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Abstract

Most learning algorithms that are applied to text cat-
egorization problems rely on a bag-of-words document
representation, i.e., each word occurring in the docu-
ment is considered as a separate feature. In this paper,
we investigate the use of linguistic phrases as input fea-
tures for text categorization problems. These features
are based on information extraction patterns that are
generated and used by the AUTOSLOG-TS system. We
present experimental results on using such features as
background knowledge for two machine learning algo-
rithms on a classification task on the WWW. The re-
sults show that phrasal features can improve the pre-
cision of learned theories at the expense of coverage.

Introduction

Most machine learning algorithms for text categoriza-
tion represent documents as a bag of words. Typically,
each word is treated as a separate feature. For exam-
ple, a HTML-document might be classified as the home
page of a student if the word student occurs on the page.
However, student will also occur on many other pages
on the WWW, including most pages of computer sci-
ence departments. On the other hand, a sentence like
"I am a student of computer science at Carnegie Mel-
lon University" is clearly indicative of a student’s home
page. It is worth noting that none of the words that ap-
pear in this sentence are good predictors of a student
home page, nor is any subset of these words, because all
of them are quite common on pages related to Carnegie
Mellon’s School of Computer Science.1 What makes a
difference is the linguistic role that these words have in
this sentence.

AuToSLoG-TS, originally conceived for information
extraction (Riloff 1996a), is able to provide a learner
with features that capture some of the syntactic struc-
ture of natural language text. For the above input sen-
tence, it extracts the following four features: I am <_>,

1 In this sentence, the most predictive words for a student
home page are I and am. They are quite reliable features
for the problem of discriminating between student pages and
other departmental pages and, for this task, should not be
removed by a stop list (see also (Craven et al. 1998a)).

<_> is student, student of <_>, and student at <_>.2
All four of them are highly indicative of student pages
and at least the last three of them are quite unlikely
to appear on other types of pages. Note that the last
of these, student at <_>, does not match a contiguous
piece of text, but is based on prepositional attachment
to the word student.

In previous work (e.g., (Riloff & Lorenzen 1998)),
promising results on the usefulness of such phrases for
text categorization tasks were obtained using simple
statistical thresholding methods to find the best classi-
fication terms. In this paper, we report on some exper-
iments that aimed at investigating the utility of such
phrases as features for two state-of-the-art machine
learning algorithms, namely the Naive Bayes classifier
RAINBOW and the separate-and-conquer rule learning
algorithm I~IPPER. The case study is performed in a
text classification task on the WWW.

Generating Phrasal Features
AUTOSLOG was developed as a method for automati-
cally constructing domain-specific extraction patterns
from an annotated training corpus. As input, Au-
ToSLoG requires a set of noun phrases, i.e., the in-
formation that should be extracted from the training
documents. AUTOSLOG then uses syntactic heuristics
to create linguistic patterns that can extract the desired
information from the training documents (and from un-
seen documents). The extracted patterns typically rep-
resent subject-verb or verb-direct-object relationships
(e.g., <subject> teaches or teaches <direct-object>) as
well as prepositional phrase attachments (e.g., teaches
at <noun-phrase> or teacher at <noun-phrase>). See
(Riloff 1996b) for a more detailed description of Au-
ToSLOG.

The key difference between AUTOSLOG and
AuToSLoG-TS (Riloff 1996a) is the removal of the
need for an annotated training corpus. AuToSLoG-TS
simply generates extraction patterns for all noun
phrases in the training corpus whose syntactic role
matches one of the heuristics. Table 1 shows three
of the 16 syntactic heuristics employed in the current

2We use angle brackets <> to represent variables.
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Syntactic Heuristic Phrasal Feature
noun aux-verb <d-obj> I am <_>
<sub j> aux-verb noun <_> is student
noun prep <noun-phrase> student of <_>

student at <_>

Table h Syntactic heuristics that are used for finding
phrasal features in the sentence "I am a student of com-
puter science at Carnegie Mellon University."

version of AUTOSLoG-TS as well as their correspond-
ing extraction patterns that can be detected in the
example sentence "I am a student of computer science
at Carnegie Mellon University". Note that the third
syntactic heuristic of table 1 fires twice in the same
sentence using two different prepositional attachments
to the noun student. Also, the different forms of the
verb to be are not discerned for the first two patterns.
However, in general words that occur in different forms
will not be treated in the same way. For example, the
sentence "Here are the students at our department"
will not match the last extraction pattern of table 1,
because the word student occurs in plural instead of
singular. It seems likely that the plural version stu-
dents at <_> occurs more frequently on departmental
pages than on student home pages. That such small
differences in the use of words can make a big difference
for text classification was previously observed in (Riloff
1995). A set of experiments demonstrated that the
occurrence or absence of linguistic phrases of the
above form can be successfully used for recognizing
relevant documents of the terrorist domain of the 4th
Message Understanding Conference (MUC-4) (Riloff
& Lorenzen 1998).

In this paper, we explore the potential use of the
extraction patterns generated by AuToSLoG-TS as
phrasal features for state-of-the-art learning algorithms.
In the following, we will briefly describe the learning al-
gorithms and the test domain (classifying WWW pages
related to computer science departments), and then dis-
cuss the results of our experiments.

Description of the Experiments

We evaluated the use of phrasal features with two
different learning algorithms, the naive Bayes classi-
fier RAINBOW and the rule learning algorithm RIP-
PER. The data set used for our experiments is the 4-
universities dataset, which has been collected for the
WebKB project at Carnegie Mellon University.

Rainbow
RAINBOW is a Naive Bayes classifier for text classi-
fication tasks (Mitchell 1997), developed by Andrew
McCallum at CMU3. It estimates the probability that
a document is a member of a certain class using the

3 Available from http ://www. cs. cmu. edu/af s/cs/

project/theo- 1 I/www/naive-bayes. html.

probabilities of words occurring in documents of that
class independent of their context. By doing so, RAIN-
BOW makes the naive independence assumption. More
precisely, the probability of document d belonging to
class C is estimated by multiplying the prior probability
Pr(C) of class C with the product of the probabilities
Pr(wiIC) that the word wi occurs in documents of this
class. This product is then normalized by the product
of the prior probabilities Pr(wi) of all words.

Pr(Cld) := Pr(C) 
Pr(wilC)

4=1 Pr(wi) (1)
As many of the probabilities Pr(wi[C) are typi-

cally 0.0 (hence their product will be 0.0), RAINBOW
smoothes the estimates using the technique proposed
by Witten & Bell (1991). A related problem -- the
fact that for text classification tasks many estimates of
Pr(C[d) for the winning class tend to be close to 1.0
and often will be exactly 1.0 because of floating-point
round-off errors -- is addressed by providing an option
to incorporate a correction term based on Kullback-
Leibler Divergence. This correction does not change
the classification of the documents, but provides more
realistic probability estimates. This option was used in
our experiments to obtain better confidence estimates
for the predictions, which we used for generating re-
call/precision graphs. A more detailed description of
this smoothing technique and of RAINBOW in general
can be found in (Craven et al. 1998a).

Ripper

RIPPER4 (Cohen 1995) is an efficient, noise-tolerant rule
learning algorithm based on the incremental reduced
error pruning algorithm (Fiirnkranz ~ Widmer 1994;
Ffirnkranz 1997). It learns single rules by greedily
adding one condition at a time (using FOIL’s informa-
tion gain heuristic (Quinlan 1990)) until the rule 
longer makes incorrect predictions on the growing set,
a randomly chosen subset of the training set. There-
after, the learned rule is simplified by deleting condi-
tions as long as the performance of the rule does not
decrease on the remaining set of examples (the pruning
set). All examples covered by the resulting rule are then
removed from the training set and a new rule is learned
in the same way until all examples are covered by at
least one rule. Thus, RIPPER is a member of the fam-
ily of separate-and-conquer (or covering) rule learning
algorithms (Fiirnkranz 1998).

What makes RIPPER particularly well-suited for text
categorization problems is its ability to use set-valued
features (Cohen 1996). For conventional machine learn-
ing algorithms, a document is typically represented as
a set of binary features, each encoding the presence or
absence of a particular word in that document. This
results in a very inefficient encoding of the training ex-
amples because much space is wasted for specifying the

4 Available from http ://www. research, art. com/

~wcohen/ripperd.html.



Class All Examples Test Examples
Student 1641 (19.82%) 558 (13.42%)
Faculty 1124 153

46
(3.68%)

137
(13.57%)

Staff (1.65%) (1.11%)
Project 504 s6 (2.07%)

182
(6.09%)

Department (2.20%) 4 (0.10%)
Course 930 (11.23%) 244

3067
(5.87%)

Other 3764
4158

(73.76%)
8282

(45.45%)
Total (100.00%) (100.00%)

Table 2: Class Distribution in the 4 Universities data
set

absence of words in a document. RIPPER allows to rep-
resent a document as a single set-valued feature that
simply lists all the words occurring in the text. Con-
ceptually, RIPPER’s use of such a set-valued feature is
no different than the use of binary features in conven-
tional learning algorithms, although RIPPER makes use
of some optimizations. For the remainder of this paper,
we will continue to think of each word (or phrase) as 
separate binary feature.

The WebKB Project

The goal of the WebKB Project (Craven et al. 1998b) is
to extract a computer-understandable knowledge base
from the WWW whose contents mirrors the contents of
the WWW. Many applications could be imagined for
such a knowledge base. For example, it could enhance
the capabilities of currently available search engines
that can only answer word-occurrence queries (e.g., AL-
TAVISTA) or that rely on a manually constructed knowl-
edge base about the contents of WWW pages (e.g., YA-
HOO) by enabling them to answer questions like "Who
teaches course X at university Y?" or "How many
students are in department Z?". Currently, a proto-
type system uses an ontology of common entities in
computer science departments (students, faculty, staff,
courses, projects, departments) and relations between
them (e.g., professor X is the instructor of course 
and the advisor of student Z). The prototype crawls
the net and uses learned knowledge to classify pages of
computer science departments into that ontology.

In order to furnish the crawler with some learned do-
main knowledge, a set of 8,282 training documents was
collected from the WWW pages of various computer
science departments.5 About half of the pages are a
fairly exhaustive set of pages from the computer science
departments of four universities: Cornell, Texas, Wis-
consin, and Washington. The remaining 4,120 pages
are more or less randomly collected pages from various
computer science departments. The pages are manu-
ally classified into the categories Student, Faculty, Staff,
Course, Project, Department, and Other. Table 2 shows
the frequency distributions of these classes in the data

5Available from http ://www. cs. cmu. edu/afs/cs, cmu.
edu/proj ect/theo-20/www/data/

set. The Other class is a very heterogeneous class that
contains pages found at these departments that are not
classified as any of the six relevant classes. Note, how-
ever, that one of the assumptions made in manually
classifying the pages was that each real-world entity is
represented by only one page. Thus, if, e.g., a fac-
ulty member organizes his personal home page as a
hypertext document containing separate pages for his
research interests, his publications, his CV, and point-
ers to the research projects he is involved in, only the
top page that links these informations together would
be used to represent him in the class Faculty, while all
other pages would be classified as Other. This is clearly
not a perfect solution, as other people might organize
the same information into a single page. Thus it can
be expected to be hard to discriminate between cer-
tain pages of the Other class and pages of the relevant
classes.

A more detailed description of this data set and of
some previous work can be found in (Craven et al.
1998b; 1998a).

Experimental Setup

For our experiments, all pages were stripped of their
HTML tags, converted to lower case, and all digits were
replaced with a D. AuToSLoc-TS was run on each doc-
ument and the generated extraction patterns were en-
coded as one-word tokens and put into a separate file.
We compared three different representations for each
algorithm: One where each word was treated as a fea-
ture, one where each phrase (extraction pattern) was
treated as a feature, and one where both were consid-
ered as features. For the last case, corresponding files
were simply appended to produce the input files for
RAINBOW, while for RIPPER we encoded each docu-
ment with two set-valued features, one containing the
words in the document, the other containing the tokens
that represent the discovered phrasal features.

The algorithms were evaluated using the same proce-
dure as in (Craven et al. 1998b): Each experiment con-
sists of four runs, in which the pages of one of the four
universities are left out in turn. Thus, each training set
consists of the 4,120 pages from miscellaneous univer-
sities plus the pages from three of the four universities.
The results of each of the four runs were combined us-
ing micro-averaging, i.e., the predictions made for the
four test sets were thrown together and all evaluation
measures were computed on this combined set. The fre-
quency distribution of the classes in this combined test
set is shown in the second column of table 2.

Unless noted otherwise, RIPPER was used with its
default options. It should be noted that in this setting,
RIPPER sorts the classes according to their inverse fre-
quency and learns decision lists for discriminating one
class against all classes ranked below it. Hence, the
biggest class, in our case the Other class, is treated as
a default class and no rules are learned for it. In the ex-
periments with RAINBOW, we made use of its built-in
stemming, and features that occurred only once were



Representation RAINBOW RIPPER

words 45.70% 77.78%
phrases 51.22% 74.51%
words+phrases 46.79% 77.10%

Table 3: Overall predictive accuracy

not considered. The experiments with RIPPER were
performed without stemming and without any form of
feature subset selection.

Results
Accuracy

Table 3 shows the results in terms of predictive accu-
racy on the 4 test sets combined. The results are quite
diverse. For RAINBOW, the use of phrases increases pre-
dictive accuracy, while for RIPPER, the opposite is the
case. An investigation of the confusion matrices (not
shown) shows that this is mostly due to an increase in
the number of pages that are classified as Other. For
example, about 4.5% of the pages do not contain any
natural language phrases and are classified as Other
by default. This decrease in the number of pages for
which a commitment to one of the six relevant classes
is made, in some sense, confirms that the phrasal fea-
tures are much more conservative in their predictions:
They tend to appear less frequently, but some of them
are highly typical for certain classes. This has a posi-
tive effect on the overall accuracy, because RAINBOW in
general overpredicts the 6 minority classes. RAINBOW
using word-based features classifies only 1216 pages as
Other, while the test set contains 3067 pages of this
class. RAINBOW using phrasal features classifies 1578
examples as Other without significantly changing the
classifier’s precision in the six relevant classes. This
means that the majority of Other pages is misclassified
into one of the six relevant classes, thus producing a
low overall accuracy and a low precision, as we will see
in the next section.

The situation is converse for RIPPER, which classi-
fies 3008 pages as Other using words, while classifying
3517 pages as Other when using only phrases. Hence,
for RIPPER, whose classification accuracy is above the
default accuracy (73.76%), predicting more examples 
Other has a negative effect on its performance.

These differences in the number of pages classified
with the default class are also the main reason for
the huge performance differences of the two algorithms.
One reason for this phenomenon might be the nature
of of the Other class, which is likely to contain many
pages that are very similar to pages of the relevant
classes. It might well be the case that this problem
imposes greater difficulties upon a linear classifier such
as RAINBOW, whereas the rule learner RIPPER is better
able to focus on the small differences between similar
pages in different classes. It might also be the case that
the differences in the experimental setup (stemming,
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Figure 1: Combined precision/recall for RAINBOW
(bottom) and RIPPER (top).

pruning of features that occur only once) contributed
to this effect, but it cannot be its sole cause, because
no stemming was used on the phrasal features in both
cases.

Precision vs. Recall

More interesting, however, is a closer look at the pre-
cision/recall graphs shown in figure 1. In this graph,
recall means the percentage of correctly predicted ex-
amples of the six relevant classes (not including Other),
while precision means the percentage of correct predic-
tions in all predictions for examples of these classes.

For generating these graphs, we associated a confi-
dence score with each prediction. The confidence as-
sociated with a predictions of RAINBOW is simply the



class phrase
5 I am <_>

student 7 <_> is student
14 student in <_>
12 university of <_>

faculty 26 professor of <_>
37 <_> is professor
19 I am <_>

staff <_> is associate
30 manager of <_>
18 associated <_>

project 28 related <_>
58 affiliated <_>
12 department of <_>

department 13 undergraduate <_>
16 graduate <_>
25 <_> due

course 34 due <_>
40 fall <_>

Table 4: The best three phrases for each class and their
rank in a sorted list of features in the words+phrases
representation.

student :- my,
student,
am,

DDD_DDDD.

Training Accuracy: 149 2
Test Accuracy (Washington): 9 

student :- I am <_>,
<_> is student,
institute of <_>.

Training Accuracy: 43 0
Test Accuracy (Texas): 5 0

student :- my,
student,
<_> is student,
DDD_DDDD.

Training Accuracy: 125 0
Test Accuracy (Texas): 12 0

estimated probability of the example being in the pre-
dicted class. RIPPER does not provide probability esti-
mates, so we associated with each prediction of RIPPER
a confidence value c_A_+_L_ where e (i) is the number c+i+2 ’
training examples that are correctly (incorrectly) clas-
sified by the rule that predicted the class for this exam-
ple. 6 We chose the Laplace-estimate for estimating the
accuracy of a rule in order to penalize rules that cover
only a few examples.

We measured the precision of the algorithms at 5%
increments in recall. A recall level of 5% is equivalent
to correctly classifying about 55 of the 1091 examples
of the six relevant classes. The precision at a recall
level of n% was measured by first sorting the predictions
for examples of the relevant classes according to their
confidence score. Then we went down the list until the
number of correct predictions exceeded n% of the total
number of examples of the relevant classes, i.e., until we
had recalled n% of the examples of these classes. The
number of correct predictions over the total number of
predictions in that segment of the list is the precision
score associated with that recall level. If a recall of n%
was reached within a series of predictions with identical
confidence scores, we continued to process the list until
the confidence score changed. Hence, in some cases,
the points for the precision/recall curves are not exactly
lined up at 5% increments.

~Note that these are not necessarily equivalent to the
number of examples that are correctly or incorrectly classi-
fied by the rule in isolation, because RIPPER learns decision
lists. This means that the learned rules are processed in
order, and only examples that are not classified by previous
rules can be classified by subsequent rules.

Table 5: The rules with highest confidence scores for
words, phrases, and phrases+words respectively, along
with the number of correct and incorrect predictions
they make on their respective training and test sets.

In both graphs, it is apparent that at lower recall
levels, the phrasal features outperform the word-based
representation. This supports the hypothesis that some
phrasal features are highly predictive for certain classes,
but in general have low coverage. This is particularly
obvious in the significant decrease of the maximum re-
call for RIPPER if it uses only phrasal features.

The results for the combined representation are more
diverse: RAINBOW assigns higher weights to word-based
features than to phrasal features, so that the results
for the combined representation are mostly determined
by the words. Table 4 illustrates this by showing the
top three phrases for each class, and their rank in the
list of features ordered by a weighted log-odds ratio

Pr(wi,c) log (~). But even though the word-
based features determine the shape of the curve, the
addition of phrasal features results in small improve-
ments at all recall levels.

The situation is quite similar for RIPPER in the sense
that only a few of the learned rules actually use the
phrasal features. However, the phrases frequently oc-
cur in rules with a high confidence score and make a
crucial difference at the low recall end of the graph.
Table 5 shows, for each of the three representations,
the rule that was assigned the highest confidence score
based on its performance on the respective training



set. It is very interesting to observe that the best rule
for the word-based feature set and the best rule for
the words+phrases representation are almost identical.
Both require the presence of the word my and a seven-
digit number (most likely a phone number). However,
while the word-based representation requires the pres-
ence of the words am and student, the feature-based
representation requires the presence of the phrase <_>
is student. Recall that all documents containing the
sentence "I am a student." match both conditions, be-
cause the phrase matches all forms of the auxiliary verb
to be. Looking at the accuracies of these two rules shows
that the first one matches 163 examples in the entire
data set, 5 of which being non-student pages, while the
second rule matches only 137 examples, but all of them
are of the class Student.

The rule that was formed using only the phrasal fea-
tures can be loosely interpreted as classifying all doc-
uments that contain the sentence "I am a student at
the institute of <_>." as student home pages. While
this rule is sensible and accurate, it has a much lower
coverage than both other rules.

It is also interesting to note that the third rule con-
tains the redundant condition student. Apparently,
RIPPER’s information gain heuristic first preferred this
condition over the more accurate phrase that contains
the word, because the word feature had higher cover-
age. After it discovered that the phrase has to be added
nevertheless, the redundant condition is not removed
because RIPPER’s pruning algorithm only considers the
removal of a final sequence of conditions from a rule/

It should be remarked that it is no coincidence that
all three rules are predicting the class Student. In fact,
most of the improvements at the low recall end of the
curves is due to respective improvements in the pre-
diction of the Student class. Precision/recall graphs
for this class look very similar to the graphs shown in
figure 1, while for the other five relevant classes no dra-
matic improvements could be observed. We have seen in
table 4 that RAINBOW attributes a somewhat lower im-
portance to phrasal features in the other 5 classes, and
an investigation of the learned rules shows that only a
few of the top-ranked rules for classes other than Stu-
dent actually use phrasal features. This may be partly
due to the fact that there are too few training examples
for some of these classes. We plan to further investigate
this on a more balanced data set, like the 20 newsgroups
data used in (Lang 1995).s

Two other interesting observations to make in fig-
ure 1 are the differences in maximum recall between

7Thls is one of the differences between RIPPER and the

original incremental reduced error pruning algorithm, which
-- less efficiently -- considers all conditions as candidates
for pruning (Ffirnkranz & Widmer 1994).

awe have also investigated whether the Student class
contains a higher percentage of natural language text, but
we could not empirically confirm this hypothesis (using the
crude measure number of phrases per class over number of
words per class).
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Figure 2: Precision/recall curves for RAINBOW (top)
and RIPPER (bottom) using phrases+words versus bi-
grams+words.

RAINBOW and RIPPER, and the consistent decline of
precision at the low recall end for RAINBOW. The for-
mer is due to fact that RAINBOW classifies less pages as
Other, thus increasing the percentage of recalled pages
in the relevant classes at the expense of precision. We
conjecture that the latter phenomenon is caused by vio-
lations of the independence assumption of Naive Bayes,
which leads to overly optimistic confidence scores for
some predictions. For example, if the phrase <_> is
student occurs in a document, it is quite likely that at
least one of the phrases student at/in/of <_> will oc-
cur in the same sentence, which will unduly boost the
probability that this document is a student home page.

Comparison to Bigrams

While the results of the last section have shown that
phrasal features can improve the precision of text clas-
sifters at the expense of recall, one can ask whether
similar results could have been obtained by using se-
quences of words instead of single words as features.
To this end, we have repeated some of the above ex-
periments using a representation that considers single
words and pairs of words (bigrams) as features.

For RAINBOW, we observed the same phenomenon
as with the use of phrases: the shape of the re-
call/precision curve is determined by the word-based
features, but the precision is slightly higher. The two
curves at the bottom of figure 2 are the recall/precision
curves for bigrams+words versus phrases+words for
RAINBOW. There are no notable differences except a
small peak for the phrase representation at a recall level
of 10%. A comparison of the best bigram features (ta-
ble 6) to the best phrase features (table 4) shows that
the average rank of the top three features among the



class bigram
4 home page

student 7 comput scienc
17 depart of
2 comput scienc

department 4 the depart
11 scienc depart
8 comput scienc

faculty 10 of comput
12 univ of
4 satoshi sekin

staff 5 rice edu
8 in japanes

12 research group
project 16 audio latex

17 latex postscript
9 will be

course 14 offic hour
19 the cours

Table 6: The best three bigrams for each class and their
rank in a sorted list of features in the bigrams+words
representation.

student :- my,

student,

i_aal,
science,
research.

Training Accuracy: 184 3
Test Accuracy (Washington): 9 3

Table 7: A highly ranked rule using bigrams with the
number of correct and incorrect predictions it makes on
training and test examples.

word-based features is higher for bigrams, while they
appear to be less sensible (cf., e.g., the features for
classes Staff and Project).

For RIPPER, however, the situation is different. In
the upper two curves of figure 2, the phrase representa-
tion outperforms the bigram representation at the low
recall end. Looking at the rules that apply there, we
find that, unlike the rules of table 5, for the bigrams
the rule with the highest confidence is not one of the 4
top-ranked rules of the Student class in the respective
folds of the 4-fold cross-validation. The rule shown in
table 7 is most similar to the rules shown in table 5. It
is ranked number 6 by our confidence measure.

Finally, it is worth to take a look at the number of
different features that are considered by the learning al-
gorithms (table 8). Recall that we used RAINBOW with
stemming on words and bigrams, as well as pruning of
all features that occur only once, so the number of fea-

Words Phrases Bigrams
RAINBOW 26,628 36,216 224,751
RIPPER 92,666 116,990 872,275

Table 8: Number of features considered by RAINBOW
and RIPPER

tures it uses is much smaller than the number features
RIPPER considers. It can be seen that, although there
are slightly more different phrases than words, their
numbers are in about the same order of magnitude,
while the number of bigrams found in the documents
is one order of magnitude larger.

Conclusions

Our experiments have shown that the use of linguistic
features can improve the precision of text categorization
at the low recall end. For the rule learning algorithm
P~IPPER, adding such features was able to boost the pre-
cision by about 10% to more than 90% when recalling
about 5% of the 1091 test examples of a text catego-
rization task on the WWW. Although phrasal features
require more engineering effort (e.g., the syntax of both
the training and the test documents has to be parsed),
they seemingly provide a better focus for rule learn-
ing algorithms. This effect was less remarkable for the
naive Bayes classifier that we used.

Nevertheless, it should be noted that we were not able
to improve the precision of the classifiers at high recall
levels, the reason being that the phrasal features typi-
cally have a very narrow focus. However, it should also
be noted that the test domain used in our case study
may not have been an ideal choice for evaluating the
utility of phrasal features, because significant parts of
WWW pages do not contain natural language text?
Thus, we plan to further evaluate this technique on
commonly used text categorization benchmarks, such
as the 20 newsgroups dataset (Lang 1995) and the
REUTERS newswire collection (Cohen & Singer 1996).

On the other hand, we are also working on further
improving the classification accuracy on the 4 universi-
ties data set used in this case study. For example, all
approaches used in this study performed very poorly on
the Project class (precision was typically below 20%).
The reason for this is most likely the heterogeneous na-
ture of topics that are dealt with on project pages. We
believe that this problem can be solved by looking at the
information that is contained on or near the links that
point to such pages and plan to investigate this topic
further using techniques similar to those employed in
this study.

9For example, one of the most characteristic words for
the classes Faculty and Staff is the word "Fax", which is
more likely to occur in addresses than in the natural lan-
guage portion of a Web-page.
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