM action were: 1) taking 
causer DM actions that cause plot points which already 
happened; and 2) not knowing that denier actions for 
critical plot points must be reenabled eventually. 
 These are in effect uncaptured additional complexities in 
a correct DM policy that a script-and-trigger system would 
need to deal with. An improvement to the decision-tree 
induction that might capture them would be to produce a 
number of negative examples of such disallowed choices 
of DM actions, and use a decision-tree induction algorithm 
that allows negative class examples. 

Conclusions and future work 
We proposed that a major open issue in the evaluation of 
drama managers is their authorial leverage: the degree of 
authorial control they provide over an interactive 
experience as compared to the complexity of that 
authoring. Since authoring drama-manager-like interaction 
in stories is commonly done via scripts and triggers, we 
proposed that one way to evaluate authorial leverage a 
drama manager gives is to use decision trees to induce and 
examine a script-and-trigger equivalent form of a drama 
manager’s policy. We proposed three criteria with which to 
do the comparison: 1) consider the complexity and 
complexity scaling with story size of the script-and-trigger 
versions; 2) consider the ease with which stories can be 
rebalanced or changed by changing DM parameters versus 
editing a set of scripts and triggers; and 3) examine the 
variability of stories produced by a script-and-trigger 
system and a DM policy, e.g. by their branching factors. 
 We presented preliminary results in inducing a script-
and-trigger equivalent form of a DODM policy in a Zelda-
like world, EMPath, and evaluating it by our first proposed 
criterion, showing that the resulting policies are quite 
complex to hand-author even in this small domain. Future 
work should evaluate DODM according to all three 
criteria, in several story worlds; ideally, it would also 
compare DODM to other drama-management approaches 
using a similar evaluation of authorial leverage. 
 There are additional ways to evaluate DM authoring that 
could be developed. For example, the authoring metaphors 
used by various drama-management systems can be 
compared (Magerko, 2007), as can the ease of authoring 
within each system’s metaphor, e.g. the ease of specifying 
DODM’s evaluation function, and similar parameters in 
other systems. 
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