
Evaluating the Authorial Leverage of Drama Management

Sherol Chen,1 Mark J. Nelson,1,2 Anne Sullivan,1 Michael Mateas1

1 Expressive Intelligence Studio
University of California, Santa Cruz

{sherol, anne, michaelm}@soe.ucsc.edu

2 School of Interactive Computing
Georgia Institute of Technology

mnelson@cc.gatech.edu

Abstract
A drama manager (DM) monitors an interactive experience,
such as a computer game, and intervenes to shape the global
experience so that it satisfies the author's expressive goals
without decreasing a player's interactive agency. Most
research work on drama management has proposed AI
architectures and provided abstract evaluations of their
effectiveness. A smaller body of work has evaluated the
effect of drama management on player experience, but little
attention has been paid to evaluating the authorial leverage
provided by a drama management architecture: determining,
for a given DM architecture, the additional non-linear story
complexity a DM affords over traditional scripting methods.
In this paper we propose three criteria for evaluating the
authorial leverage of a DM: 1) the script-and-trigger
complexity of the DM story policy, 2) the degree of policy
change given changes to story elements, and 3) the average
story branching factor for DM policies vs. script-and-trigger
policies for stories of equivalent quality. We present
preliminary work towards applying these metrics to
declarative optimization-based drama management, using
decision-tree learning to capture the equivalent trigger logic
for a DM policy.

Introduction
Technology can expand the possibilities of narrative both
for those who experience and those who tell stories, in
particular by making narrative be interactive. Authoring
interactive narratives, however, has proven quite
challenging in practice. Narrative in games, although
sharing some qualities with non-interactive storytelling,
delivers a highly interactive experience, which requires
new ways of approaching authoring. Traditional
approaches to authoring interactive stories in games
involve a scripted and heavily linear process, and
extending this process to large stories with complicated
interactivity is difficult. Drama managers provide an
alternative approach, by allowing the author to assume a
system that knows something at run-time about how to
manage the story. Such approaches, however, are difficult
to evaluate from the perspective of authors looking for
reasons to use a drama manager rather than traditional
authoring approaches.
 Authorial leverage is the power a tool gives an author to
define a quality interactive experience in line with their
goals, relative to the tool’s authorial complexity. It has
been pointed out that the “burden of authoring high quality
dramatic experiences should not be increased because of
the use of a drama manager” (Roberts & Isbell, 2008), but

determining whether that is the case depends on
determining both the complexity of an authoring approach
and the gains it provides.
 Previous work has studied how experience quality can
be improved by drama management. This does not directly
imply an authorial benefit, however. To show that, there
needs to be some reason to believe that traditional
authoring methods could not have achieved the same
results, or that they would have required considerably more
effort to do so.
 A way to get at that comparison is to look at the set of
traditional trigger-logic rules that would be equivalent to
what a drama manager is doing. We propose three criteria
for evaluating the authorial leverage of drama managers in
this manner: equivalent script-and-trigger complexity of
their policies, policy change complexity, and average
branching factor of their policies. We present preliminary
work applying these metrics to declarative optimization-
based drama management (DODM), by examining the
equivalent trigger-logic for a drama-manager policy as
captured by a decision-tree learner.

Drama Management
In this work, we focus on DODM, an approach to drama
management based on plot points, DM actions, and an
evaluation function (Weyhrauch, 1997).
 Plot points are important events that can occur in an
experience. Different sequences of plot points define
different player trajectories through games or story worlds.
Examples of plot points include a player gaining story
information or acquiring an important object. The plot
points are annotated with ordering constraints that capture
the physical limitations of the world, such as events in a
locked room not being possible until the player gets the
key. Plot points are also annotated with information such
as where the plot point happens or its subplot.
 The evaluation function, given a total sequence of plot
points that occurred in the world, returns a “goodness”
evaluation for that sequence. This evaluation is a specific,
author-specified function that captures story or experience
goodness for a specific world. While an author can create
custom story features, the DODM framework provides a
set of additive features that are commonly useful in
defining evaluation functions (e.g. Weyhrauch, 1997;
Nelson & Mateas, 2005).
 DM actions are actions the DM can take to intervene in
the unfolding experience. Actions can cause specific plot
points to happen, provide hints that make it more likely a

20

plot point will happen, deny a plot point so it cannot
happen, or un-deny a previously denied plot point.
 When DODM is connected to a concrete game world,
the world informs the DM when the player has caused a
plot point to happen. The DM then decides whether to take
any actions, and tells the world to carry out that action.
 Given this model, the DM’s job is to choose actions (or
no action at all) after the occurrence every plot point so as
to maximize the future goodness of the complete story.
This optimization is performed using game-tree search in
the space of plot points and DM actions, using expectimax
to backup story evaluations from complete sequences.

Measuring Authorial Leverage
The evaluation of DODM thus far has established at least
preliminary positive results for: the technical features of
optimization (Weyhrauch, 1997; Nelson et al, 2006;
Nelson & Mateas, 2008), the effect on player experience
(Sullivan, Chen, & Mateas, 2008), and the correspondence
of some evaluation functions to expert notions of
experience quality (Weyhrauch, 1997). None of this
establishes the usefulness of DODM for authors, however,
if similarly impressive results could have been achieved
just as easily using traditional trigger-logic authoring
techniques.

Script-and-trigger authoring and DM equivalents
Traditionally, interactive story experiences are authored
with sets of scripts and triggers: the author specifies
particular events or world states that trigger scripts, which
then perform some sequence of actions in response.
 One way to understand the operations of a DM is to
generate a set of script-and-trigger logic that acts
equivalently to the way the DM does. We do that by
generating a large set of traces of the DM operating on a
number of different stories, and then using a decision-tree
learner to summarize the DM’s operation. The internal
nodes in the learned decision tree, which split on state
values, correspond to the tests that exist in triggers; the
leaves then correspond to scripts to execute, represented by
DM actions. A particular path from the root node to a leaf
defines a script to execute given the conjunction of the set
of triggers along the path.

Evaluating DM via equivalents
We propose looking at the equivalent trigger-logic
formulations of DODM policies to establish the authorial
leverage of DODM from three perspectives.
 Complexity of script-and-trigger equivalents. First, if
the script-and-trigger equivalent of a DM policy is
unreasonably complex, then it is an infeasible way of
authoring that policy. We can determine the smallest
decision tree that achieves performance reasonably close to
the drama manager, and qualitatively consider whether it
would be reasonable to hand-author it. Alternately, we can
start with a reasonable hand-authored policy for a small

story world, and see how the complexity of required new
additions scales as we add additional events and locations
in the story world.
 Ease of policy change. Second, if experiences can be
tuned and altered easily by changing some DM parameters
(e.g. the author decides the experience should be faster
paced), and the equivalent changes in a trigger-logic
equivalent would require many complicated edits
throughout the system, DM adds authorial leverage.
DODM in particular uses a number of numerical
values/weights/probabilities to define experience goals,
which can be changed to re-weight criteria in decisions
throughout the story. Other drama managers can allow for
changes such as adding or removing story goals in a
planning formalism. If simple changes at those levels of
authorship result in a noticeably different script-and-trigger
equivalent policy, DM effectively allows an author to re-
script the original from a compact representation, or to
easily create a set of variations on a given experience.
 Variability of experiences. The first two leverage
metrics were based off of the relationship between the
amount of work and the quality of the work’s outcome.
This third measure of leverage is necessary to ensure that
there is a variety of diverse experiences in addition to
stories of great quality. Its necessary to consider frequency
of variability because high quality stories are easily hand
authored, although difficult to author in large numbers. An
AI system that had the same high quality experience every
time could, according to the first two metrics, yield
significant leverage.

Decision Trees
We induced decision trees from example drama-managed
story traces using the J48 algorithm implemented in Weka,
a machine-learning software package.1 Each drama-
manager decision is made in the context of a partially
completed story, so the training data is a set of (partial-
story, dm-action) pairs, generated by running the search-
based drama manager to generate thousands of examples of
its actions. Partial stories (the independent variable) are
represented by a set of boolean flags indicating whether
each plot point and DM action has happened thus far in
this story, and, for each pair of plot points a and b, whether
a preceded b if both happened.
 The tree that results can be interpreted as a script-and-
trigger system. Each interior node, which splits on one of
the boolean attributes, is a test of a flag. The path from a
root node to a leaf passes through a number of such flag
tests, and their conjunction is the trigger that activates the
script at the leaf node, represented by a DM action to take.
The tree format is simply a compact (and inducible from
data) representation of the total set of triggers. Decision
trees of various sizes can be induced by varying the
pruning parameters: a low degree of pruning will
effectively memorize the training examples, while a high

1 http://www.cs.waikato.ac.nz/ml/weka/

21

degree of pruning captures a small script-and-trigger
system that accounts for as much of the DM’s behavior as
possible, given the small permitted tree.
 Any of the policies—the actual DM policy or any of the
decision trees—can be run with a simulated player to
generate a histogram of how frequently experiences of
various qualities occur. More successful drama
management will increase the proportion of highly rated
experiences and decrease that of lower-rated experiences.
 Varying the degree of pruning allows us to see how
much performance is sacrificed by limiting to a simple
script-and-trigger system; or alternately to see what level
of script-and-trigger complexity is needed to achieve
performance similar to the drama manager.

DM policy evaluations in EMPath
We performed our preliminary evaluations on EMPath, a
Zelda-like adventure game (Sullivan, Chen, & Mateas,
2008) that was developed to test DODM in a traditional
game genre. It is set in a 25-room dungeon and has, at
most, 10 plot points that can possibly occur. In addition to
the game, there are 32 DM actions that DODM may
choose to employ at various points in the story (33 DM
actions when counting the choice to do nothing). The
figure below shows the world’s 10 plot points and their
required precedence relationships:

Figure 1: This is the directed-acyclic graph for the story world

 We ran DODM in this world to generate 2500 drama-
managed story traces, producing 22,000 instances of
training data from which to induce a decision tree. To vary
pruning, we varied minimal terminal node size, with a
larger minimal terminal node size resulting in smaller trees
as splitting does not continue as far.
 The following histogram shows the performance of the
drama manager in the EMPath story world, compared to
the performance of a null policy (which always takes no
DM actions) and a number of trees at various levels of
pruning. It is apparent that the performance of the smallest
trees (greatest pruning), such as the one labeled 1000,
performs only slightly better than the null policy, whereas

the best match with the search-based policy (the actual DM
policy) is found at moderately low levels of pruning,
labeled 200. In addition, the least-pruned trees (e.g. 50)
overfit to the particular runs in the training set, as we’d
expect, resulting in worse overall performance, so aren’t a
good capture of an equivalent policy.
 The tree trees below represent the highly pruned (1000)
policy, and the best performing (200) policy, respectively:

Although this zoomed-out view gives only a general idea
of the policies, the second policy is already clearly quite
complex for such a small story world, and the more
reasonable first policy empirically doesn’t perform as well.

Figure 2: Story quality histogram of search, null, and decision
tree policies.

Figure 4: The highest evaluating decision 200-tree (70 nodes).

Figure 3: The poorly evaluating decision 1000-tree (17 nodes).

Story Quality Histogram

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.25 0.35 0.45 0.55 0.65 0.75 0.85

Quality

O
cc

ur
ra

nc
es

50 tree

175 tree

200 tree

300 tree

1000 tree

null

search

22

The zoomed-in view of part of the best-performing (200)
tree below shows some of the equivalent script-and-trigger
logic that it captures:

Figure 5: Zoomed in view of the 200 pruned tree.

One trace through this segment specifies the following
rule. If info_key_guard_BEFORE_get_key is false (i.e.
either info_key_guard or get_key plot points haven’t
happened, or the info_key_guard plot point happened
second); and the DM action temp_deny_info_use_wax has
not been used; and the DM action temp_deny_wax has not
been used; and the plot point give_flute has happened; all
conjoined with any tests further up the tree; then take the
DM action temp_deny_info_use_wax. This is specifying a
series of exclusion tests (for which other DM actions
would be appropriate), followed by a choice of what to do
if all of them pass; that choice depends on whether the
flute has been given yet. Hundreds of these sorts of rules
get automatically generated; while they could all be
authored by hand in principle, the fact that even in such a
small story world it requires a tree of this size to
reasonably approximate the DM’s performance gives some
indication of the infeasibility of doing so.

Decision-tree policy issues
Although decision trees are a nice way of automatically
capturing a form of a DM policy that can be interpreted as
a script-and-trigger system, there are a few difficulties with
the policies they produce. The generalization that takes
place in decision-tree induction can produce choices of
actions that would not be permitted in a particular state:
The decision-tree-learning algorithm has no notion of the
internal structure of DODM so may make unsafe
generalizations. Two instances where the decision trees
produced invalid choices of DM action were: 1) taking
causer DM actions that cause plot points which already
happened; and 2) not knowing that denier actions for
critical plot points must be reenabled eventually.
 These are in effect uncaptured additional complexities in
a correct DM policy that a script-and-trigger system would
need to deal with. An improvement to the decision-tree
induction that might capture them would be to produce a
number of negative examples of such disallowed choices
of DM actions, and use a decision-tree induction algorithm
that allows negative class examples.

Conclusions and future work
We proposed that a major open issue in the evaluation of
drama managers is their authorial leverage: the degree of
authorial control they provide over an interactive
experience as compared to the complexity of that
authoring. Since authoring drama-manager-like interaction
in stories is commonly done via scripts and triggers, we
proposed that one way to evaluate authorial leverage a
drama manager gives is to use decision trees to induce and
examine a script-and-trigger equivalent form of a drama
manager’s policy. We proposed three criteria with which to
do the comparison: 1) consider the complexity and
complexity scaling with story size of the script-and-trigger
versions; 2) consider the ease with which stories can be
rebalanced or changed by changing DM parameters versus
editing a set of scripts and triggers; and 3) examine the
variability of stories produced by a script-and-trigger
system and a DM policy, e.g. by their branching factors.
 We presented preliminary results in inducing a script-
and-trigger equivalent form of a DODM policy in a Zelda-
like world, EMPath, and evaluating it by our first proposed
criterion, showing that the resulting policies are quite
complex to hand-author even in this small domain. Future
work should evaluate DODM according to all three
criteria, in several story worlds; ideally, it would also
compare DODM to other drama-management approaches
using a similar evaluation of authorial leverage.
 There are additional ways to evaluate DM authoring that
could be developed. For example, the authoring metaphors
used by various drama-management systems can be
compared (Magerko, 2007), as can the ease of authoring
within each system’s metaphor, e.g. the ease of specifying
DODM’s evaluation function, and similar parameters in
other systems.

References
Magerko, B. 2007. A comparative analysis of story

representations for interactive narrative systems. Proceedings
of AIIDE 2007.

Nelson, M.J. and Mateas, M. 2005. Search-based drama
management in the interactive fiction Anchorhead.
Proceedings of AIIDE 2005.

Nelson, M.J. and Mateas, M. 2008 Another look at search-based
drama management. Proceedings of AAAI 2008.

Nelson, M.J. and Roberts, D.L. and Isbell Jr, C.L. and Mateas, M.
2006. Reinforcement learning for declarative optimization-
based drama management. Proceedings of AAMAS 2006.

Roberts, D.L. and Isbell, C.L. 2008. A survey and qualitative
analysis of recent advances in drama management.
International Transactions on Systems Science and
Applications 4(2).

Sullivan, A., Chen, S., and Mateas, M. 2008. Integrating drama
management into an adventure game. Proceedings of AIIDE
2008.

Weyhrauch, P. 1997. Guiding Interactive Drama. PhD
 dissertation, Carnegie Mellon University.

23

