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Abstract
Databases sometimes have keys besides those pre-planned by the database designers. These are easy to discover given

functional dependencies in the data. These superfluous keys are convenient ira user wishes to add data to a projection of
the database. A key can be chosen that minimizes the attributes the user must edit. In a list format view, enough attribute
columns are added to those specified by the user to ensure that a key is present. In a form view, enough extra text boxes are
added. In this latter view, functional dependencies may als0"be used to visualize the dependencies between attributes by
placing independent attributes above dependent ones. This paper briefly reviews an algorithm for inducing functional
dependencies, and then it demonstrates methods for finding keys, constructing list views, and laying out form views.

1. Introduction
The relational database model requires a key to uniquely identify entries in the database.

Typically, during database design, one or more attributes are specified that will serve as the key. This
paper explores the possibility that there may be multiple keys, some unanticipated by the database
designers. Like the pre-specified key, these additional keys may be useful for database indexing or for
conversion to a normal form. These redundant keys are also convenient if the user wishes to add
entries to a projection of the database. By searching for a key that most closely matches the attributes
requested in the projection, the system allows the user to edit a view that includes the minimum
number of additional attributes. In the slowly emerging field of electronic forms, users may wish to
automatically generate a form corresponding to a projection of a database.

Identifying all keys in a database is straightforward given information about functional
dependencies between attributes. A functional dependency simply states that it is possible to compute
values of a datum for a set of attributes (the function’s range) given values of that datum for another
set of attributes (the function’s domain). Trivially, any attribute is functionally dependent upon itself.
If a set of functional dependencies includes all defined attributes in a domain or range (or both), then
the union of their domains is a key. Values for all other attributes can be computed from the key.

When a user wishes to add entries to a projection of the database, functional dependencies can
assist in a second way. In addition to identifying a minimal key that includes the user-specified
attributes, dependencies can be used to construct a form view so that independent attributes appear
above those that depend upon them. This simple data visualization is easily computed by
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topologically sorting attributes using the dependencies. If the new view is represented as an electronic
form, it naturally displays dependency information from the underlying database.

This paper describes algorithms to support these types of information processing. First, it reviews
an algorithm for inducing functional dependencies directly from data. Second, it describes a search
process for finding a minimal key that includes a set of attributes. Third, it describes an algorithm for
sorting the attributes and constructing a form view. These ideas are demonstrated in an implemented
system using sample databases.

2. Learning Functional Dependencies
Determinations are one kind of functional dependency that has been studied in artificial

intelligence (Davies & Russell, 1987; Russell, 1986). The prototypical example determination is that
the country in which a child is raised determines their first language spoken. While not universally
true, this example illustrates the basic functional nature of a determination. It is a many-to-one
mapping. Each value of the domain element (in this case, possible countries in which a child could be
raised) maps to at most one range element (a language that could be spoken). Children raised 
France speak French; children raised in England speak English. Generally, the reverse is not true
several domain elements may map to the same range element. Children in many countries speak
French.

l

As an example, consider the database listed in Table 1. The attribute a determines B because each
value of a maps onto a single value of B. The reverse is not true because the value of i for B maps
onto both i and ui for A (tuple numbers 1 and 3). For an example of a larger determination, note that
attributes B and c in Table 1 conjointly determine attribute E; every pair of values of B x C maps to
exactly one value for E.

Table 1. Simple example database. Rows in the table correspond to data. Columns correspond to
attributes. Values appear in cells. In this data, A determines B, and B x C determines E.

Attributes

Tuple Number A B C D E

i i
.

2.

3.

4.

5.

6.

7.

8.

9.

10.

i i i

ii ii i ii i

iii i ii iii ii

iv ii ii iv iii

i i i iv i

ii ii i iii i

iii i ii ii ii

iv ii ii i iii

i i iii i i

ii i iii ii i

Nothing is particularly difficult about discovering determinations in a database; the only obstacle
is that there are so many possibilities. Because any combination of attributes could determine a single
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attribute, if there are m attributes, there are 2’~- ~ possible determinations. A new algorithm for
finding all determinations searches breadth-first from smaller to larger domains (Schlimmer, 1993) 
follows: Given a single attribute as the proposed range, the search begins by testing the empty
domain. This corresponds to hypothesizing that the range has a constant value. If this is not the case,
the search considers all domains of size 1 then domains of size 2 and so on as necessary. The search is
iterated in turn for all attributes, each serving as a singleton range. After the searches are complete,
determinations with identical domains are combined by taking the union of their ranges.

This search algorithm relies on three strategies for coping with the exponential number of
possibilities. First, search is constrained to consider only domains of k or fewer attributes, where k is
some user-supplied constant. This reduces the number of possibilities to (m- 1)k. Second, breadth-
first search is used because by starting with the empty domain, it finds smaller determinations first.
This is important because any determination can be extended by adding attributes to its domain.
Inference methods that use determinations benefit if the determinations have minimal domains and
do not require unnecessary attributes. Third, when a determination is discovered, the algorithm
avoids examining any states that are supersets of this determinations domain. If a simple
determination is found, then the savings from this third strategy can be significant.

Unlike the first two strategies of this algorithm, it is considerably more difficult to implement the
third strategy. First, the algorithm relies on a pruning rule: if a determination is found with domain
o, there is no need Fo search any set of attributes that is a superset of D. (They will all be
determinations.) Second, to capitalize on this pruning information, the algorithm uses a perfect hash
function to record pruning advice when a determination is found. When a new candidate
determination is to be considered by the search, the hash function is consulted. If this state has been
marked as pruned by any of its subsets (because one was a determination), the state is discarded.
Otherwise, the state should be examined. The space complexity of the hash function and breadth-first
queue is O(mk), and the overall time complexity of the search is O(n. k. k+ 1), where nisthenumber
of tuples (data), m is the number of attributes, and k is the user-supplied bound on the size of 
determinations domain. This non-trivial process can be precomputed for a relatively static database.
A dynamic database would require incremental updates for a set of determinations. For a ideas of how
to do this, and for details of the generation of states and the hash function, see (Schlimmer, 1993).

This algorithm was applied to the four databases described in Table 2. For each database, the table
lists the number of attributes, the number of entries (or tuples), and the number of determinations
learned by the algorithm with a size bound of k = 4. To give an intuitive sense of the complexity of the
result, the final column lists the time required for a Lisp implementation of the algorithm on a
MC68040-based machine.

Table 2. Summary of four databases and number of determinations learned with k = 4.

Database Attributes Tuples Determinations Time (min.)

Breast Cancer 11 699 31 74

Bridges 13 108 23 13

CPU Performance 10 209 38 17

Zoological 18 101 63 39
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3.1. Related Work on Learning Functional Dependencies

Ziarko (1992) discusses a representation idea identical to determinations in the context 
database dependencies. Using set-theoretic notions, Ziarko develops the notion of a "full functional
dependency" which is precisely a determination. Given a range of interest, Ziarko goes on to identify
the usefulness of minimal domains termed "reducts." Ziarko also defines the "significance factor" of a
particular database attribute as the relative degree of decrease in functional dependency as a result of
removing the attribute from a domain. This paper utilizes Ziarko’s observations about minimality and
presents an efficient search algorithm to induce all reducts given a range of interest and a set of data.

The principal of minimality has also been examined by Almuallim and Dietterich (1991). They
note that many learning situations involve a large number of irrelevant features. In these cases, it is
preferable if the learning method uses a minimum of features. Similar to Occam’s razor, this bias is
remarkably difficult to implement correctly. Almuallim and Dietterich analyze the sample complexity
of selecting a minimum of features, and they present an algorithm for iteratively searching larger
feature sets. Crucial to their algorithm is the notion that for every insufficient feature set, there will be
at least two data that have the same value for every attribute in the set but differ in their classification.
This paper adopts their search idea and expands it by identifying pruning rules and techniques for
efficiently implementing those pruning rules. The application of the idea is also slightly more general
in this paper; instead of focusing on a fixed classification, the search identifies minimal domains for
any range of interest.

t

Mannila and R~iih~i (1987) present an algorithm for inducing functional dependencies. Like
Almuallim and Dietterich, their approach also uses disagreements between pairs of data. Basically,
their algorithm computes all pairwise disagreements between tuples in a database. This takes O(n2)

time. Then, it collects up all these disagreements as candidates domains for determinations. Like the
pruning rules outlined above, their algorithm removes any supersets from these disagreements. This
also takes O(n2) time for a total complexity ofO(n4). A straightforward search is conducted from this
point to find domains that include some attribute from each of the relevant disagreements.
Asymptotically, both this algorithm and the one above are exponential in the number of attributes;
however, the algorithm presented above can easily be bounded by limiting the maximum domain size.
The algorithm presented above also has a time complexity that is only linear in the number of data.
Kantola, Mannila, R~h~i, and Siirtola (1992) identify a revision of their algorithm that makes use 
an intermediate sort, lowering the time complexity to O(n21ogn2). They also point out specific ways
dependencies can be used during the design of a database and demonstrate an implemented system.

Shen (1991) also explores learning regularities, but his work does not explicitly focus 
minimality. The task is to discover regularities in a predicate knowledge base of the form
P (x, y) A R (y, z) ~ Q (x, z). His approach is to find all constants for which some predicate P is defined,
then find some other predicate a for which the relationship holds. No further search for a predicate R
is necessary to discover a determination though it is for other regularities of interest. As is, the method
is limited to finding determinations between pairs of predicates, but by searching for both a P and a
Q, this method is searching for both a domain and a range. This paper instead assumes that a range is
prespecified, and its methods then conduct a search for minimal domains, whatever their size. To find
determinations for any range, the search can be repeated for each possible singleton range (as Shen
does). Then the results of search’can be combined by merging any determinations with a common
domain.
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4. Searching for a Minimal Key
¯ Adding entries to a relational database requires entering values for a key. If a user wishes to add

entries to a projection of the database, the projection must include a key. Given a number of keys, the
editing system selects the key that most closely matches the user’s requested projection. If the database
contains keys not originally envisioned by the database’s designers, then these keys may match some
projections more closely, fitting naturally with the user’s request.

Functional dependencies may be learned as determinations or specified by the database’s
designers. In either case, given a set of dependencies, it is easy to compute relational keys using the
notion of transitive closure over dependency. This paper offers a combined algorithm for finding all
keys and the closest matching key given a requested projection. Given a list of attributes to be
included in a projection, and a set of determinations, the algorithm searches for a key that adds a
minimum number of attributes to those the user wishes to edit.

The key-search algorithm performs a simple, breadth-first search for a key that is a superset of the
requested attributes. The search is both complete and systematic. Unlike the search for
determinations, the measure of a successful key search is a set of attributes whose transitive closure
(given the determinations) includes all attributes. The worst case search requires O(2m- r) space for the
breadth-first queue and 0(2m-r. ,/2) time, where m is the total number of attributes, r is the number
of attributes in the requested projection, and d is the number of determinations. On average, the
expected space and tlme is considerably less. For example, if there exists a single attribute key for the
database, the space is O(m), and the time is O(m: ~/2). Even in this case, having multiple keys 
mean that no additional attributes must be added to the user’s request.

For a given set of attributes, construction of a list view consists of finding a key that adds a
minimum of additional attributes, computing the width of each attribute’s column in the view (by
examining previous values), and filling in rows with previous data.

As an example, suppose the user wishes to add to a projection including {A, C}. By transitive
closure with the two determinationsA -> B and B x c -~ E in the example database of Table 1, B and E
are also covered. Only D must be added to ensure that a key is represented. Figure 1 presents a more
realistic example drawn from the zoological database. Here the user has requested a projection
including aquatic and fins. The attributes animal name and venomous were automatically added so
that the view includes a key. Using the databases in Table 2, random samples of 100 projection
requests added an average of 2.2, 0.6, 0.4, and 1.0 attributes to cover a key, and took an average of
2.0, 0.1, 0.1, and 3.7 CPU seconds on a MC68040-based machine, respectively.

5. Using Dependencies to Complete Entries
When the user inserts an entry with an arbitrary key, the functional dependencies are used to

complete the entry by computing values for attributes not present in the editing view. When there is a
single-attribute key in the projection, there are two cases: either the value of the key is novel, or it has
been observed in another datum. In the first case, the new entry can’t violate the relational key.
However, determinations cannot use novel values for prediction; in this case, they can’t compute the
value of any dependent attributes. This implies that the projection must expand to include these
attributes so the user can enter their corresponding values. For example, if the attribute a was a single-
attribute key, and A --> B x C, then the attributes B and c would also have to be added to the
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TORTOISE 0 .1 0 0 0 .f 0 0

TUA TARA 0 .1 0 .1 .1 .f 0 0

TUNA 0 .1 .1 .1 .1 .f 0 .1

VAMPIRE 0 0 0 0 .1 .1 0 0

VOLE 0 0 0 0 .1 .1 0 0

VULTURE .1 .1 0 .1 0 .1 0 0

WALLABY 0 0 0 0 .1 .1 0 0

WASP 0 .1 0 0 0 0 .1 0

WOLF 0 0 0 "1 .1 .f 0 0

WORM 0 "1 0 0 0 0 0 0

Figure 1. Sample list view automatically generated from a request to edit feathers, eggs, aquatic,
predator, toothed, backbone, and fins in the zoological data. Note that the attributes animal name and
venomous were included to make up a unique relational key. Previously entered data appears in the
uppermost rows in italics; new data appears in lower rows in normal typeface.

projection. In the second case, the new entry does violate the relational key because it duplicates a
previous value. This is either an error or an indication that the user wishes to edit a previous entry.
Which semantics are preferable depends upon the particular application.

In the more general case, there is a multiple-attribute key in the projection. There are three cases:
one or more of the key attributes’ values are novel, the key attributes’ values are a novel combination
of previous values, or the combination of key attribute values has been observed before. In the first
case, the key is not violated, but the learned determinations cannot predict values for dependent
attributes. There is no previous record of the key. For example, using the sample data in Table 1, and
the projection {A,/3, D}, the subset {A, D} is a key. If the user entered a novel value of v for attribute
4, then the determination A -o/3 is unusable, and/3 must be added to the projection. In the second
case, none of the key attribute values are novel, but their combination is. This too, does not violate
the key. Following the same example, {i, i, ii} for {A, C,D} is a novel key, but the determinations can
predict values for the remaining attributes/3 and E. In the third case, the combination of attribute
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values has been observed before. Depending on the application, this is either an error or an implicit
request to edit previous data.

6. Using Determinations to Topologically Sort Attributes
Finding a key that adds a minimum of attributes to the user’s requested projection is sufficient for

a list view. However, an additional opportunity to present information arises in the form view. A form
view discards the tabular presentation of the data in favor of a view where only a single entry is visible.
This allows the form view to arrange attributes in a two-dimensional layout. Thus, after finding a
projection that includes a key, the attributes in the projection are sorted topologically so that
dependent attributes appear after those which they depend upon.

A simple topological sort interprets dependencies as directed edges in a graph and attributes as
nodes. First, all nodes are found that have a minimum of in-edges. These consist of the first subset of
the topologically-sorted result. After removing all out-edges from these nodes, the process iterates
until all nodes have been placed. For example, using the dependencies in Table 1, the attributes
{A, B, C,D,E} would be sorted as ( {A,D}, {B, C}, {E}) ; neither A nor D appear in the range of any
determination, so they appear in the first set. Table 3 lists the topologically sorted attributes for each
of the four databases in Table 2.

Table .3. Attributes sorted based on the topology of learned determinations for each of the four
databases listed in ~Fable 2.

Database

Breast Cancer

Bridges

CPU Performance

Topologically Sorted Attributes

{{Sample code number, Clump Thickness, Bare Nuclei, Bland Chromatin},
{Uniformity of Cell Size},
{Marginal Adhesion},
{Mitoses},
{Uniformity of Cell Shape, Single Epithelial Cell Size},
{Normal Nucleoli},
{Class}}

{{IDENTIF},
{LOCATION, ERECTED, LANES, T-OR-D, SPAN, TYPE},
{RIVER},
{LENGTH, CLEAR-G},
{PURPOSE},
{aLL-L},
{MATERIAL}}

{{Model Name},
{PAP, ERP},
{MMIN},
{CHMIN},
{MYCT, CHMAX},
{MMAX},
{vendor name},
{CACH}}
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Table 3. Attributes sorted based on the topology of learned determinations for each of the four
databases listed in Table 2.

Database Topologically Sorted Attributes

Zoological {{animal name, venomous},
{hair, airborne, aquatic, predator, legs, tail, domestic, catsize, type},
{fins},
{breathes},
{feathers, toothed},
{eggs},
{backbone},
{milk}}

An ordered list of sets of attributes maps naturally to a two-dimensional form-view layout.
Attributes appearing in the first set are laid out in the first row; each in an editing box sized to fit the
largest previous value. Attributes appearing in subsequent sets are laid out in subsequent rows.
Figure 2 andFigure 3 depict form view layouts for requests to edit all the attributes in the databases of
Table 2. These views were computed by topologically sorting the attributes. Note that attributes that
appear in the same subset of the topological sort are laid out next to each other in.the form view. If the
user requests a projection that does not include all attributes, a search is first conducted to ensure that
it contains a key, and the resulting set of attributes is sorted topologically. If several levels of
dependent attribute are omitted (i.e., by omitting some attributes in the middle sets of the sort), then
this many be visually indicated, perhaps by a horizontal line for each level omitted.

Figure 4 depicts two sample views generated in response to edit a subset of attributes. Rather than
generating the view directly, these have been converted into a specification language for a commercial
electronic forms package (Informed Designer), resulting in the electronic forms depicted. This
represents only an initial step in the process of automatically designing electronic forms from a
database; several other reasonable tasks include better use of the form’s white space, automatically
recognizing different types of fields, and adding default value or integrity constraints.

Like the list view, functional dependencies are used to compute values for dependent attributes
not entered in the form view. If because of novel values a determination cannot predict a dependent
value, the form view must expand to include the additional attributes. By definition of the layout,
these new attributes will be added below those which they depend upon. If the user fills out the form
view in a top-to-bottom manner, the form will appear to expand naturally as required.

7. Conclusions
This paper explores the possibility that a database may contain additional keys beyond those

originally specified. It gives an algorithm for finding functional dependencies that is linear in the
number of data. The paper then shows how these dependencies can be used to find additional keys. A
second algorithm uses these keys to construct a sufficient list view given a user’s request to edit a
projection of the database. The view incorporates just enough additional attributes to include a key. A
third algorithm uses the first two and a topological sort to construct a form view that helps the user
visualize the data in a natural and unobtrusive manner. The resulting projections are dynamic and
expand as required to include attributes that cannot be computed from those that are visible.
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Figure 2. Form view for the breast cancer and bridges databases summarized in Table 2.

One limitation of this work is that the model for recognizing duplicate keys fits poorly with
databases where determinations must be incrementally revised. If the determination learning
algorithm is mislead by initial data, there will be too many hypothesized keys. This leaves the problem
of whether a duplicate key indicates an error on the part of the data or with the determinations.
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