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Abstract
Qualitative simulation as one of the main techniques
in qualitative reasoning has the great potential to
solve engineering problems, only if the difficulty of
ambiguity can be overcome. On the other hand in
many applications measurements are available and
can be used to reduce the ambiguity. We propose in
this paper Qualitative Observer, which is based on
qualitative simulation and applied by Observation
filtering technique, to provide a framework, in which
this kind of information can be utilized to reduce
accumulated ambiguity and to avoid spurious
solutions.

1. Introduction

If sufficient information about a system is not available,
such that no quantitative model can be established to give
a real-valued behavioral description about it over time, one
has to turn to alternative way of modeling, making use of
the available incomplete information to build qualitative
models, on which an analysis and reasoning to it can be
carried out. Qualitative simulation as one of the main
techniques in qualitative reasoning has the great potential
to play a very important role to solve engineering
problems.

However, due to the ambiguity of qualitative
representation and calculus, a great number of the
behaviors may be produced and seems to intractable, it
often obscures the resulting real behavior of systems. The
existing filtering techniques can not handle it in a
complete satisfactory way. We believe that a further
development will be still necessary before it can be
extensively applied in engineering.

The work reported in this paper is one of the efforts to
the goal. The qualitative observer (QOB) will 
proposed, which is composed of qualitative simulation on
the basis of conventional filtering techniques as well as
our innovation: Observation filtering technique.

The paper is organized as following: next section we
will briefly review qualitative simulation techniques; In
section 3 observation filtering will be introduced in detail.
An example of damped spring in the following section
shows the effect of the observation filtering technique. A
concept of the application of QOB to Instrument fault
detection (IFD) is presented in section 5. Finally 
conclude the paper after a discussion.

2. Qualitative Simulation of Continuous
Systems

2.1 QDE and Qualitative Behaviors

In building the qualitative model (here we mean
qualitative differential equation, QDE) of a system, one
requires two sorts of knowledge about it:

¯ the structural description of a system, which is the
specific, case-dependent information.

¯ the knowledge about the behavior of its individual parts,
which is the general, case-independent information
abstracted from former experience in different contexts.
Then infer the behavior of the complete system from its
structure and the behaviors of its parts. Simulation as one
of the main tools determines its behavior from the built
QDE and the given initial condition.

The description for the structure and the componentai
behaviors is the constraint model which consists of
qualitative variables (functions of time as well)
representing the physical parameters of the system and a
set of constraints on how those parameters may be related
to each other. At any time t a qualitative variable is
described by a pair: qualitative magnitude and its
derivative (change direction and rate). Each of them takes
value from a finite set of distinctions (qualitative values),
called quantity space, which is the quantization of the

real-number line and denoted as Q x ¯ The quantity space

may be, for instance, three-valued {+,0,-} (de Kleer 
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Brown 1984) or such one consisting of open intervals and
real-valued landmarks as in QSIM (Kuipers 1986). The
constraints such as in QSIM are composed of a variety of
constraint primitives:

¯ arithmetic: ADD(x,y,z), MULT(x,y,z), MINUS(x,y),
which constrain the addition, multiplication and negative
relationships among variables, respectively.
¯ functional: M + (x,y), M - (x,y), which represent strictly
monotonically increasing and monotonically decreasing
functions, respectively.

¯ derivative: DERIV(x,y), which denotes y to be the
derivative (with respect to time) of 
By introducing fuzzy set in representation of quantity
space, one may directly extend the functional constraints
to nonmonotonical functions in form of fuzzy relations
(Sben & Leitch 1993).

A qualitative state is a tuple of qualitative values. For an
n-variable system, the qualitative state is an n-tuple,
denoted as s=(qI , q2 ..... qn )¢ QxlXQx2X...xQxn. A

qualitative behavior is a sequence of states (state chain),

Fig. 1. Treeform state transition diagram

b=(s0, sI ..... sk ,s k+l .... ), where s k+m is the successor

state of sk. The behavioral description can be a graph

consisting of the possible future states of the system. Due
to the inherent ambiguity of qualitative representation and
calculus, the simulated possible behavior (so called
envisionment) is in general not unique, but any path
through the graph starting at the initial state, as shown in
fig. 1.

2.2 Filtering Techniques

The qualitative simulation proceeds by determining all
possible transitions in qualitative value permitted to each
parameter, then different so called filtering techniques are
applied to check the consistency between each of the large
combinations of qualitative transitions and the known
information about the systems, excluding the inconsistent
(impossible) ones. Complete state descriptions are then
generated from the filtered tuples and these new states are
made children states of current state. If more than one
qualitative change is possible, the current state has

Magn. Rate Magn. Rate Magn. Rate

q i+l q j+l q i+~ "j ~J q j+l q j+l

(a) 0¢ qj (b) O<qj (c) O>qj

Fig. 2 Possible transitions

multiple successors, and the simulation produces a
branching tree of states.

The possible transitions of each parameter can be
independently determined by using continuity of the
variable and its derivative. Suppose the magnitude and the

rate of change of a variable x be q i and q j, where both

q i and q j are the qualitative values in a quantity space

Q x ¯ q i+l and q i-t are the adjacent qualitative values of

q i , similar relationship between q j+!, q j-1 and q j. All

of them belong to Q x, and q k is smaller than q t, iff k<l.

We have the possible transitions as illustrated in fig. 2.
The pairs that are produced by connecting an M-node and
a R-node with a line, are possible transitions. Double
circles represent the values in the current state. Note that
the case (a) contains the situation where qualitative value
zero could be an interval including real number 0. This
corresponds our experience: as soon as the behavioral
difference of a variable in a system enters and stays in a
small zone near zero, we say that the variable has reached
its steady state; otherwise a real steady state will never be
reached for most continuous systems. The imaginary line
connection tells the extra possibilities in that case.

In terms of the information supplied, there are several
sorts of filtering techniques:

¯ Constraint filtering. It makes use of the explicit
relations among variables in a model. With the help of
Waltz algorithm, the space of possible successor state (a
subspace of the cross-product of the parameter values) is
efficiently pruned: Kuipers 1986 and Weld & de Kleer
1990.
¯ Temporal filtering from Shen & Leitch 1993 and Weld
1990, which applies the temporal information the
qualitative values imply. For more see section 2.3.

¯ Global filtering uses the pre-knowledge about the
system, not necessarily including in QDE. For example,
one can check and compare the states with the historical
ones, excluding the possible repeat or constant states
(Kuipers 1986); or implement non-intersection filtering 
Struss 1988 and Lee & Kuipers 1988, which is limited to a
second order system and may become very complicated for
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a higher order system; or energy constraint filtering
(Fouche & Kuipers 1992), etc.

¯ Observation filtering: with extra information the system
itself provides. It will be explained in next section.
A rational architecture of their arrangement may be shown

Candidate transitions ~ )Constraint filter ~

Temporal filter I

Global triter I

Observation filter I . .

Behavior set ~ ...........
’-’- ...........

[

Fig.3 Filtering techniques

as in fig. 3. The finer is a filter, the more specific
information it needs and the lower it should be laid.

2.3 Temporal Duration of Qualitative States
Making use of the available temporal information to
eliminate some inconsistent combinations from candidate
transitions has been studied by Weld 1990 and Shen &
Leitch 1993. While in Weld’s HR-QSIM, the time lengths
could be O, negl, fin, and inf, four qualitative values; on
the other hand, in FuSim by incorporating some
quantitative information into qualitative models, Shen and
Leitch were able to calculate the temporal durations in the
form of intervals.

The persistence time is defined as a duration a
qualitative state lasts. In the case that only crisp intervals
(including single real numbers) are taken as qualitative
values in a quantity space, the arrival time vanishes. The
temporal filtering is implemented by checking if there is a
common temporal interval, during which all variables take
their respective values determined by the successor state.

In order to estimate when the nth state in a behavioral
path appears for interpretation of the behavior, we define
the temporal duration within which the behavior passes
through a state as passing time.

Suppose tl i) and t~i) are the possible minimum and

maximum durations respectively for the ith qualitative
state, before transiting to next one, then passing time and
persistence time for the ith state are:

t(O = [tCli), (i) (1)
pas ~ln g t2 ]

t (O t (2i) (2)
m.,~ = [0, ]

--(n) T~n)
Let ITI , ] (n>l) be the temporal interval associated

with the nth qualitative state S (n), which is in a behavioral

branch (state chain), i.e. it is predicted that this state

occurs only during the time between T(l n) and T~~).

qualitative simulation they are calculated as following:
n-I

11 ’ passing + tpersis.

i=0
n-I n (3)

--rE’"’, ,
i=0 i=0

In

3. Observation Filtering

3.1 Basic Idea and Assumptions
In spite of the existing techniques that are exerted in
simulation procedure on possible qualitative state
successors in order to reduce the ambiguity, it remains too
many combinations of possible behavioral paths in a
complex system with many variables, which hinders these
methods from being effectively used in most applications
and results in following contradictories:

¯ The limitation of memory space vs. the increasing
states to he stored.

¯ Rough temporal information against the need to track
the behaviors synchronously, such as fault diagnosis.
The main restriction of the existing methods in modeling
is that one has to concern how the whole family of systems
sharing common structure will behave, thus the specific
information about the system under consideration can not
be utilized.

However in many cases such as control and fault
detection (not in design) only the behavior of the specific
system would be taken into consideration. Giving up the
"Soundness" makes it possible to develop the so called
observation filtering technique with the help of
measurements to reduce accumulated ambiguity and to
avoid the spurious solutions.

Three assumptions are made by our current method:

¯ The qualitative model reflects the process in that it
abstracts the parameters in real world rather than
approximates them like an analytical model and the
simulation procedure guarantees that the simulated
behavior covers the real one. Thus the observation filtering
procedure is in fact a process of selection, which is made
after the candidates are generated by simulation.

¯ Initial qualitative state is known.

¯ Measurement is free form noise; in other words its
effect can be either neglected or included in the qualitative
model.

The principle of observation filtering is that the
simulated qualitative behavior of a variable must cover its
counterpart of measurement obtained from current system,
otherwise the simulated behavioral path is inconsistent
and can be eliminated.
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3.2 Qualitative Observer
In addition to constraint, temporal and global filtering we
check the consistency of possible successor states with the
observations which are taken within the temporal intervals
labeled on those successor states, so observation filtering,
is exerted on the remaining possible successors. Besides
the introduction of measurements can greatly reduce the
length of predicted temporal intervals, which,
accumulating the error of estimations, become larger and
larger in FuSim (also see (3)).

Luenberger Observer (Luenberger 1971) works with the
same inputs provided to a real system and the outputs
measured from it to tell the behavior of the inner state
variables (unmeasurable) over time. Under the observation
filtering the concept of Observer in system theory and
control engineering can be introduced. Because of the
applied inputs and outputs of a system it is not a
simulation any more, but a typical state observer, as
shown in fig. 4. Since the model used to build the observer
is qualitative, the predicted behaviors of the state variables
output from this kind of observer are qualitative as well
and not unique as acquired from qualitative simulation.

Input
~1 m Measurement

II-.__A L 11 ’

L ...
s~etg

Fil~. 4. Qualitative State Observer

The main difference between typical Luenberger
Observer and our current Qualitative Observer is the need
of knowing initial state for the latter. Being untrivial,
Luenberger Observer feeds the differences between real
measured values and the corresponding predicted ones
back to the input terminal and produces a convergent
behavior at the steady state, with respect to the initial
difference. This may be achieved by a future Qualitative
Observer.

3.3 Algorithm Description of Observation Filtering

Let v(.) and V(.) represent the measurement and 
corresponding qualitative value simulated, respectively.

With the measured values at t m " and t m (t m " < t m ,), the

known qualitative state S(’-t) and candidate transition

state S ("), the observation filtering can be implemented 

following procedures:

1. If tm’E[T~~-l) an(*-l)l V(tm" ) and V([TI~-i)

T(2n-l) ]) are compared and consistent, then

’°" = tn," (4)
T(n) t~n-i) + t~n) (5)

2 "---- ten "+

2. According to the relationship among the next sampling

time t,n, the temporal intervals [TI n-D, T~n-t) ] and

[TI~), T~n)] labeled on S’n-I) and S(n), respectively,

there exist following four possibilities:

(A) If tmC [T’l n-l), T[")), compare measurement v(t,n)

with V([T~n-l) , T~n-l) ]):

a) if they are consistent, we modify the time interval

[Tln) --(n) S (n) ,12 ] for the nth state

T In) = t m (6)

T(") = T(2n)- (7)
2

~(n),an(n) T~n)=t(2n-I)+ t~n)+ tin’- m and 12 -Because - 2 -

T(n) ,_,(n-l) + t(2,) obviously
1 --’2

T,n) Tln) < T~.) . Tln) (S)
2 "

b) if they are inconsistent, then remove S (n) from next

candidate transition states. The evolution from this state
needs not be taken into account. This branch is pruned.

(B) If tm~ [rl n), -2"/’fn)]n[T(l. n-l), r("-l)], compare

--(n) T~n)measurement V(tm) with both V([l"t ] and

D:
a) if v(tm ) and V([T(in), T~n)] are consistent, we have

Fan(n+l) an(n+t)the time interval t-t , -2 ] for the n+/th state

S in+t).

r ’l n+l) = t m (9)

T(n+l)_
t~n)

ten+l) (10)
2 -- tm+ + "2

b) if V(tm) and V([TI n-l), T~n-l)] are consistent, the

time interval [TI n), T~n) ] for the nth state S(n) is

recalculated by (6) and (7).

c) if neither of them are consistent, then v(t m ) is

suspended for this branch and go to the third step.

(C) If tm E [T(In), -2T’n) ], but tm ¢~ [TIn-l) , *2"r(n-I) ~,l then

compare measurement v(t m ) with V([T n), T ~n) ])

a) if they are consistent, we have the time interval

[Tln+l) an(n+l), -z ] for the n+lth state S’n+l) as calculated

by (9) and (10).
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b) if they are inconsistent, then v(t m ) is suspended 

this branch and go to the third step.

(D) If tin> n), the measurements are taken after th e
right end of the temporal interval of the candidate

transition state, then V(tm) is suspended for this branch
and go to the third step.

3. If v(tm ) is suspended, from V([T(In), T~") ]) as the start

point continue to evolve for next state transition. The time

interval [Ttl "+l) T("+i)
, --2 ] is calculated with the formulas

similar to (3),
T(n+l) =Tin) .(n)

I +ll

T(n+I) T( n) t( n+l)
2 +’2

then compare measurement

T(n+l)2 ]):
(A) If they are inconsistent,

suspended,

(11)

(12)

V(tm) with V([TIn+l),

V(tm) continues to 

a) if tin>- --tT"+l) (i=n+l,...) go back to third step and

repeat.

b) if for all i (i=n-l, n .... K), v(tm ) and V([TI0, Tt20 ])

are inconsistent and hence v(tm) has been suspended,

T(X+Dtin< -j , then remove the suspended candidate

behavior; if all of the behaviors following S(n) are

removed then abandon S¢n).

(B) If v(tm ) and V([TIi) , -(i)1’2 ]) are consistent for some 

(i~.n+l) then the suspension of v(tm ) is eliminated for this

rT(i+l) (l+t) ] i s calculatedbranch. The time interval L--! ’ 2

with the same formulas as (9) and (10).

Notes:
1. The rule of a) in case (B) and a) of (C) in the 

step confirms the covering of V(t m ) by v([rl n), T~n) ])

and predicts the temporal interval with reduced length
compared to simulation, while the rule b) in the case (A)
of third step removes the inconsistent possible states and
observation filtering is implemented.
2. With rich measurement information, corresponding to
the cases addressed by rule a) of (A) and b) of (B) 

second step: the new measured value V(trn ) reconfirms the
consistency with predicted successors and hence further
shrinks the length of temporal intervals labeled (see (8));
or in the case b) of (A) in the second step: the candidate 
excluded for its inconsistency by the recheck.
3. With sparse measurements, corresponding to the cases
addressed by rule of (D) in the second step, it degenerates
in this step to a simulation.

4. An Example: Damped Spring
Here we adopt a spring-block system that has been used
extensively in qualitative reasoning literature, as an
example to compare simulation under conventional
filtering techniques (constraint and temporal filtering)
with observer, which applies additional observation
filtering.

k....................j.......;...
Fig. 5 A spring-block

As shown in fig.5, the system consists of a block
connected to a spring laying on a horizontal table. The
displacement of the block from its rest position is
described by a variable x. There is friction between the
block and the table. Suppose v represents its velocity. Each
of these variables has a normalized numerical range [-1,
1]. Their qualitative counterparts take value from the
quantity space illustrated in fig.6, with each qualitative
value corresponding to the perceived meaning:
Q = [n_big, n_medium, n_small, near_zero, p_small,
p_medium, p_big}

According to the scheme of simulation, each qualitative
variable is described by a pair, i.e. its magnitude and rate
of change (derivative). The physical system can 
modeled by following QDE:

deriv x = v (13)
deriv v = -x - p_medium * v (14)

where the friction coefficient is assumed to be p_medium.

n_medium

Ill

p_medium

I

n_big n_smal p_mmll p_hig

)
-i 4~6 41.1 ~6 I

Fig 6. Quantity space in example

Suppose that at beginning the block is moved away
from the equilibrium point to x=0.6 and then let go, the
initial states of the variables x and v are <p_medium,
near_zero> and <near_zero, n medium>, respectively.

With the qualitative model and initial states we can go
ahead to carry on simulation. Given a simulation step, the
result is a state transition tree (see fig. 1), with each branch
corresponding to a possible behavior. The total numbers of
behaviors with respect to different simulation steps are
shown in the left column of table 1.

Next the observation filtering is exerted on the
simulated behaviors, with measurement of x, v and both of
x and v, respectively. The sampling periods are 0.1
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seconds. The corresponding results are in the right three
columns of table 1.

Table 1
simulation Observer

steps Simulation Meas. of Meas. of Meas. of
x y x&v

2 8 8 8 8
3 38 25 33 24
4 193 93 102 80
5 941 379 336 272
6 4616 1681 1326 1009
7 22801 7068 5231 3685
8 112572 26606 19086 12823
9 545335 87397 63602 41776

This comparison shows that the observation filtering
play a significant role in reduction of possible behavioral
chains of states. With more simulation steps the rate of
reduction arises. Its another advantage is the shrink of the
predicted time intervals associated with states. Especially
if an interval is unlimited long (when for instance the rate
of change of the variables of a state equals to zero or
across zero), then the intervals of the successors are all
unlimited in simulation (see formula (3)), while those 
Qualitative Observer do not inherit the unlimitedness (see
formula (4) (5) and (9) 

5. Application of QOB to FDI Systems

Analogous to the employment of analytical observers in
fault detection and isolation (FDI), discussed in Automatic
Control community, QOB is able to serve as a substitute in
the case where no complete information or acceptably
precise quantitative model is available. The principle of
fault detection is to track the dynamical behaviors of the
system with the aid of their estimations, which can be got
by simulation or observation. In this part we will apply
QOB, as an extension of qualitative simulation, to
instrument fault detection and isolation (IFD) systems.

Following dedicated observer scheme (DOS) proposed
by Clark 1978 and generalized observer scheme (GOS) 
Frank 1987, different outputs can be supplied to distinct
observers in a bank, then estimate the states and then the
outputs. By comparing the estimated outputs with
measured ones, a decision logic is applied to prognosticate
if there are faults in the sensors and which one is faulty.
Next we extend these schemes to qualitative versions,
namely QDOS and QGOS.

5.1 Qualitative Dedicated Observer Scheme
As shown in fig. 7, each observer in DOS is driven by a
different single sensor output, and the states are estimated,
then check the state variables from different observers,

whether there is a common intersection set for each of
them.. There is no need for a threshold logic as used in
original scheme any more. This threshold, due to the
inaccuracy of models, has been set nonzero and decided
often by trial and error method.
We assume that a system with three outputs is considered.

Let ~’° denote the set of qualitative behaviors of state
variables simulated (without observation filtering). In fig.7

Xyi is the set of behaviors removed from X o after the

^1consistency check by the ith output Y i" Xi is the

resultant of the ith observer and hence the complement of

Xyi in X 0. We have

PROCESS
Measurement

Fig. 7. Dedicated Observer Scheme

X:=~°_Xy,=~fOn~y ’ (15)

for i = 1, 2, 3. We define ~l t and XJ e are the
intersection and union of behavior sets after observation
filtering driven by one output, respectively, representing
the resultant possible behaviors and the total number of
behavioral sequences of states or the paths to be stored.

~", =,~nX’~nX~ (16)

v uX2uX3
(17)

If a fault occurs, for example in the second sensor, it can

be detected by ~l =0. Furthermore, if X~ n X~--O,

X’ ~’ ~ X~ n X] ~O, the fault can be located2 ~ A3 =kg, and
to be in the second measurement.

5.2 Generalized Observer Scheme
As an alternative, in fig. 8 an observer dedicated to a
certain sensor is driven by all output except that of the
respective sensor. This IFD scheme allows one to detect
and isolate only a single fault in any of the sensors,
however, in original version with increased robustness
with respect to m-2 unknown inputs, where m is the
number of outputs.
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PROCESS
Measurement

LOGIC

Fig. 8. Generalized Observer Scheme
In fig.8 Xysym is the set of behaviors removed from

o after the consistency check by the lth and mth outputs

Y t and y m" ~2 is the resultant of the ith observer andhence the complement of Xytym in ~0, where /, m, i

e { 1,2,3} and are unequal to each other. We have

2?=~O.Xytym=~O(.3~yty~ (18)
Xy, ym = Xyt u Xym

(19)

Similar to the case in QDOS, we define X 2 t and
2 u are the intersection and union of behavior sets after

observation filtering driven by two outputs, respectively,
representing the resultant possible behaviors and the total
number of behavioral sequences of states or the paths to be
stored.

^ 2 ^ 2 (20)Yc? x x3I ----

~.2u =X’2uX22uX2 (21)

If 22! =0, a fault is detected. If X2=O, 2240

and ~2 =0, then the second sensor is found to be faulty.

5.3 Comparison

Having extended the application range of the both
schemes to the qualitative models of systems with QOB,
here we analyze the capability and costs of these schemes.
The case of single observer in fig. 4 is shown as a
comparison. In fig. 4,2 3__ X" 0_ Xy,y2y3=~o ¢..3Xy,y,y3

(22)
Xyty2y 3 -- XyI k.) Xy2 k.) Xy3

(23)
where Xyty2y3 is the set of behaviors removed from 2 0

after the consistency check by all three outputs Y l, Y 2

and y 3, ~ 3 is the resultant of the single observer and
hence the complement of Xyly2y3 in 2°.

We also define 2 3 t and ~’3 v are the intersection

and union of behavior sets after observation filtering
driven by all three outputs, respectively, which are here
equal to each other.

The same to the case of analytical observer banks,
QDOS can here deal with multiple faults; while QGOS
can detect multiple faults and isolate only a single fault. A
single QOB can only detect faults.

By calculation, we have

=~2 =~3 (24)
this demonstrates that the three methods are equivalent in
predicting qualitative behaviors and detecting faults.
Furthermore,xO~IxI U ~)X2 U _~X3 U (25)

This shows that as the cost of acquiring the isolation of
faults by observer bank one has to store more possible
behaviors, and QDOS, being able to isolate multiple faults
needs the most storage among them.

6. Discussion and Future Work

In many applications such as control and fault detection,
on the one hand measurement are reachable, on the other
hand only a general description of a family of systems
excluding specific information of the concrete system
seems to make little sense. The presented QOB provides a
framework, in which this kind of information can be
utilized to reduce accumulated ambiguity and to avoid
spurious solution as much as possible. It is meaningful,
specially for continuous-time systems, to narrow
continually their predicted temporal intervals of
qualitative states with measurements, which is just the
second advantage of QOB over previous methods. The
more sampled values are available, the more accurate the
predictions are.

The simple example in section 4 showed that, on the
one hand, the observation filtering can greatly reduce the
possible behavioral branches; on the other hand, the
number of behaviors remains to be very large and increase
dramatically with respect to the simulation steps. As a
matter of fact, it seems that, we are facing a dilemmatic
situation. On the one hand, the practical applications
require the explicit temporal information about the
estimated behaviors; on the other hand, the introduction of
specific time measure results in the lowering of the level of
abstraction and, therefore, the multiplication of the
number of distinct behaviors. In fact, a large number of
behaviors in table 1 are similar to each other and may be
classified (abstracted) into a single one.

An application of the Qualitative Observer to
Instrument fault detection and isolation problems has been
preliminary discussed. An interesting result similar to
analytical observer was acquired.
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Concerning the possibility of applications, it is also
worthwhile to notice that the introduction of fuzzy set and
possibility theory to quantity space (Shen & Leitch 1993)
and constraints (Zhuang & Frank 1996) has intensified the
power of QDE in modeling, because many problems in
real world are difficult to be modeled by physical laws;
instead, empirical knowledge can go a long way in
describing such systems. With the aid of fuzzy theory this
kind of information can be integrated into models. The
fuzzy QOB bas been developed (Zhuang & Frank 1996) 
extend the application domains of original QOB and to
provide an evaluation to the estimated behaviors.

Next we are interested in seeking the answers for
following questions:

¯ After observation filtering, is the all behaviors left
complete? Under which conditions?

¯ Can the initial state be unknown as with classical
observers?
¯ How to reduce further the qualitative behaviors/states to
be stored by clustering?

¯ Which advantages and disadvantages QOB has
compared to parameter identification methods, which
apply inputs and outputs to determine the model first and
then give the behaviors of systems?
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