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Abstract
A very important application of time series learning

is online diagnosis, or monitoring, to detect and classify
hazardous conditions in a physical system. Examples of
crisis monitoring in the industrial, military, agricultural
and environmental sciences are numerous. This paper first
defines heterogeneous time series, those containing
different types of embedded, statistical patterns. Next, it
surveys basic techniques for acquiring several types of
temporal models (using artificial neural networks and
Bayesian networks). A new system for learning
heterogeneous time series is then presented; it uses task
decomposition and quantitative metrics to select
techniques for each identifiable (and relevant) embedded
subproblem. This solution is briefly compared to some
mixture models for recombining specialized classifiers.
The validation experiments use two large-scale
applications, shipboard damage control automation and
crop monitoring in precision agriculture. This paper
concludes with a report on work in progress and some
early positive learning results regarding these application
domains.

Keywords: time series learning, model selection, crisis
monitoring, agricultural applications, military
applications, damage control

Introduction
This paper discusses the problem of learning from time
series data in order to predict hazardous and potentially
catastrophic conditions. This prediction task is also
known as crisis monitoring, a form of pattern recognition
that is useful in decision support (or recommender
[KJ97]) systems for many time-critical applications.
These include crisis control automation [Hs97, WS97],
online medical diagnosis [HLB+96], simulation-based
training and critiquing for crisis management [GD88,
GFH94, MW96, WFH+96, GHVW98], and intelligent
data visualization [HB95].

Crisis monitoring is a highly informative
experimental benchmark for many time series learning
systems, because it tests their predictive capability in
extreme cases. Unfortunately, many time series learning
methods fail to produce models that can predict imminent
catastrophic events [GW94]; yet these predictive models
are otherwise reliable. This limitation is due in part to the
heterogeneity, or multimodality, of historical time series
data [HR98b, RH98]. For example, a drought monitoring

system for agricultural applications must account for
several modalities or aspects of drought: climatic,
hydrological, crop-specific, and economic [Pa65, A184].
These drought-related phenomena are often tracked at
varying spatial and temporal scales (e.g., due to
granularity of sensors) and observed through multiple
attributes (or channels). It is especially difficult to predict
catastrophe for heterogeneous models, because of the
interaction among such diverse components of a crisis
[HR98b, HGL+98].

This paper proposes the systematic decomposition of
learning tasks as a partial solution to the problem of
heterogeneity in monitoring problems. Such a process
can alleviate problems that arise from having multimodal
inputs and diversity in scale and structure. Equally
important, it supports technique selection to identify the
most appropriate learning architecture for each
homogeneous component of a time series. Moreover, it
accounts for previously known subdivision of time series
learning tasks due to sensor specifications, knowledge
about relevance, and complexity-reducing methods.

Several architectures and inductive learning
algorithms that apply to artificial neural networks (ANNs)
and Bayesian networks are presented, along with the
types of basic temporal models they can represent and
learn. The research documented here addresses how task
decomposition, model selection, and data fusion can be
applied together to handle heterogeneity in time series
learning. The design of such an integrated system is
described, and some preliminary results on two
monitoring domains are presented.

The key novel contributions of the system are:

1. The explicit organization of learning components into
recombinable and reusable classes

2. Metrics for temporal characteristics of data sets
that indicate the appropriate learning technique

3. A framework for decomposing learning tasks and
combining classifiers learned by different techniques

This paper concentrates on the second contribution:
quantitative methods for model selection in time series
[HR98a]. The authors’ current research is primarily
concerned with cases where subtasks are formed by
constructive induction methods [DM83], which may
incorporate prior knowledge (cf. [DR95]). The emphasis
of this paper is on machine learning methods for crisis
monitoring (especially model selection and
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representation), so it touches on task decomposition and
data fusion only when relevant.

Model Decomposition, Selection, and Fusion
This section first surveys three types of linear models
[GW94, Mo94] for time series learning. It then presents a
systematic approach to decomposition of time series, and
an algorithm for quantitative model selection that
analyzes the components thus produced to choose the
most appropriate linear or Bayesian model and learning
technique. Finally, a data fusion approach is given, which
recombines the "piecewise" models learned using this
method. The survey of precision agriculture applications
later in this paper gives an example of a heterogeneous
time series database containing different linear processes,
and how simple model selection can improve learning for
agricultural crisis monitoring.

Linear Models and Heterogeneous Time Series

To model a time series as a stochastic process, one
assumes that there is some mechanism that generates a
random variable at each point in time. The random
variables X(t) can be univariate or multivariate
(corresponding to single and multiple attributes or
channels of input per exemplar) and can take discrete or
continuous values, and time can be either discrete or
continuous. For clarity of exposition, the experiments
focus on discrete classification problems with discrete
time. The classification model is generalized linear
regression [Ne96], also known as a 1-of-C coding [Bi95,
Sa98] or local coding [KJ97].

Following the parameter estimation literature
[DH73], time series learning can be defined as finding the
parameters (9 = {61 ..... n }that describe the stochastic

mechanism, typically by maximizing the likelihood that a
set of realized or observable values,
{X(tl)x(t2~ .... x(tk )}, were actually generated by that

mechanism. This corresponds to the backward, or
maximization, step in the expectation-maximization (EM)
algorithm [DH73]. Forecasting with time series is
accomplished by calculating the conditional density
P( X (t ) I {®, {X (t - I ~ .... X (t - m )}}), when the stochastic
mechanism and the parameters have been identified by
the observable values [x(t)}. The order m of the stochastic
mechanism can, in some cases, be infinite; in this case,
one canonly approximate the conditional density.

Despite recent developments with nonlinear models,
some of the most common stochastic models used in time
series learning are parametric linear models called
autoregressive (AR), moving average (MA), and
autoregressive moving average (ARMA ) processes.

MA or moving average processes are the most
straightforward to understand. First, let [Z(t)} be some
fixed zero-mean, unit-variance "white noise" or "purely
random" process (i.e., one for which

Cov[ZOi~Z(tj)]=l iff t, =tj,0otherwise). X(t) is an

MA(q) process, or "moving average process of order q", if

X(t)=~fl~Z(t-~), where the ]~ are constants. It
f--0

q

follows that E[X (t)] = 0 and Var[X (t)]= ~ fir" Moving
r--0

average processes are often used to describe stochastic
mechanisms that have a finite, short-term, linear
"memory" [Mo94, Ch96, MMR97, PL98].

AR or autoregressive processes are processes in
which the values at time t depend linearly on the values at
previous times. With [Z(t)} as defined above, X(t) is an
AR(p) process, or "autoregressive process of order p", if

P

~_~oX(t-v)=Z(t), where the auare constants. In
V=0

this case, E[X (t)]-- 0, but the calculation of Var[X (t)]

depends upon the relationship among the t~o ; in general,

if laol > 1, then X(t) will quickly diverge. Autoregressive

processes are used to capture "exponential traces" in a
time series; they are equivalent to infinite-length MA
processes constants [Mo94, Ch96, MMR97, PL98].

ARMA is a straightforward combination of AR and
MA processes. With the above definitions, an ARMA(p, q)
process is a stochastic process X(t) in which

£¢xoX(t-V)=£fl~Z(t-.¢ ), where the {ao,j~} are
D=O ~=0

constants [Mo94, Ch96]. Because it can be shown that AR
and MA are of equal expressive power, that is, because
they can both represent the same linear stochastic
processes (possibly with infinite p or q) [B JR94], ARMA
model selection and parameter fitting should be done with
specific criteria in mind. For example, it is typically
appropriate to balance the roles of the AR(p) and MA(q),
and to limit p and q to small constant values for
tractability (empirically, 4 or 5) [B JR94, Ch96, PL98].

In heterogeneous time series, the embedded temporal
patterns belong to different categories of statistical
models, such as MA(1) and AR(1). Examples of such
embedded processes are presented in the discussion of the
experimental test beds. A multichannel time series
learning problem can be decomposed into homegeneous
subtasks by aggregation or synthesis of attributes.
Aggregation occurs in multimodal sensor fusion (e.g., for
medical, industrial, and military monitoring), where each
group of input attributes represents the bands of
information available to a sensor [SM93]. In geospatial
data mining, these groupings may be topographic [Hs97].
Complex attributes may be synthesized explicitly by
constructive induction, as in causal discovery of latent
(hidden) variables [He96]; or implicitly by preprocessing
transforms [HR98a].
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Learning Architecture Architectural Metric
Simple recurrent network (SRN) Exponential trace (AR) autocorrelation
Time delay neural network (TDNN) Moving average (MA) autocorrelation
Gamma network Autoregressive moving average (ARMA) autocorrelation
Temporal naive Bayesian network Relevance score
Hidden Markov model (HMM) Test set perplexity

Table 1. Learning architectures and their prescriptive metrics

l,carning Mcthod l)istributional Metric
HME, gradient
HME, EM
HME, MCMC
Specialist-moderator, gradient
Specialist-moderator, EM

Modular cross entropy
Modular cross entropy + missing data noise
Modular cross entropy + sample complexity
Dichotomization ratio

Specialist-moderator, MCMC

Table 2. Learning methods and

Dichotomization ratio + missing data noise
Dichotomization ratio + sample complexity

their prescriptive metrics

Quantitative Model Selection
This section presents a new metric-based model selection
system, and gives an algorithm for selecting the learning
technique most strongly indicated by the data set
characteristics.

Model selection is the problem of choosing a
hypothesis class that has the appropriate complexity for
the given training data [Sc97]. Quantitative, or metric-
based, methods for model selection have previously been
used to learn using highly flexible models with many
degrees of freedom, but with no particular assumptions on
the structure of decision surfaces (e.g., that they are linear
or quadratic) [GD92]. Learning without this
characterization is known in the statistics literature as
model-free estimation or nonparametric statistical
inference. The premise of this paper is that for
heterogeneous time series learning problems,
indiscriminate use of nonparametric models such as
feedforward and recurrent artificial neural networks is too
unmanageable. This is especially true in crisis monitoring
because decision surfaces are more sensitive to error
when the target concept is a catastrophic event.

The remainder of this section describes a novel type
of metric-based model selection that selects from a
known, fixed "repertoire" or "toolbox" of learning
techniques. This is implemented as a "lookup table" of
architectures (rows) and learning methods (columns).
Each architecture and learning method has a characteristic
that is positively (and uniquely, or almost uniquely)
correlated with its expected performance on a time series
data set. For example, nai’ve Bayes is most useful for
temporal classification when there are many
discriminatory observations (or symptoms) all related to
the hypothetical causes (or syndromes) that are being
considered [He91, Hs98]. The strength of this
characteristic is measured by an architectural or
distributional metric. Each is normalized and compared
against those for other (architectural or distributional)
characteristics. For example, the architectural metric for
temporal naive Bayes is simply a score measuring the

degree to which observed attributes are relevant to
discrimination of every pair of hypotheses. The
"winning" metric thus identifies the dominant
characteristics of a subset of the data (if this subset is
sufficiently homogeneous to identify a single winner).
These subsets are acquired by selecting input attributes
(i.e., channels of time series data) from the original
exemplar definition (cf. [KJ97]).

The next section describes a database of available
learning architectures and methods (mixture models and
algorithms). Based on the formal characterization of
these learning techniques as time series models [GW94,
Mo94, MMR97], indicator metrics can be developed for
the temporal structure and mixture distribution of a
homogeneous time series (i.e., one that has identifiable
dominant characteristics). The highest-valued
(normalized) architectural metric is used to select the
learning architecture (Table 1); the highest for
distribution is used to select the learning method (Table
2). The metrics are called prescriptive because each one
provides evidence in favor of an architecture or method.

Database of Learning Components
Table 1 lists five learning architectures (the rows of 
"lookup table") and the indicator metrics corresponding to
their strengths [Hs97]. The principled rationale behind
the design of these metrics is that each is based on an
attribute chosen to correlate positively (and, to the extent
feasible, uniquely) with the characteristic memory form of
a time series. A memory form as defined by Mozer
[Mo94] is the representation of some specific temporal
pattern, such as a limited-depth buffer, exponential trace,
gamma memory [PL98], or state transition model.

SRNs, TDNNs, and gamma networks are all temporal
varieties of artificial neural networks (ANNs) [MMR97].
A temporal na~’ve Bayesian network is a global knowledge
map (as defined by Heckerman [He91]) with two
stipulations. The first is that some random variables may
be temporal (e.g., they may denote the durations or rates
of change of original variables). The second is that the
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topological structure of the Bayesian network is learned
by naive Bayes. A hidden Markov model (HMM) is 
stochastic state transition diagram whose transitions are
also annotated with probability distributions (over output
symbols) [Le89].

The prototype architectural metrics for temporal
ANNs are average autocorrelation values for the
preprocessed data. Memory forms for temporal ANNs
can be characterized using a formal mathematical
definition called the kernel function. Convolution of a
time series with this kernel function produces a
transformed representation under its memory form
[Mo94, MMR97]. The design principle behind the
architectural metrics for temporal ANNs is that a memory
form is strongly indicated if the transformed time series
has a high autocorrelation.

For example, to compute autocorrelation for an AR(p)
model, convolution of an exponential decay window (an
AR kernel function) is first applied [MMR97]. This
estimates the predictive power of the model if chosen as
the learning architecture. The score for temporal na:fve
Bayesian network is the average number of variables
relevant to each pair of diagnosable causes (i.e.,
hypotheses) [He91]. This score is computed by
constructing a Bayesian network by naive Bayes [Pe88]
and then averaging a relevance measure (cf. [KJ97]) 
the conditional distribution of symptoms (input attributes)
versus syndromes (hypotheses). This relevance measure
may be as simple as an average of the number of relevant
attributes. Finally, the indicator metric for HMMs is the
empirical perplexity (arithmetic mean of the branch
factor) for a constructed HMM [Le89].

Table 2 lists six learning methods (the columns of the
"lookup table"). A hierarchical mixture of experts
(HME) is a mixture model composed of generalized linear
elements (as used in feedforward ANNs) [JJNH91, JJ94].
It can be trained by gradient learning, expectation-
maximization [JJ94], or Markov chain Monte Carlo
(MCMC) methods (i.e., random sampling as in 
Metropolis algorithm for simulated annealing) [MMR97].
A specialist-moderator network, which also can combine
predictions from different learning architectures, is a
mixture model whose components have different input
and output attributes. Specialist-moderator networks are
discussed briefly in the section below on data fusion; the
interested reader is referred to [HR98a, RH98]. The
prototype distributional metrics for HME networks are
based on modular cross entropy (i.e., the Kullback-Leibler
distance between conditional distributions in each branch
of the tree-structured mixture model) [JJ94]. The metrics
for specialist-moderator networks are proportional to
dichotomization ratio (the number of distinguishable
equivalence classes of the overall mixture divided by the
product of its components’) [HR98a]. To select a learning
algorithm, gradient learning is defined as a baseline, and a
term is added for the gain from estimation of missing data
(by EM) [JJ94] or global optimization (by MCMC)
[Ne96], adjusted for the conditional sample complexity.

Composite Learning

This section defines composites, which are
specifications of high-level extracted attributes, together
with the learning architecture and method for which this
alternative representation shows the strongest evidence.
Composites are generated using the algorithm below.

Definition. A composite is a set of tuples

L = ((A1,BI,61, ~l ,S1) .... (Ak,Bk,6k , ? k ,Sk 

where Ai and Bi are constructed input and output

attributes, 6i and ~i are network parameters and

hyperparameters cf. [Ne96] (i.e., the learning
architecture), and Sl is a learning method.

The general algorithm for composite time series
learning follows.

Given:
1. A (multichannel) time series data set

D = ((x(1), ya)) ..... (x~.), y(.))) with input attributes
such that x = (x/° ..... x/°) andA = (at ..... al) (0

output attributes B = (b~ ..... be) such that
y(i) = (yl(i) ..... yo(i))

2. A constructive induction function F such that
F(A, B, D) {(A’, B’)}

Normalization formulas for metrics xr (~ = metric number)

t~: shape parameter
2~: scale parameter

f¢(x)dx

r(t,)  o e-’yt’-’dy

Figure 1. Normalization of metrics

Algorithm Select-Net (D, A, B, F)
repeat

Generate a candidate representation (e.g, attribute

subset [KJ97]) (A’,B’)~ F(A,B,D).
Compute architectural metrics x~ = mfl(A’, B’) that
prescribe the learning architecture.
Compute distributional metrics xf = m f(A ’, B’) that
prescribe the learning method.
Normalize the metrics xr using a precalibrated
function Gr- see Figure 1.
Select the most strongly prescribed architecture
(6 ,~ )and learning method S for (A’, B’), i.e., the table
entry (row and column) with the highest metrics.
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if the fitness (strength of prescription) of the selected
model meets a predetermined threshold
then accept the proposed representation and learning
technique (A’, B’, 0, ~’, S 

until the set of plausible representations is exhausted
Compile and train a composite, L, from the selected
complex attributes and techniques.
Compose the classifiers learned by each component of
L using data fusion.

The normalization formulas for metrics simply
describe how to fit a multivariate gamma distribution f~
based on a corpus of homogeneous data sets (cf. [HZ95]).
Each data set is a "training point" for the metric
normalization function, Gr (i.e., the shape and scale
parameters off0.

Data Fusion for Decomposable Learning Tasks
The recombination of time series components

(classes in the attribute subset partition) is achieved using
one of two hierarchical mixture models. One is the HME
network developed by Jordan et al [JJ94]. The other is a
specialist-moderator network, a new hierarchical mixture
model developed by Ray and Hsu [RH98, HR98a].
Specialist-moderator networks combine the predictions of
differently targeted inductive generalizers (e.g., specialist
ANNs that receive a subset of the input attributes or
channels, and are trained to predict equivalence classes of
the overall targets). A companion paper, which appears
as an extended abstract in these proceedings [HR98a],
describes how specialist-moderator networks outperform
non-modular ANNs on time series classification tasks that
admit an efficient decomposition. It shows how, using the
same decomposition, they can outperform partitioning
mixtures such as hierarchical mixtures of experts (HME)
[JJ94], given identical constraints on network complexity
and convergence time. Another example of a partitioning
mixture that is well studied in the machine learning
literature is boosting [FS96]. We also considered [Hs98]
how specialist-moderator networks can be combined with
aggregation mixtures such as bootstrap aggregation
(bagging) [Br96] and stacked generalization [Wo92].

Destroyed

Flooding

Test Bed Domains for Time Series Learning

Crisis Monitoring in Shipboard Damage Control

Figure 2 depicts a shipboard damage control training
system called DC-Train, developed at the Knowledge
Based Systems Laboratory at University of Illinois
[WFH+96, WS97]. The visualization shown is part of the
user interface for an immersive tutoring system for
damage control assistants (DCAs), officers who
coordinate damage control activity during shipboard
crises. The purpose of DC-Train is to provide realistic
simulation-based training (in time-constrained problem
solving under stress) to DCA trainees; to offer critiques
and guidance (up to and including automated control of

the student’s role in the simulation); and to synthesize
more effective scenarios based on user (student and
instructor) modeling.

Shipboard damage control crisis monitoring is also
useful in recommender systems [RV97] for control
automation [WS97, Bu98]. An intelligent problem
solving system with predictive capabilities could be
applied for partial automation of the damage control
organization, thereby reducing manning aboard Navy
vessels where such a system is deployed [WS97].

The visualized data in Figure 2 is compartment status
- specifically, combustion state, flooding and rupture
state, and crisis status based on reports from damage
control agents such as investigators, fireflghters, and
repair personnel). We are developing systems for
diagnosis of hazard level. In our preliminary studies, this
is a "danger" rating, possibly measured as the number of
minutes until a lethal explosion, total shipwide
conflagration, instability due to flooding, or other
catastrophic event. In our computer-assisted instruction
application, this is known as a kill point that terminates
the scenario.

Color code for
compartment status

Student View Instructor View

Figure 2. Shipboard damage control training
simulation

Our intelligent system for time series analysis is
presented with hundreds of input channels from
throughout the ship, which comprises all localized
temperature and gas content readings, as well as other
information about doors, flooding, etc. All readings are
digital, but at a high enough precision to make continuous
methods desirable. Accurate fire detection is one of our
primary low-level classification objectives - that is, we
want to develop a system that can accurately tell us
whether or not there is a fire, and if there is, what fire
boundaries to establish for fire fighting purposes.
Minimization of false positives is extremely important,
simply for efficiency’s sake. Because training data is
somewhat sparse, we need analysis that can produce good
estimators with little training data and that will exhibit
graceful degradation of performance when presented with
novel or noisy data. Recurrent and time-lagged neural
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networks are particularly attractive as components of our
system, since they meet our above requirements and since
they can represent autoregressive and moving-average
time series behavior.

Preliminary results for kill point prediction
(estimating the time in minutes to any catastrophic event)
has indicated that it is feasible to learn from problem-
solving traces. These traces are databases that record
simulated events in DC-Train and actions by a human or a
problem-solving, knowledge-based system [Bu98]. This
approach is an ideal test bed for time series learning as
applied to crisis monitoring. Early analysis for simulator
development indicates that heterogeneity is indeed present
(due to the multiple types of damage control crises)
[WFH+96]. Mixture models (specifically, boosting of
weak classifiers [FS96]) have also been shown to improve
learning performance consistently [Bu98].

Crop Monitoring in Precision Agriculture

Figure 3 depicts an (atemporal) spatially referenced data
set for diagnosis in precision agriculture. The inputs are:
yield monitor data, crop type, elevation data and crop
management records; the learning target, cause of
observed low yield (e.g., drought) [Hs98]. Such
classifiers may be used in recommender systems [RV97]
(also called normative expert systems [He91]) to provide
decision support for crop production planning in
subsequent years. We use biweekly remote sensing
images and meteorological, hydrological, and crop-
specific data to learn to classify influents of expected crop
quality (per farm) as climatic (drought, frost, etc.) or non-
climatic (due to crop management decisions) [Hs98].

Figure 3. An agricultural diagnosis problem

Figure 4 visualizes a heterogeneous time series. The
lines shown are autocorrelation plots of (subjective)
weekly crop condition estimates, averaged from 1985-
1995 for the state of Illinois. Each point represents the
correlation between one week’s mean estimate and the
mean estimate for a subsequent week. Each line contains
the correlation between values for a particular week and
all subsequent weeks. The data is heterogeneous because
it contains both a moving average pattern (the linear

increments in autocorrelation for the first 10 weeks) and
an exponential trace pattern (the larger, unevenly spaced
increments from 0.4 to about 0.95 in the rightmost
column). The MA pattern expresses weather "memory"
(correlating early and late drought); the AR pattern,
physiological damage from drought. Task decomposition
can improve performance here, by isolating the MA and
AR components for identification and application of the
correct specialized architecture (a time delay neural
network [LWH90, Ha94] or simple recurrent network
[El90, PL98], respectively).

Figure 4. A heterogeneous time series

Rnal Trainlng Emror for 5 Runs of Corn Condltlon, 1985-1996

0.1 lqonenlum <~
G1 Time O~nt

i [] 0.9
[] (196

¯ 0.90

Bman Jordan Input ~ Blckpr0p

Network .~rchit~oture

Figure 5. Results from training with temporal
and feedforward ANNs

Figure 5 contains bar charts of the mean squared
error from 125 training runs using ANNs of different
configurations (5 architectures, 5 delay constant or
momentum values for gradient learning, and 5 averaged
runs per combination). On all runs, Jordan recurrent
networks and time-delay neural networks failed to
converge with momentum of 0.99, so the corresponding
bars are omitted. Cross validation results indicate that
overtraining on this data set is minimal. As a preliminary
study, we used a gamma network to select the correct
classifier (if any) for each exemplar from among the two
best overall networks (input recurrent with momentum of
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0.9 and TDNN with momentum of 0.7). The error rate
was reduced by almost half, indicating that even with
identical inputs and targets, a simple mixture model could
reduce variance [Hs98].

Conclusions and Future Work
This paper has presented the design of a heterogeneous
time series learning system with metric-based model
selection. Our study of common statistical models for
time series and our experience with the (highly
heterogeneous) test bed domains bears out the idea that
"fitting the right tool to each job" is critical. In current
research, we apply our system to specific, applied
monitoring and diagnosis problems in damage control and
precision agriculture, such as learning for causal queries
[WS97, Hs97, Hs98]. Current research by the authors
addresses the related problems of task decomposition by
constructive induction (aggregation and transformation of
ground attributes) and fusion of test predictions from
probabilistic network classifiers [HR98a, RH98].
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