
Interactive Interface Agents as Recommender Systems

Michael Fleming and Robin Cohen
Department of Computer Science

University of Waterloo
Waterloo, ontario

N2L 3G1
mwflemin@neumann.uwaterloo.ca, rcohen@watdragon.uwaterloo.ca

Abstract

This paper presents a model for more interactive in-
terface agents. Using learning interface agents is one
strategy for designing recommender systems. The more
interactive style of agents presented in this paper aims
to increase the trust and understanding between the
user and the agent, by allowing the agent to solicit
further input from the user under certain conditions.
We illustrate our design for more interactive interface
agents by including some examples in the domain of
electronic mail. We then discuss why the model is also
applicable to designing recommender systems, in gen-
eral.

Overview

One strategy for designing recommender systems is to
construct a learning interface agent, which interacts
with a user in order to produce its recommendations
(e.g., (Lieberman 1995)). This approach is one which
provides personalized assistance, since the agent exam-
ines how a user interacts with the environment and
then makes recommendations based on general patterns
which are learned.

Previous designs of learning interface agents
(e.g., (Maes 1994)) attempt to automate actions on
half of users, with a minimal amount of participation
from the user. Our work has focused instead on de-
veloping more interactive agents (still restricted not to
bother unduly), which solicit further input from the
user, toward improving their overall performance. This
kind of design allows for an increase in trust and un-
derstanding between the user and agent.

The point of this position paper is that our model
of more interactive interface agents would be useful to
apply to the design of recommender systems, in order
to address the concern with insufficient trust in the rec-
ommendations which are provided. Although we have
primarily examined individual interface assistance do-
mains such as e-mail and scheduling, we believe that
our model can be a useful starting point for the design
of an agent to assist with applications such as recom-
mending web pages to users.

Background
In order to develop our model, we have used as a start-
ing point the learning interface agent architecture de-
veloped by the Software Agents group at MIT. The fol-
lowing is a very brief description of how these agents
operate; see (Maes 1994) for more detail. The MIT
agents act primarily by observing their users, and by
using a form of learning called memory-based reason-
ing (Stanfill ~ Waltz 1986). For each new situation
that arises, the agent computes the distance between
the current state and each of the past situations it has
stored in its memory, using a weighted sum of several
relevant features. According to the actions taken by the
user in the most similar past situations, the agent se-
lects an action for the current situation, and calculates
a corresponding confidence value (Kozierok 1993). Ac-
cording to "do-it" and "tell-me" thresholds established

PRIOR TO OPERATIONs The user has set the tell-me and do-it thresh-
olds, has indicated how many past situations the agent should look at dur-
ing its action selection, etc.

INPUT: A signal that there exists a new situation to be addressed (e.g.,
in the e-mail domain, a new mall message arrives, the user has just finished
reading a message, etc.)

OUTPUT: The agent has completed an action on the user’s behalf, has
suggested an action, or has decided to do nothing for the current situation.

Select action A via learning techniques and assign confidence value C.

if C ~> do-it threshold then

- perform action A and add it to a list of automated actions for user
to examine at his own leisure

- if user indicates that action was incorrect, ask user to adjust priority
weightings for the various features which contribute to calculations

else if C ~> ten-me threshold then

- suggest action A

else

-- consult other agents for help, establish suggested action At and com-
pute new confidence value Ct.

- if Ct ~ do-it... (as above)

- else if Ce ~> tell-me... (as above)

- else do nothing

Figure 1: High-level algorithm for the behaviour of
learning interface agents

42

From: AAAI Technical Report WS-98-08. Compilation copyright © 1998, AAAI (www.aaai.org). All rights reserved.

by the user, the agent determines whether to automate
an action on the user’s behalf, to suggest an action,
or to do nothing at all. Figure 1 shows a high-level
description of the behaviour of these learning agents.

More Interactive Interface Agents

While the MIT design has many strong points, several
shortcomings can be identified (Fleming 1998). In par-
ticular: (i) these agents do not deal very well with sit-
uations that are somewhat ambiguous; (ii) the lack
communication between agent and user makes it diffi-
cult for a user to understand and to trust such an agent;
(iii) memory-based learning can be quite slow because
it may require an examination of a large number of pre-
vious situations.

We address these issues and others, by presenting
a variation on the architecture of the MIT learning
agents. This new model allows for agents which are
still more or less autonomous, but which recognize op-
portunities for asking the user for further information,

PRIOR TO OPERATION: The user has set the tell-me, do-it and
bother thresholds, has indicated how many past situations the agent
should look at during its action selection, etc.

INPUT: A signal that there exists a new situation to be addressed (e.9.,
in the e-mail domain: a new mail message arrives, the user has just fin-
ished reading a message, etc.)

OUTPUT: The agent has completed an action on the user’s behalf, has
suggested an action or has communicated to the user that it can do noth-
ing for the current situation.

(0) Consult rule database for applicable rules previously created by the
user (with or without the agent’s help). If a single rule is found
apply, then use that rule. If two or more conflicting rules are found,
initiate rule conflict dialogue with user. If no rules are found to ap-
ply, then proceed with step 1.

(1) Use learning techniques to get possible actions
A1, ..., Aa

(2) if choice of action A is clear a then

(3) Compute confidence value C (as in the MIT agents -
see (Kozierok 1993), for example)

(4) if C do-it th reshold th en pe rform ac tion A and in dicate
that there is a proposed rule for the user to approve/reject/edit

(8) else if C > tell-me threshold then suggest action A

(6) else //choice unclear because two or more actions have similar
scores

(7) if peer agents exist and are able to provide trustworthy advice
then automate/suggest recommended action

(8) else // choice still unclear

(9) Compute clarification factor CF.

(10) if CF > user-defined bother threshold
then initiate dialogue with user.

aThe choice is considered clear if the score computed for the highest-

scoring action exceeds the score of the next best choice by a constant

difference threshold (say, 10~).

Figure 2: High-level algorithm for our more interactive
interface agents

with the goal of improving the agents’ overall per-
formance. A very high level algorithm for our semi-
autonomous agents is shown in Figure 2. The major
points of this algorithm are explained in this paper, il-
lustrated for the domain of assisting users with e-mail.

Ambiguous situations
In our model, we address the problem of ambiguous sit-
uations: ones in which the agent, via its learning meth-
ods, is unable to select one course of action as being a
clear winner. (See steps 6-10 in the algorithm.) For ex-
ample, in the e-mail domain, suppose an agent has suc-
cessfully learned that all messages from David Fleming
should be re-filed in the David folder and that all mes-
sages with subject "Hockey pool" should be filed in the
Hockey folder. What will the agent do with a message
from David Fleming with subject "Hockey pool"?

Suppose a message with the following feature values
has just been read:

Feature From Cc [Date Subject

Value David Flemin~ None October 26 Hockey pool

Suppose also that the agent has assigned the follow-
ing weights to each of the relevant fields, based on how
well the current situation’s value in each of those fields
has typically predicted the action taken (as in (Kozierok
1993)).

Feature From Cc Date Subject

Well/he 0.90 0.08 0.01 0.88

Finally, suppose that the following four messages
were found to be the most similar to the current situa-
tion, with the distance between the value in the current
situation and the corresponding value in the past situ-
ation shown in the third row. The overall distance be-
tween two situations (shown in the fourth row) is com-
puted by taking the sum of the products diw~, where
di is the distance between the values of field i and w~ is
the weight assigned to field i.

Feature
Value David Fleming None October 11 Habs

Distance 0 I O° I O te I ubJct0 0.90 0.98
,x(s ~,) 0.8714

Action File under David

Feature From Date Subject
Value David Fleming October 3 Hi

Distance 0 0.92 1
A(S ~2)

INoneCC0 t
0.8892

Action File under David

Feature From [Subject
7 Hockey pool

1 I

Cc Date
Value Owen Barnhill None October

Distance 0 0.86 0

0.9086
Action File under Hockey

Feature Subject

Value S. Fillmore None October 23 Hockey pool
Distance 1 0 0.90 0

0.9090
Action File under Hockey

In such a situation, MIT’s Maxims (Metral 1993)
mail agent would compute scores for each of the two
candidate actions (File under David and File under
Hockey), would choose the action with the higher score
and would calculate a confidence value. In this case, the

43

scores for the two actions would be very close together;
the agent would choose to file the message in the David
folder but would have a very low confidence value. As
a result, this agent would likely do nothing in such a
situation. It would be the responsibility of the user to
realize that nothing had been done, and to perform an
appropriate action himself.

Our more interactive agent, on the other hand, would
examine the same situation and recognize that two can-
didate actions have similar scores. Based on how close
together the scores are, along with a number of other
factors, 1 the agent will compute a clarification factor.
This clarification factor is then compared to a user-
defined bother threshold to determine whether or not to
initiate a clarification dialogue with the user. The goM
of such a dialogue is to find out which action is most
appropriate in this situation and to attempt to gener-
alize this into a rule. An example screen is presented
below:
Situation: The following message has just been read

I

From Oc Date Subject
iiiDavid Flemin~ None Oct. 27 Hockey pool

Possible actions:

Action Score Explanation
File under David 2.272 In past situations in

which the sender was
David Fleming, the action
taken was File under David

in 95% of cases.
File under Hockey 2.201 In past situations in

which the subject was
"Hockey pool", the action

taken was File under Hocl~ey
in 100~ of cases.

I------"~7
Please click on the action you wish to choose, or elicklCancellto conclude

this interaction.

If the user were to choose the action File under
Hockey, for example, the agent would proceed to pro-
pose two rules, as seen in Figure 3. The first states
specifically that when the subject line is "Hockey pool"
and the message sender is David Fleming, the message
should be filed in the Hockey folder. The second rule is
more general, and states that any messages with subject
line "Hockey pool", regardless of the sender, should be
filed in the Hockey folder. The user has the option of ac-
cepting or editing either of these rules, or of cancelling
the interaction entirely if neither rule is appropriate.

Even in cases in which the user is not immediately
bothered by the agent (i.e., the clarification factor does
not exceed the bother threshold), the agent can indicate
that it has a question for the user without actuMly re-
quiring the user to deM with it immediately. To achieve
this interaction, we propose having the agent maintain a

1These factors include how "important" the agent con-
siders the candidate actions to be (based on the do-it thresh-
olds (Maes 1994) established by the user for those actions)
and how often the user has been bothered recently. We omit
the presentation of the actual formula in this short paper.

[]
Possible rules,

Subjectt Hockey pool] Actiont
i

Prom* David Fleming I
I

] Subject, Hockey pool] Action:

Prom, *

--+ Hockey [

ACCEPT

~--+ Hockey]

REJECT ALL RULES]

Figure 3: Agent’s proposal of possible rules

"question box" where it would store information about
situations with which it could benefit from the user’s
help, but for which it chose not to interrupt the user
immediately due to a low clarification factor. This ques-
tion box would appear in the interface as a small box
in the lower left corner of the screen, indicating how
many questions the agent currently had. The user could
choose to click on this box at his own convenience, in
order to initiate dialogues of the form presented earlier.

Rule base
Another novel aspect of our algorithm, as compared
to the learning interface agents developed at MIT, is
its incorporation of truly hard-and-fast rules into the
agent’s behaviour. An example of such a rule, from
the e-mail domain, might be "If a message arrives with
subject line ’Make money fast’, then delete it." Rules
can either be programmed by the user, or developed
and proposed by the agent when it has high confidence
in a prediction (as in Step 4 of Figure 2). Although the
MIT group does provide "rules" for its agents, these
rules are simply represented as hypothetical situations,
and are treated just as though they were situations the
agent had actually observed in the past. In any new
situation, an agent would still have to examine each
past situation in its memory and go through a series of
calculations. Our proposal is for the agent to maintain
an entirely separate database of rules, which can be
fired immediately whenever an appropriate situation is
encountered.

We believe that the incorporation of rules is a nec-
essary addition for two main reasons: (1) it will likely
speed up the agent’s performance2 in situations where
it can simply apply a rule, rather than going through
a series of complex calculations involved in the agent’s
learning algorithm; (2) because rules are more explicit
and concrete than the calculations involved in learn-
ing techniques, having a separate rule base which is

2Note that, in practice, the actual gain in performance
by using a nile-based approach would depend strongly on
the size of the nile base and on the format used to represent
rules,

44

always available to inspect would help to provide the
user with a better understanding of, more trust in, and
a better sense of control over, the agent’s behaviour.
Our agents also allow for agent-user communication in
the event of conflicts occurring in the actual rules pro-
grammed by the user (Step 0). This communication
not through natural language, but rather via dialogue
boxes, menus and buttons in a graphical user interface.
(Fleming 1998) presents examples illustrating dialogues
to address such rule conflicts.

Self-monitoring and explanations
We also provide means by which agents can monitor
their own performance, by comparing their predictions
to the actions actually taken by the user, and can pro-
pose appropriate times for thresholds to be manipu-
lated. This would reduce the amount of work the user
has to do, in terms of watching the agent, determining
how well it is performing, and deciding when to give
the agent more or less autonomy.

Furthermore, we propose a more general technique
for providing users with explanations of agent actions.
Rather than simply referring the user to situations from
the past which are considered similar to the current
situation, the agent should be able to generalize what
it has seen, in order to present it to the user in an
English sentence. Details of each of these mechanisms
can be found in (Fleming 1998).

Reflecting on Initiative

Our work also has something to offer to the growing
mixed-initiative research area ((Allen 1994), (Burstein
& McDermott 1996)). Several important issues have
been identified, which must be addressed when design-
ing mixed-initiative systems, including:

¯ specification of when exactly the system and user
should communicate, and what that communication
should look like;

¯ registration of context when one party interrupts the
other;

¯ ensuring that both parties share the responsibilities
involved in the task, and are fully aware of the re-
sponsibilities of each party.

For the particular application of interface agent de-
sign, our model addresses each of these issues.

An algorithm is presented for determining when an
agent should choose to initiate communication with the
user, and details are given about the format of this in-
teraction. Registration of context is also taken into con-
sideration in the model. Whenever the agent interrupts
the user, it must take care to set the stage for what ex-
actly it wishes to ask the user. For instance, in the ex-
ample presented earlier, the agent registers the context
by establishing that the user has just finished reading
a message which the agent does not know how to treat,
and by providing the user with the exact features of
that particular message. In our model, the agent and

user share responsibilities quite well, and should always
be aware of who is responsible for what tasks. Upon en-
countering any new situation, it is understood that the
agent will attempt to do whatever it can to perform an
action for the user (or to make a suggestion) using the
knowledge it has previously acquired. If it has insuf-
ficient information to do anything, it will still be able
to inform the user by adding messages to the question
box discussed earlier. 3 The design decisions made for
interface agents may be useful to motivate the design
of other kinds of mixed-initiative systems.

Recommender Systems

The goal of interface agents is to help the user deal with
a particular computer-based application, and to off-load
some of the tedious or repetitive work. Our work looks
at the degree to which such systems communicate with
a human user. There is a definite tradeoff involved
here: both the agent and user can benefit a great deal
from increased interaction; however, an agent which
constantly interrupts with questions and explanations
is bound to become an annoyance. The model which
we propose aims to provide improved performance over
strictly learning interface agents, allowing users to be
more aware (and trusting) of their agents’ activities,
while keeping the bother level to a minimum.

The algorithm we have proposed identifies some gen-
eral opportunities for initiating clarification dialogues
with users, providing a mechanism for agents to in-
teract with users, without bothering them excessively.
The particular decisions which we have made, with re-
gard to specific details such as the exact form of agent-
user communication and some of the formulas proposed
in (Fleming 1998), are certainly flexible, and would de-
pend strongly on the application area. The algorithm
we present can be used as a starting point for any re-
searcher wishing to develop a more interactive type of
interface agent, because it identifies opportunities for
both the agent and the user to initiate further commu-
nication. (Fleming 1998) also provides a generalized
description of the algorithm, which does not rely on
the underlying learning techniques from the MIT agent
designs.

With a clear algorithm for interacting with users
when there is ambiguity, making users aware of what an
agent is contemplating and allowing users to take the
initiative to direct an agent, we feel that we have pro-
vided a good framework for assistance in recommender
system environments, where there is indeed some un-
certainty and a clear role for users to make their prefer-
ences known. Because recommender systems attempt
to make recommendations to their users, they can in-
deed be modelled as personal assistants. The tradeoff

s (Fleming 1998) discusses other methods for communi-
cating with the user as well. For example, it is possible to
use a separate "communication column" in the display of all
e-mall messages in a mailbox, which records the current sta-
tus of that message with respect to the agent’s processing.

4B

that has been identified for interface agents must be
addressed for all recommender systems: how to request
clarifying information from time to time, without sub-
jecting the user to unnecessary interruptions.

Acknowledgements
This work was supported in part by the Natural Sci-
ences and Engineering Research Council of Canada
(NSERC).

References
Allen, J. 1994. Mixed-initiative planning: Position pa-
per. Presented at the ARPA/Rome Labs Planning Ini-
tiative Workshop. Available on the World Wide Web
at http: / /www.cs.rochester.edu/research/trains/mip.

Burstein, M., and McDermott, D. 1996. Issues in
the development of human-computer mixed-initiative
planning. In Gorayska, B., and Mey, J., eds., In Search
of a Humane Interface. Elsevier Science B.V. 285-303.
Fleming, M. 1998. Designing more interactive inter-
face agents. Master of mathematics thesis, University
of Waterloo, Waterloo, Ontario.
Kozierok, R. 1993. A learning approach to knowledge
acquisition for intelligent interface agents. Master of
science thesis, Massachusetts Institute of Technology,
Cambridge MA.

Lieberman, H. 1995. Letizia: An agent that assists
Web browsing. In Proceedings of IJCAI ’95. AAAI
Press.
Maes, P. 1994. Agents that reduce work and informa-
tion overload. Communications of the ACM 37(7):31-
40.

Metral, M. 1993. Design of a generic learning inter-
face agent. Bachelor of science thesis, Massachusetts
Institute of Technology, Cambridge MA.
Stanfill, C., and Waltz, D. 1986. Toward memory-
based reasoning. Communications of the A CM
29(12):1213-1228.

46

