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ABSTRACT
A Multiagent Chess playing paradigm is defined. By
defining spheres and strength degrees for pieces winning
strategies on games can be defined. The new Intelligent
Tree Computing theories we have defined since 1994
can be applied to present precise strategies and prove
theorems on games. The multiagent chess game model is
defined by an isomorphism on multiboards and agents.
Intelligent game trees are presented and goal directed
planning is defined by tree rewrite computation on
intelligent game trees. Applying intelligent game trees
we define capture agents and state an overview to
multiagent chess thinking. Game tree intelligence degree
is defined and applied to prove model-theoretic
soundness and completeness. The game is viewed as a
multiplayer game with only perfect information between
agent pairs. The man-machine technologies thought
dilemma is dispelled in brief by addressing the thinking
in the absolute versus thinking for a precisely defined
area with a multiagent image for the computing mind.
Keywords Intelligent Game Trees, Multiagent A L,
Multiagent Games, Multiboard A.I., Multiagent
Planning

1. Introduction
A Multi Agent Chess playing paradigm is defined.
By defining spheres on boards and strength degrees for
pieces winning strategies on games can be defined.
The new Intelligent Tree Computing theories we
have defined can be applied to present precise
strategies and prove theorems on games. The present
computational model for multi-agent system provides a
formal basis for single agent moves. For each agent
function there is a way to determine mutual information
content with respect to the decision trees connected to
it. A single agent makes its decisions for each
operation or action by computing a plausible next
move set. The plausible next move set might have
dynamic properties. It might consist of a set of trees
bearing agent functions which compute their next
move sets to update the computing trees intelligence
content. Foundational questions such as: what does
playing Deep Blue(Newborn 1997) mean to Al? and
what the future of the chess technology (Berliner
1978) is, are alluded to in the paper. The cultural
question: Why the negative emotional reaction to a
very notion of artificial intelligence by many
philosophers and cognitive scientists; and the
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ontological and epistemological questions for "sensing"
intelligence for chess are addressed. We further question
whether chess is a really a two person game with perfect
information by offering an alternative view point. A
basis for a theory of computing with intelligent
languages and intelligent algebraic game tree rewriting
is presented. We present intelligent syntax and put forth
intelligent tree rewriting. We define a basis for algebraic
tree information-theoretic computing, presenting the
concepts of tree information content and mutual
information amongst trees. We have defined the basis for
algebraic tree rewrite computing with intelligent trees,
and for computing with decisive agents. Intelligent tree
completion theorems are presented, and techniques for
generating initial intelligent models are developed for
this computing method. There is soundness and
completeness theorems for the theory of computing with
intelligent trees and their model theory. Goal directed
move generation as in (Newell,Shaw, &Simon 1963) is a
planning problem which is definable by intelligent trees
and we have begun to write papers for its mathematics
and practice in (Nourani 94a,1995f).

2. The Multiagent Chess Model

The term "agent” has been recently applied to refer to Al
constructs that enable computation on behalf of an Al
activity(Genesereth&Nilsson 1987),(Nourani 1993c¢,96a)
with definitions which are software/hardware
independent, thus implementation, independent (Nourani
1993c¢). The present paper applies the techniques and
theory of computing with intelligent trees(Nourani
1993¢,96a), with signatures that bear agent functions on
trees, to define intelligent game trees for chess. Our
results for computability of initial models by abstract
subtree replacement systems (Nourani 1984) are
presented in brief as foundations for computing on trees
to be applicable to intelligent free tree computing. We
have presented the concepts of intelligent syntax,
intelligent languages , and their applications to Al and
programming in (Nourani 1994¢,93¢,96a). Algebraic tree
rewriting is defined on intelligent trees by presenting the
concepts and definition of algebraic tree information
content and mutual tree information content within a
forest. Let us view an abstract chess player as a pair
<P,B>. The player P makes its moves based on the board
B it views. <P,B> might view chess as if the pieces on
the board had come alive and were autonomous agents
communicating by messages, as if it were Alice in



Wonderland. For each chess piece a designating agent is
defined. To have an agent model we must define the
internal structure of agents as well as their

external behavior. The <P,B> chess agents are what
are called hysteric agents (Genesereth&Nilson
1987). A hysteric agent has an internal state set I,
which the agent can distinguish its membership. The
agent can trasnit from each internal state to another
in a single step. Actions by chess hysteric agents are
based on I and board observations. There is an
external state set S, modulated to a set T of
distinguishable subsets from the observation view
point. An agent cannot distinguish states in the same
partition defined by a game congruence relation. A
sensory function s :S — T maps each state to the
partition it belongs. Let A be a set of actions which
can be performed by agents. A function action can
be defined to characterize an agent activity action:
T — A There is also a memory update fucntion
mem: [ x T — L. Instead of modeling the game as if
it were played by something external to the board,
we view it all as if <P,B> is an autonomous
extension of a human player's mind. For each piece
p we define its sphere S(p). S(p) is a defined by the
board state from <P,B> and its situation defined by
its location on the board the threat set, and the
capture set. For each piece we define an activating
agent. The muliagent morphisms and their
ontologies are further defined by (Nourani 1993c).
Pieces with nontrivial capture capability, i.e.,
Bishop,Knight, Rook, -and Queen are designated by
AF agents, abbreviating Arbitrary Force. Pawns
have agents with limited force sphere, i.e. their
immediate front squares. The obvious game
objective is to force a win. The chess pieces transmit
what is necessary from their sphere to their sphere
agent group. The way the sphere group for an agent
is defined might be part of a specific play strategy.
The agent society for <P,B> determines which piece
moves, since there is only a single move allowed at
each stage. The move is determined by the king
agent signaling it via the game executive agent.. The
game executive agent is a designated agent which is
impartial to the game played. When defined on a
computer, the game executive agent is the
computing agent issuing the move for either side.
<P,B>'s external state is partitioned to many board
views by each hysteric agent.The agents cooperate
on problem solving based on a multiboard model
depicted by the enclosed figure, There are
multiboards as viewed by each agent and the object-
coobject design depicts the board from the two player
game view point. The mutliboard multiagent model
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is from Double Vision Computing 23. The object-cobject
pair is an isomorphism defined corresponding the
<P.B>'s external state partition to the board viewed from
two players. Hence there is a board-cobroad partitioned

“via object-coobject pairs from each piece designating

agent view and their agent computation. (see design
figures in Nourani 1995b).
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Fig 1 The Multiagent Multiboard Field

Multibaord-Multiagent computing is new since our
projects from 1993. The cooperative problem solving
paradigms have been applied ever since the Al methods
put forth by (Hays-Roth 1985).

3. Intelligent Game Trees

3.1 Game Trees and And/Or Trees
The chess game trees can be defined by AND/Or
trees(Nilsson 1969,71). For the intelligent game trees
and the problem solving techniques defined 23, the
same model can be applied to the game trees in the sense
of two person games and to the state space from the
single agent view. The two person game tree is obtained
from the intelligent tree model, as is the state space tree
for agents. To obtain the two-person game tree the cross-
board-cobroad agent computation is depicted on a tree.
Whereas the sate-space trees for each agent is
determined by the computation sequence on its side of
the board-coboard. We have defined an abstract notion
of information on intelligent game trees corresponding to
what Sahnnon might have defined for games(Shannon
1956). The way the intelligent game trees are defined, a
tree information theoretic theorem presents itself,
corresponding intelligent tree rewriting to tree
information content preservation.



3.2 Game Tree Rewrite Computing

Next, tree rewriting with intelligent trees is
formalized by defining canonical intelligent initial
models and results that intelligent algebraic tree
rewriting leads to intelligent initial models. Models
for intelligent theories emerge from the algebraic
intelligent tree rewriting. Intelligent algebraic tree
completion theorems and initial model rewrite
theorems are put forth for intelligent trees. To bring
the techniques to a climax a soundness and
completeness theorems is proved for intelligent tree
rewriting as a formal model-theoretic computing
technique. We further state that there are new
theoretical developments for computing that are an
information-theoretic formulation for computing.
For goal directed move planning examples goals
might be as follows. The coboard AF agents be tree
rewritten to the empty string, i.e. capture. The
coboard agents be rewritten to king and pawn
agents only. The coabrad castle to be rewritten to a
vulnerable state. Mate: the coboard king designated
agent acknowledging it.

3.3 Computing On Intelligent Trees

3.3.1 Our Recent Views
Henkin style proof for Godel's completeness
theorem, is implemented by constructing a model
directly from the syntax of theories. The computing
enterprise requires more general techniques of
model construction and extension, since it has to
accommodate dynamically changing world
descriptions and theories. The models to be defined
are for complex computing phenomena, for which
we define generalized diagrams.
The techniques in (Nourani 1983,87,91,94a) for
model building as applied to the problem of Al
reasoning allows us to build and extend models
through diagrams. It required us to define the
notion of generalized diagram. We had invented G-
diagrams(Nourani 1987,91,93b,94a) to build
models with prespecified generalized Skolem
functions. The specific minimal set of function
symbols is the set with which a model can be
inductively defined. We focus our attention on such
models, since they are Initial and computable
models defined by our papers since 1978 (Nourani
1984,91,94a). The G-diagram techniques allowed
us to formulate Al world descriptions, theories, and
models in a minimal computable manner. Thus
models and proofs for Al and computing problems
can be characterized by models computable by a
set of functions.
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3.3.2 Algebraic Tree Computation
The techniques in (Nourani 1991,94a) for model
building as applied to the problem of Al reasoning
allows us to build and extend models through
diagrams. A technical example of algebraic models
defined from syntax had appeared in defining initial
algebras for equational theories of data types (ADJ
1973) and our research in (Nilsson 1969). In such
direction for computing models of equational theories of
computing problems are presented by a pair (Z,E),
where X is a signature (of many sorts, for a sort set S)
(ADJ 1973,Nourani 1995a) and E a set of Z-equations.
Let T<Z> be the free tree word algebra of signature
Z. The quotient of T<X>, the word algebra of
signature Z, with respect to the Z-congruence
relation generated by E, will be denoted by T<Z,E>, or
T<P> for presentation P. T<P> is the "initial"
model of the presentation P. One representation
of T(P) which is nice in practice consists of an
algebra of the canonical representations of the
congruence classes. This is a special case of
generalized standard models defined here. In what
follows gtl...tn denotes the formal string obtained by
applying the operation symbol g in Z to an n-tuple
t of arity corresponding to the signature of g.
Furthermore, gC denotes the function corresponding to
the symbol g in the algebra C. We present some
definitions from our papers (Nourani 1983,84, 91) that
allow us to define standard models of theories that are Z-
CTA's. The standard models are significant for tree
computational theories that we had presented in (Nourani
1984,Nilsson 1969) and the intelligent tree computation
theories developed by the present paper. A standard
model M, with base M and functionality F, is a structure
inductively defined by <F,M> provided the <F,M>
defines an initial structure with sets disjoint except fro
perhaps the constant basis, We will review these
definitions in the sections to follow.

3.3.3 G-diagrams of Initial Models
The generalized diagram (G-diagram) (Nourani
1991,94a,93b) is a diagram in which the elements of the
structure are all represented by a minimal set of function
symbols and constants, such that it is sufficient to define
the truth of formulas only for the terms generated by the
minimal set of functions and constant symbols. Such
assignment implicitly defines the diagram. This allows
us to define a canonical model of a theory in terms of a
minimal family of function symbols. The minimal set of
functions that define a G-diagram are those with which a
standard model could be defined by a monomorphic pair.
Formal definition of diagrams are stated here,



generalized to G-diagrams, and applied in the sections to
follow.

Definition 3.1 A G-diagram for a structure M is a
model-theoretic diagram definable by a specific
function set. .

Remark: The minimal set of functions is the set
by which a standard model could be defined. Thus
initial models could be characterized by their G-
diagrams. Further practical and the theoretic
characterization of models by their G-diagrams are
presented by this author in (Nourani 1994a). It
builds the basis for some forthcoming formulations
that follow, and the tree computation theories that
we had put forth in (Nilsson 1969). Here we
showed how initial models could appear out of thin
air within our formulation. Initial models are
defined by algebraic tree rewriting for the
intelligent languages is developed from our 1979-
84 papers and (Nourani 1984). We showed how
initial algebras can be defined by subtree
replacement and tree rewriting These are the
minimal set of functions that by forming a
monomorphic pair with the base set, bring forth an
initial model by forming the free trees that define
it. Thus an initial free model is formed. The model
can be obtained by algebraic subtree replacement
systems. The G-diagram for the model is also
defined from the same free trees. The conditions of
the theorems are what you expect them to be- that
canonical subset be closed under constructor
operations, and that operations outside the
constructor signature on canonical terms yield
canonical terms.

4. Intelligent Languages, and Models

4.1 Intelligent Syntax
By an intelligent language we intend a language with
syntactic constructs that allow function symbols and
corresponding objects, such that the function
symbols are implemented by computing agents in
the sense defined by this author in (Nourani 1993c,
96a). Sentential logic is the standard formal
language applied when defining basic models. The
language L is a set of sentence symbol closed by
finite application of negation and conjunction to
sentence symbols. Once quantifier logical symbols
are added to the language, the language of first order
logic can be defined. A Model A for £ is a structure
with a set A . There are structures defined for L such that
for each constant symbol in the language there
corresponds a constant in A, For each function
symbol in the language there is a function defined on A;
and for each relation symbol in the language there is a
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relation defined on A. For the algebraic theories we

are defining for intelligent tree computing in the
forthcoming sections the language is defined from
signatures as in the logical language is the language

of many-sorted equational logic. The signature

defines the language L by specifying the function
symbols' arities. The model is a structure defined on a
many-sorted algebra consisting of S-indexed sets for S a
set of sorts. By an intelligent language we intend a
language with syntactic constructs that allow

function symbols and corresponding objects,

such that the function symbols are implemented by
computing agents. A set of function symbols in the
language, referred to by AF, is the set modeled in

the computing world by Al Agents with across and/or
over board capability. Thus the language £ defined

by the signature has designated function symbols called
AF. The AF function symbols define signatures

which have specific message paths defined for

carrying context around an otherwise context tree
abstract syntax. A set of function symbols in the
language, referred to by AF, are agents with

nontrivial capability. The boards, message passing
actions, and implementing agents are defined by
syntactic constructs,with agents appearing as

functions. The computation is expressed by an abstract
language that is capable of specifying modules, agents,
and their communications. We have put together the Al
concepts with syntactic constructs that could run on the
tree computing theories we are presenting in brief. We
have to define how the syntactic trees involving
functions from the AF are to be represented by algebraic
tree rewriting.on trees. This is the subject of the next
section, where free intelligent trees are defined. An
important technical point is that the for agents there are
function names on trees.

Definition 4.2 We say that a signature X is intelligent iff
it has intelligent function symbols. We say that a
language has intelligent syntax if the syntax is defined
on an intelligent signature

Definition 4.3 A language L is said to be an

intelligent language iff L is defined from an

intelligent syntax

4.2 Abstract Syntax Information
It is essential to the formulation of computations on
intelligent trees and the notions of congruence that we
define tree information content of some sort. A reason is
that there could be loss of tree information content when
tree rewriting because not all intelligent functions are
required to be mutuaily informable. What we have to
define, is some tree computational formulation of



information content such that it applies to the intelligent
computability theory proposed. Once the formulation is
presented, we could start decorating the trees with it and
define computation on intelligent trees. The example of
intelligent languages we could present are composed
from <O,A,R> triples as control structures(Nourani
1993f). The A's have operations that also consist of agent
message passing. The functions in AF are the agent
functions capable of message passing. The O refers to
the set of objects and R the relations defining the effect
of A's on objects. Amongst the functions in AF only
some interact by message passing. The functions could
affect objects in ways that affect the information content
of a tree. There you are: the tree congruence definition
thus is more complex for intelligent languages than those
of ordinary syntax.trees. Let us define tree information
content for the present formulation.

Definition 4.4 We say that a function f is a string
function iff there is no message passing or information
exchange except onto the board agents that are at the
range set for f, reading parameters visible. Otherwise, f
is said to be a splurge .

Remark: Nullary functions are information strings.
Definition 4.5 The tree information content, TID, is
defined by induction on tree structures:

(0) the information content of a constant symbol.
function f is f; (i) for a string function f, and tree
f(t1,...,tn) the TID is defined by U TID (ti::f) , where
(ti::f) refers to a subtree of ti visible to f;

(ii) for a splurge function f, TID is defined by U TID
(f:ti), where f:ti refers to the tree resulting from ti

upon information exchange by f.

The techniques for our new intelligent object level
programming paradigm are implicit in the above
definition, in for example, the concept of a subtree
being visible to a function. The theorem below
formalizes these points. Thus out of the forest of
intelligent trees, not to overstate the significance, there
appears a sudden information theoretic rewrite '
theorem. Ordering on information content is

equivalent to subset ordering on TID sets. A rewrite
rule on a set of trees with TID set S has information
loss if the TID of the resulting rewritten tree is a

subset of S. For the chess model defined the pawn
agents are trivial string functions with MIC

connected and known to their sphere AF agents. We
refer to it by the pawn string rule.

There would alwaysbe an AF sphere agent

defined. The king designated agent becomes the
sphere agent for the pawn string rule only when AF
becomes the empty set.
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Theorem 4.1 Trees on intelligent syntax, rewritten
guided only by what equations state, could cause a
loss of information content between trees.

Proof Trees with AF functions by definition affect
TID, thus a rewrite from a tree formed by a
function g in AF to a tree that does not have g asa
function symbol causes an information loss. For
example, a trivial equation of the form f-1(f(t)) =,
where f is in AF causes an information loss to the
resulting set of trees, from the left hand to the right
hand wee t.

4.2.1 The Capture Agents
The positive side for theorem 4.1 can be seen by
defining Capture Agents. As an example for how the
agent intelligent tree computing might be applied to
ordinary tree rewriting we had defined (Nourani.
1993¢) completion agents. The tree completion agents
are indicators as to when all terms called for by an.
agent function are in normal form. A term of the
form f(t1,...,tn) carries an agent function on each term
for the terms subtree sort completion agent. When.
term ti is in normal form its completion agent
function is dissolved as promised by theorem 4.1. It
no longer appears on the tree. We define a similar notion
called capture Agents. Capture Agent are what
ultimately return a tree via a completion agent,
where on the normalized tree the captured piece's
designated agent is no longer present. The capture agent
indicates the piece has been captured.

4.2.2 Intelligent Theories
Let us formulate proof systems for intelligent equational
theories.
Definition 4.6 We say that an equational theory T of
signature IX is an intelligent IX theory iff for every proof
step involving tree rewriting, the TID is preserved. We
state T<IST> I- t=t' when T is an IZ theory.
Definition 4.7 We say that an equational theory T is
intelligent, iff T has an intelligent signature IZ,and
axioms E, with [T its intelligent signature. A proof of t=t’
in an intelligent equational theory T is a finite sequence
b of IZ-equations ending in t=t' such thatif g=q'isin b,
then either g=¢' in E, or q=q' is derived from 0 or more
previous equations in E by one application of the rules of
inference. Write T <IST>Ft=t for "T proves t=t' by
intelligent algebraic subtree replacement system.”
By definition of such theories proofs only allow
tree rewrites that preserve TID across a rule. These
definitions may be applied to prove rewriting
theorems,to set up the foundations for what could
make intelligent tree rewriting TID, and define
intelligent tree computation. Thus the essence of



intelligent trees will not be lost while rewriting,
Next, we define a computing agent function's
information content from the above definition. This
is not as easy as it seems and it is a matter of the
model of computation applied rather than a
definition inherent to intelligent syntax. Let me
make it a function of intelligent syntax only,
because we are to stay with abstract model theory
and build models from abstract syntax. The
definition depends on the properties of intelligent
trees, to be defined in the following section.

5. Intelligent Trees

5.1 Embedding Intelligence
Viewing the methods of computation on trees
presented in the sections above we define
intelligent trees here.
Definition 5.8 A tree defined from an arbitrary signature
Z is intelligent iff there is at least one function symbol g
in X such that g is a member of the set of intelligent
functions AF, and g is a function symbol that appears on
the tree.
Definition 5.9 We define an intelligent Z-equation,
abbreviated by IX-equation, to be a Z-equation on
intelligent Z-terms. An IX congruence is an X-
congruence with the following conditions:
(i) the congruence preserves IZ equations;
(ii) the congruence preserves computing agents
information content of
Z-trees.
Definition 5.10 The mutual information content,
MIC, of an intelligent function f, a member of the
intelligent signature AF, is determined by the IX -
congruence on T<AF> relating the functions in AF.
It is union of the TID over the trees that are a member of
the congruence class of the free T<AF> with respect to
the [Z-congruence defined on the T<X,w>, where
w is the arity of f.
Let Z be an intelligent signature. We have defined
canonical term [Z-algebra (IZ-CTA) in (Nourani
1993¢,96a) as term algebra models for intelligent
signatured theories. The validity of propositions can be
ascertained by checking them for canonical terms at the
canonical initial model.

5.2 Intelligent Rewrite Models
Term rewrite model theorems for intelligent syntax
Lemma 5.1 Let R be a set of [IZ-equations. Let R be the
set of algebraic [Z-rewrite rules obtained by considering
each equation 1 =r in Ro as a rule 1 => r, then for t,¢'
in T<X>, t => * t'iff T(R) <IST>+t = t'..
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Recall that a presentation (Z,E) defined an equational
theory of signature T and axioms E. Next we show
how canonical models can be constructed by algebraic
subtree replacement system. A definition and what

we have done thus far (Nourani 1984, Nilsson 1969)
for how to represent normal forms with canonical
terms and their relations to defining models gets us

to where we want to go: the canonical algebraic
intelligent term rewriting theorems, We say that

(C,R) represents a [Z-algebra A iff the IX-algebra so
defined by (C,R) is [Z-isomorphic to the algebra A
presented by the axioms. We have proved (Nourani
1993e,96a) theorem for sufficient conditions for
constructibility of an initial model for an I% equational
presentation. It is the mathematical justification for
the proposition that initial models with intelligent
signature can be automatically implemented
(constructed) by algebraic subtree replacement
systems, with normal forms defined by a minimal set of
functions that are Skolem functions or type constructors.
The Canonical Intelligent Model Theorems are

proved in (Nourani 1993e,96a). The theorems

provide conditions for automatic implementation by
intelligent tree rewriting to initial models.

Theorem 5.3 (The MIC Theorem) Let P be a
presentation with intelligent signature IX for a
computing theory T with intelligent syntax trees.

Then T is (a) A Sound logical theory iff every axiom or
proof rule in T is TID preserving;

(b) A Complete logical theory iff there is a
<fucntion,set> pair defining a canonical structure C and
a G-diagram, such that C with R represents T<IZ,R>,
where R is the set R of axioms for P viewed as [Z-
rewrite rules,

Proof By Definition of MIC , theorems on canonical
intelligent models(Nourani 1993e, 96a), completeness
theorems for the first order logic, and completeness of
induction for algebraic structures (Nourani 1994b).

We had called the above theorem the logical
foundations MIC theorem for intelligent trees. We have
begun to present MIC theorems for the information
theoretic properties of the present game tree computing
theories(Nourani 1993¢,96a). The above with the pawn
string rule stated at the last part sections 4.2 are
sufficient to define the game moves.

6. Computing On Intelligent Trees
6.1 Tree Computing For Al
We present a brief overview of the applications of
our methods to Al planning problems in (Nourani
1991,93¢,94a). We have proposed (Nourani 1994a)
methods that can be applied to planning with GF- -



diagrams(Nourani 1995f) with applications to some
current research directions in Al. The techniques
can be applied to implement planning and
reasoning for goal directed move planning. While
planning with GF-diagrams that part of the plan
that involves free Skolemized trees is carried along
with the proof tree for a plan goal. The idea is that
if the free proof tree is constructed then the plan
has an initial model in which the goals are satisfied
(Nourani 1984,94a,93b).

............ 6.2 The Single Agent Moves

The present computational model for multi-agent
system provides the following basis for single agent
decisions. For each agent function there is a MIC
determining its mutual information content with
respect to the decision trees connected to it. A
single agent makes its decisions for each operation
or action by computing a plausible next move set.
The plausible next move set might have dynamic
properties. For example, it might consist of a set of
trees bearing agent functions, which compute their
next move sets to update the computing trees MIC.
The interplay of intelligent syntax and our
intelligent syntax computability techniques
(Nourani 1993d) could provide us with exciting
expressive languages and techniques for trees, by
desiging programs for single agent functions.

6.3 Chess Thinking Machines

To play muliagent chess the mind has to be capable to
distribute and partition the board as an isomorphic image
to the multiagent multiboard model. The master player
man or machine'smind might be modelled by a
multiagent-multiboard structure. We do not wish to enter
a new debate on man-machine intelligence issue which
Al has written for during the last many years

(Minsky 1986). However, we might address the
questions on thinking machine epistemicis and the
sufficient/necessary conditions for "sensing"”
intelligence. The intelligent tree computing basis to
chess for a machine designed with the agent

capabilities defined and learning degrees, might be
certified "Thinking" relative to the Chess paradigm.
Thinking in the absolute is a difficult proposition to
establish since it is difficult to universally define for all
domains. However, thinking relative to a

well-defined problem such as chess is not as
inconceivable, Such competence might be bestowed onto
a machine via a multiagent paradigm. A chess

playing machine with specific problem solving plans,
offensive and defensive tactics, which can
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anticipate opponent's moves and game plans, is well on
its way to be eligible as a thinking machine.

7. 1s Chess A Two-Person PI Game

From the game tree view point for what Shannon

had estimated a complete tree carried to depth

6-three moves for each player- would already have

one billion tip nodes. Yet from an abstract mathematical
view point only, the game is a two-person game with
perfect information. However, the two-person game
view is not a mathematical model for any chess

playing algorithm or machine. The real chess game,
from the abstract view point, might well be modeled as a
multiagent game, being only a two-person game with
perfect information between mutually informable
agents, There is only minimal information for the
multiagent plans across the board. The multiagent
multiboard model is a way to come to the realization that
the game is partitioned and correlated amongst agents
and boards, with a cognitive anthropomorphism to
human player's mind. There is an abstract two-

person game model, but it does not apply to define a
chess playing machine. It is there to make precise
mathematical statements.

8. Concluding Comments
What do the man-machine philosophical dilemma and
epistemology imply for chess machines. In papers
written by Nourani93-97 a new area called descriptive
computing is defined (Nourani 1993a,94d,96b,97a)
where games and winning strategies are defined in terms
of diagrams for computing epistemics.The emotional
reaction to a very notion of artificial intelligence might
be dispelled once we view the game epistemics as being
a mind image for a muliagent cognition, relative to a
specific defined problem, and not in the absolute. As far
as Heidegger and technology are concerned I might
expound to a degree to (Nourani 1993a). There is a
positive side to the views to technology. Heidegger states
for man it means being at home with something. The
papers in (Nourani 1993a,94d) had move to the positive
side of Vergessenheit, defining what the game moves
might imply on a reasoning diagram by applying
dynamic epistemic computing. Hence it is only defining
what it means for the mind to be at home with games.
Vergessenheit's negative aspects are what happens when
the situation's dynamics are never defined, e.g. the chess
piece's agent epistemics are not defined. A move is not
well-defined for a piece for either the human mind or the
machine at such Vergessenheit. From the Al view point
we have defined a preliminary basis for multiagnet
multiboard chess, The mathematics for intelligent game



trees is defined with soundness and completeness
theorems for the tree computing with agents on
intelligent trees.
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